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ABSTRACT. We define obstructions which obstruct topological pseudo-isotopies from be-
ing isotopic to isotopies in dimension four. These match the smooth obstructions of Hatcher-
Wagoner for smooth pseudo-isotopies, and accordingly are valued in certain Whitehead
groups. We show that our obstructions are fully realisable, and we use these realisations
to build homeomorphisms of 𝑌 × 𝑆1 for many 3-manifolds 𝑌 that are pseudo-isotopic to
the identity but not isotopic to the identity.

1. INTRODUCTION

Understanding the space of pseudo-isotopies, denoted 𝒫CAT(𝑋), of a CAT manifold
𝑋𝑛 has been a relevant topic in algebraic topology for many years (where CAT stands
for either the smooth or topological category, denoted DIFF or TOP). Roughly speaking,
pseudo-isotopies are CAT isomorphisms 𝑀 × 𝐼 → 𝑀 × 𝐼 that are not necessarily level
preserving (see Definition 2.1).

Work of Cerf [Cer70] showed that if 𝑀 is smooth and simply connected, 𝑛 ≥ 5, then a
smooth pseudo-isotopy is always smoothly isotopic to a smooth isotopy. In particular, if
𝑓 is smoothly pseudo-isotopic to Id, then it is also smoothly isotopic to Id. Hatcher and
Wagoner [HW73] and Igusa [Igu84] extended Cerf’s method to a two-stage obstruction
theory, given by maps Σ and Θ, that in the non simply connected case (𝑛 ≥ 6) decide
whether a smooth pseudo-isotopy can be smoothly isotoped to an isotopy. We extend
these obstructions to the topological category in dimension four, building on the work
of Burghelea-Lashof and Pedersen [BLR75, Ped77], who extended the obstructions to the
topological category in high dimensions.

Theorem 1.1 (Topological invariants). Let 𝑋 be a compact, topological 4-manifold. Then there
exists homomorphisms

ΣTOP : 𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) → Wh2(𝜋1(𝑋))

and

ΘTOP : kerΣTOP → Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒
1
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such that ΣTOP and ΘTOP vanish on pseudo-isotopies topologically isotopic to isotopies, and
such that the following diagrams commute.

𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) Wh2(𝜋1(𝑋)) kerΣTOP Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒

𝜋0(𝒫DIFF(𝑋, 𝜕𝑋)) kerΣ

ΣTOP ΘTOP

Σ Θ

Here the vertical maps are the maps induced by forgetting the smooth structure, and 𝜒 denotes
the image of the map 𝜒 : 𝐾3(ℤ[𝜋1𝑋]) → Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋)).

The invariants are valued in corresponding K-theoretic Whitehead groups, whose def-
initions are recalled in Section 2.1 and Section 2.2, along with the definitions of the orig-
inal smooth Hatcher-Wagoner invariants. The definition of our topological invariants
requires careful investigation of the differences between the DIFF and TOP categories in
dimension four, together with several ad hoc steps to make sure ΣTOP and ΘTOP are com-
patible with their smooth counterparts. Furthermore, we show that these invariants are
realisable in the strongest possible sense. Here we follow the work of Singh [Sin22], but
we obtain a stronger realisation result due to working in the topological category.

Theorem 1.2 (Realisation). Let 𝑋 be a compact, topological 4-manifold with good fundamental
group. Then given 𝑥 ∈ Wh2(𝜋1(𝑋)) or 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒(𝐾3ℤ[𝜋1𝑋]) there
exists a pseudo-isotopy 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼 with ΣTOP(𝐹) = 𝑥 or ΣTOP(𝐹) = 0 and ΘTOP(𝐹) = 𝑦.

By ‘good’ in Theorem 1.2 we mean in the sense of Freedman-Quinn (see [FQ90, Chap-
ter 2.9] or [BKK+21, §19] for a definition). It is known that the set of good groups includes
elementary amenable groups, as well as groups of sub-exponential growth [FT95, KQ00].
These are the fundamental groups for which the extension of Freedman’s disc embedding
theorem apply (see [FQ90, Chapter 5] and/or [BKK+21, §19]).

We also show that these invariants satisfy certain properties, which are analogues of
the properties that the smooth Hatcher-Wagoner invariants possess. Firstly, our invari-
ants satisfy naturality for certain inclusions of codimension zero submanifolds, which we
make precise now.

Proposition 1.3. Let 𝑋 = 𝑌 ∪𝑊 𝑍, where 𝑊 is a (connected) codimension-0 submanifold
of 𝜕𝑌. Let 𝐹 be a pseudo-isotopy of 𝑋 that satisfies 𝐹|𝑍×𝐼 = Id. Let 𝑖𝑌,𝑋 : 𝑌 → 𝑋 be the
inclusion map. Then ΣTOP(𝐹) = (𝑖𝑌,𝑋)∗ΣTOP(𝐹|𝑌). If 𝐹 lies in the kernel of ΣTOP, then we
have ΘTOP(𝐹) = (𝑖𝑌,𝑋)∗ΘTOP(𝐹|𝑌).

We also prove a duality formula for pseudo-isotopies. This mirrors the duality formula
that the Hatcher-Wagoner invariants satisfy [HW73, Part I Chapter VIII; Part II 4.4].

Theorem 1.4. Let 𝑋 be a compact, topological 4-manifold with 𝑘1(𝑋) = 0, and let 𝐹 be a pseudo-
isotopy. Then

ΣTOP(𝐹) = ΣTOP(𝐹)
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and, if 𝐹 ∈ kerΣTOP, then

ΘTOP(𝐹) = ΘTOP(𝐹),

where the overline denotes the standard involution on the respective Whitehead group (see Sec-
tion 8).

Using Theorem 1.2 and the properties listed above, we use our invariants to produce
homeomorphisms of 4-manifolds which are pseudo-isotopic to the identity but not iso-
topic to the identity. In particular, the homeomorphisms produced are homotopic to the
identity.

Theorem 1.5. Let 𝑌3 be a 3-manifold whose first 𝑘-invariant 𝑘1(𝑌) is trivial and with 𝜋1(𝑌)
good and not ambivalent. Then there exists a homeomorphism 𝑓 : 𝑌 × 𝑆1 → 𝑌 × 𝑆1 which is
pseudo-isotopic to the identity but not isotopic to the identity. In particular, 𝑓 is homotopic but
not isotopic to the identity.

The intersection of the conditions in the statement of Theorem 1.5 is a little opaque,
so we give some examples of 3-manifolds that satisfy it (for the definition of an ambiva-
lent group see Definition 9.2) . For the detailed statements see Section 9.2. Theorem 1.5
applies to lens spaces 𝐿(𝑝, 𝑞) for 𝑝 ≥ 3, all tetrahedral manifolds, all but one octahedral
manifold, all icosahedral manifolds except the Poincaré homology sphere, and many
prism manifolds. It also applies to certain circle bundles over tori, including the 3-torus.
In particular, we classify exactly for which elliptic 3-manifolds Theorem 1.5 applies.

Remark 1.6. Ohta-Watanabe [OW23] have also constructed interesting diffeomorphisms
of 𝑌 × 𝑆1 for certain spherical 3-manifolds, in particular for lens spaces and the Poincaré
homology sphere. Due to the overlap, it seems useful to compare these automorphisms
a little. Our Theorem 1.5 does work for lens spaces, but does not work for the Poincaré
homology sphere. Furthermore, our homeomorphisms survive suspension (see Defini-
tion 2.9), whereas the diffeomorphisms constructed by Ohta-Watanabe do not. Hence,
Ohta-Watanabe’s construction seems to be orthogonal to ours.

1.1. Background. The start of pseudo-isotopy theory was Cerf’s proof that (in the simply
connected case) smooth pseudo-isotopy implies smooth isotopy in dimensions greater
than or equal to five [Cer70]. As already stated, work of Hatcher-Wagoner and Igusa
extended this to the non-simply-connected case by showing that Cerf’s method extends
to a two-stage obstruction theory for pseudo-isotopies [HW73, Igu84]. It should be noted
that some of the Hatcher-Wagoner theory works in dimension four, in particular the defi-
nitions of the invariants Σ and Θ. Work of Burghelea-Lashof and Pedersen extended this
to the topological category in dimensions greater than or equal to five [BL74]. We give
more details on this extension in Section 3.

We now briefly recap the background for 4-manifolds. Perron and Quinn proved that
topological pseudo-isotopy implies topological isotopy for topological, simply-connected
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4-manifolds [Per86, Qui86] (Quinn’s proof was recently corrected in [GGH+23]). Ruber-
man showed that smooth pseudo-isotopy does not imply smooth isotopy in the simply-
connected case using gauge theory [Rub98], and many other examples have since fol-
lowed. Budney-Gabai and Watanabe have both constructed diffeomorphisms smoothly
pseudo-isotopic to the identity but not smoothly isotopic to the identity in the non-
simply-connected case [BG19, Wat20] which are detected using invariants coming from
configuration spaces, and in fact Budney-Gabai have constructed ones that are not even
topologically isotopic to the identity [BG23]. Singh showed that both Σ and Θ were sta-
bly smoothly surjective in dimension 4 [Sin22], and used Θ to construct diffeomorphisms
which are smoothly pseudo-isotopic to the identity but not smoothly isotopic to the iden-
tity for some 4-manifolds, in particular for 𝑆1 × 𝑆1 × 𝑆2. It would be very interesting to
have a more complete understanding of how these different invariants interact with one
another; the results of [FGHK24] suggest that the barbell diffeomorphisms constructed
by Budney-Gabai can, in some cases, also be detected by Θ.

We also note that Kwasik [Kwa87] states a version of Theorem 1.2 and a version of The-
orem 1.5 which applies in the special case that 𝑌 is the 3-torus. However, he implicitly
assumes that the Hatcher-Wagoner invariants Σ and Θ are also defined in the topologi-
cal category without any adjustments. Although we recognize the general strategy that
he presents, we point out that the first step of [Kwa87, Proposition 3.2] which is to “al-
low topological pseudo-isotopies" and compute their Σ invariant has a fundamental flaw.
That is, topological pseudo-isotopies do not lie in the domain of Hatcher-Wagoner’s map
Σ. Hence, in order to state such a theorem one needs to first define an invariant for topo-
logical pseudo-isotopies. There is much work that has to be done in that direction—this
is the content of Section 3. Even assuming such an invariant exists, there is no reason to
expect that the computations work out exactly as in the smooth version. In fact, Section 6
and Section 7 deal with exactly this problem. To compute our invariants, we have to
make use of recent developments, i.e. [Sin22, CK23] and so we believe that the compu-
tation itself cannot be ignored. All in all, it seems helpful for there to be an independent
proof of these results, and our careful definition of ΣTOP and ΘTOP, together with a deep
investigation of their properties, allows us to produce a more general result than the one
sketched in [Kwa87].

Remark 1.7. It is also worth stressing that in dimension ≥ 6 the Hatcher-Wagoner and
Igusa obstruction fits in an exact sequence which, in the TOP category and dim = 4 does
not hold even for the case 𝜋1(𝑀) � ℤ (by the previous-mentioned work of [BG23]). As
such, we work with the two maps ΣTOP and ΘTOP, and not the exact sequence.

1.2. Outline. We now briefly outline the contents of the paper and the structure in which
we will prove our results.

The first part of this paper Section 3 is dedicated to the construction of the TOP version
of Σ and Θ, where we follow the sketch from [BLR75][Appendix 2]. We start by increas-
ing the dimension of our manifold using a suspension map 𝑆+, which is described in
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Section 2 and was already introduced in [HW73]. Then we use Pedersen’s [Ped77] work
to reduce the problem to the 3-handle skeleton (see Definition 3.1) of the suspended man-
ifold. We will show that restricting to the 3-handle skeleton does not lose us any infor-
mation regarding the structure of 𝜋0𝒫 . Restricting the problem to the 3-handle skeleton
allows to pass to the smooth category, where we can utilize the work of Hatcher-Wagoner
and Igusa, which we recall in Section 2, and hence define our invariants. Thanks to a
careful comparison with the 2-handle skeleton we will conclude that the definition of
our invariants is independent of the choice of smooth structure, and hence prove that
our invariants are well defined.

Remark 1.8. We remark that the definition of the TOP obstruction in dimension 𝑛 ≥ 6
presented in [BLR75]—which we use after suspending the manifold—is sketched and
not fully described. Even though it is not the goal of this paper, in Section 3 we try to
give extra details on how to derive a TOP analogue of the DIFF and PL statements in
[BLR75].

We then, in Section 4, prove some properties of our invariants which will be crucial
later on. In particular, we show that, for smooth pseudo-isotopies, our topological in-
variants match the smooth invariants of Hatcher-Wagoner. Due to the circuitous nature
of the definition of our topological invariants, this is not immediately clear. This will
complete the proof of Theorem 1.1. We then prove Proposition 1.3, that our invariants
are natural with respect to inclusion of certain codimension zero submanifolds. Both of
these properties will be key in proving our realisation theorem (Theorem 1.2).

We then move onto the realisation part of the paper. This starts in Section 5 by care-
fully defining a notion of allowed one-parameter families of topological handle decompositions
(Definition 5.2). This allows us to circumvent a key problem, which is the absence of a
topological version of Cerf’s functional theory, and we emphasise that it is not the scope
of this paper to develop such a theory. Instead we content ourselves with this ‘ad-hoc’
definition which will suffice for proving our realisation theorem. Importantly, these fam-
ilies have the property that restricting to the far end of the family yields a pseudo-isotopy.

In Section 6 and Section 7 we will use these allowed one-parameter families to pro-
duce candidate pseudo-isotopies for realising our invariants. This realisation procedure
will mimic the surjectivity theorems of Hatcher-Wagoner [HW73] in high-dimensions,
modified for our purposes. This is where we will invoke the disc-embedding theorem of
Freedman [Fre82, FQ90, BKK+21] to allow us to produce these one-parameter families.
Again, due to the circuitous nature of the definition of our topological invariants, it is
then a difficult problem to compute them on these candidate pseudo-isotopies. Here we
will invoke the properties that we established in Section 4 and recent theorems by Singh
and Cha-Kim [Sin22, CK23] to allow us to compute these invariants, and hence prove
Theorem 1.2.

We then turn to using Theorem 1.2 to construct homeomorphisms of certain 4-manifolds
which are pseudo-isotopic to the identity but not isotopic to the identity. To do this, we
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have to address the issue that our invariants are invariants of pseudo-isotopies, not of
homeomorphisms. To conclude that the homeomorphisms produced by Theorem 1.2 (by
restricting to the far end of the pseudo-isotopies) are not isotopic to the identity, we need
to control the inertial pseudo-isotopies, i.e. pseudo-isotopies 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼 such that
𝐹|𝜕(𝑋×𝐼) = Id. We do this by proving a duality formula for pseudo-isotopies, Theorem 1.4,
which we do in Section 8.

We then use Theorem 1.4 to prove Theorem 9.3, which is relatively straightforward af-
ter all of the machinery has been developed. To finish, we spend some time investigating
which 3-manifolds satisfy the conditions of Theorem 9.3, including completely answer-
ing the question for finite fundamental group 3-manifolds. This involves studying the
character tables of 3-manifold groups, since in the finite fundamental group case we can
reduce the problem to representation theory.

1.3. Organisation. In Section 2 we briefly recall the definition of pseudo-isotopy and re-
view the smooth invariants introduced by [HW73] and revised by [Igu84]. In Section 3
we define the topological obstructions ΣTOP and ΘTOP. In Section 4 we compare these
to the already known smooth invariants; in particular, we prove Theorem 1.1. In Sec-
tion 5 we define and develop a theory of one-parameterfamilies of topological handle
decompositions. Using this theory, in Section 6 and Section 7 we prove Theorem 1.2,
dealing with the realisation problem. In Section 8 we prove a duality formula for inertial
pseudo-isotopies (Theorem 1.4). Finally, in Section 9 we use the duality formula from
the previous section to study inertial pseudo-isotopies, and hence obtain Theorem 1.5,
producing interesting homeomorphisms of 𝑌 × 𝑆1 for many 3-manifolds 𝑌.

1.4. Acknowledgements. We would like to thank Mark Powell for his pertinent com-
ments and always helpful conversations, many of which were instrumental in this work.
The first author would also like to thank Daniel Hartman, Paula Truöl and Simona Veselá
for useful conversations. The idea behind this paper originated in the workshop "Alge-
braic Methods in 4-Manifold Topology", which was organized in Glasgow thanks to a fo-
cused research grant from the Heilbronn Institute for Mathematical Research. The authors
would like to thank the Max Plank Institute for Mathematics in Bonn for their hospitality
and support throughout much of the work.

2. BACKGROUND NOTIONS

Throughout this section let 𝑋 be a compact, connected, CAT 4-manifold, potentially
with non-empty boundary 𝜕𝑋.

Definition 2.1. Let 𝑓 , 𝑔 : 𝑋 → 𝑋 be a pair of CAT-isomorphisms. We say that 𝑓 is pseudo-
isotopic to 𝑔 if there exists a CAT-isomorphism, called a pseudo-isotopy

𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼

such that
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■ 𝐹|𝑋×{0} = 𝑓 × Id : 𝑋 × {0} → 𝑋 × {0}
■ 𝐹|𝑋×{1} = 𝑔 × Id : 𝑋 × {1} → 𝑋 × {1}
■ 𝐹|𝜕𝑋×𝐼 = 𝑓 |𝜕𝑋 × Id.

We say that 𝑓 and 𝑔 are isotopic if they are pseudo-isotopic via a level-preserving pseudo-
isotopy.

f

g

F
𝑋 × 𝐼 𝑋 × 𝐼

FIGURE 1. A visual representation of a pseudo-isotopy

Of course, if 𝑓 is isotopic to 𝑔 then it is also pseudo-isotopic to 𝑔.

Definition 2.2 (Pseudo-isotopy space). 𝒫CAT(𝑋, 𝜕𝑋) is the topological subgroup of Diff(𝑋×
𝐼) or Homeo(𝑋×𝐼) consisting of all pseudo-isotopies 𝐹 : 𝑋×𝐼 → 𝑋×𝐼 so that 𝐹|𝑋×0 = Id𝑋 .
The group operation is given by map composition. If CAT = TOP, 𝒫CAT(𝑋, 𝜕𝑋) is en-
dowed with the compact open topology (see [Hat02, Appendix p.594]). If CAT = DIFF
the space is endowed with the 𝐶∞-topology (see e.g. [Hir94, Chapter 2]).

Remark 2.3. A path in 𝒫CAT(𝑋, 𝜕𝑋) corresponds to a CAT isotopy between pseudo-isotopies,
and so 𝜋0(𝒫CAT(𝑋, 𝜕𝑋)) is the set of all pseudo-isotopies 𝑋 × 𝐼 → 𝑋 × 𝐼, based at Id con-
sidered up to CAT isotopy.

In this paper we will be mainly interested in 𝜋0(𝒫TOP(𝑋, 𝜕𝑋)). In particular we are
searching for topological invariants that obstruct a (topological) pseudo-isotopy from
being trivial in 𝜋0(𝒫TOP(𝑋, 𝜕𝑋)).

Next, we briefly recall the definitions of the smooth Hatcher-Wagoner invariants, which
we will use at the last stage of our topological definition in Section 3. For the full details,
see [HW73] or [Sin22].

2.1. Definition of Σ. We are going to define the following map.

Σ : 𝜋0(𝒫DIFF(𝑋, 𝜕𝑋)) → Wh2(𝜋1(𝑋)).

We begin by defining the codomain, Wh2(𝜋1(𝑋)).
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Definition 2.4 (Steinberg group). Let Λ be a ring. Then we define the Steinberg group of
Λ, denoted St(Λ) to be group generated by symbols 𝑥𝜆

𝑖 , 𝑗
where 𝑖 , 𝑗 are distinct positive

integers and 𝜆 ∈ Λ, subject to the relations:

(1) 𝑥𝜆
𝑖 , 𝑗
𝑥𝜆

′
𝑖 , 𝑗

= 𝑥𝜆+𝜆
′

𝑖 , 𝑗
,

(2) [𝑥𝜆
𝑖 , 𝑗
, 𝑥𝜆

′
𝑘,𝑙
] = 1 provided 𝑗 ≠ 𝑘 and 𝑖 ≠ 𝑙,

(3) [𝑥𝜆
𝑖 , 𝑗
, 𝑥𝜆

′
𝑗 ,𝑘
] = 𝑥𝜆𝜆

′
𝑖 ,𝑘

provided 𝑖 ≠ 𝑘.

Then there is a natural map St(Λ) → 𝐸(Λ), where 𝐸(Λ) denotes the group of elementary
matrices with coefficients in Λ, given by sending the symbol 𝑥𝜆

𝑖 , 𝑗
to the elementary matrix

with (𝑖 , 𝑗)-th entry 𝜆, denoted 𝑒𝜆
𝑖 , 𝑗

. Then we define the second algebraic 𝐾-group 𝐾2(Λ) to
be the kernel of this map. Now fix Λ = ℤ[𝜋] where 𝜋 is a finitely presented group. Let

𝑤
±𝑔
𝑖, 𝑗

:= 𝑥
±𝑔
𝑖, 𝑗
𝑥
∓𝑔−1

𝑗 ,𝑖
𝑥
±𝑔
𝑖, 𝑗

. Then define

Wh2(𝜋) := 𝐾2(ℤ[𝜋])/⟨𝑤±𝑔
𝑖, 𝑗
⟩.

I

t

FIGURE 2. An example of a
Cerf graphic.

I

t

FIGURE 3. An example of a
Cerf graphic in nested eyes
position.

We now seek to define Σ, following the discussion in [HW73]. Start with a pseudo-
isotopy [𝐹] ∈ 𝜋0(𝒫DIFF(𝑋, 𝜕𝑋)). The pseudo-isotopy 𝐹 produces a one-parameter family
of generalised Morse functions 𝑔𝑡 : 𝑋 × 𝐼 → 𝐼, and, together with a choice of a one-
parameter family of gradient-like vector fields 𝜂𝑡 , this gives rise to a one-parameter fam-
ily of handle decompositions for 𝑋 × 𝐼, starting and ending at the trivial handle decom-
position. We plot the critical values of 𝑔𝑡 in a Cerf graphic (see Figure 2). We deform the
one-parameter family of generalised Morse function and potentially obtain a different
Cerf graphic. Hatcher-Wagoner show that we can deform (𝑔𝑡 , 𝜂𝑡) such that there are only
critical points of index 2 and 3. The obstruction Σ will then be the obstruction to deform
(𝑔𝑡 , 𝜂𝑡) to a family of nested eyes (see Figure 3).

Definition 2.5. Choose once and for all a basepoint 𝑧 ∈ 𝑋×𝐼 and choose an ordered index-
ing 𝑘 of the critical points of index 2 and 3 which we denote by 𝑏𝑘𝑡 and 𝑧𝑘𝑡 , respectively.
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Choose orientations for the descending manifolds associated to 𝑧𝑘𝑡 and one-parameter
families of basing arcs 𝛾𝑧𝑘𝑡

. Now make the corresponding choices for 𝑏𝑘𝑡 such that the
(equivariant) intersection matrix for the belt spheres for the index 2 handles and the at-
taching spheres for the index 3 handles is given by the identity matrix just after all of the
births have occurred (we can assume that nothing else interesting occurs in (𝑔𝑡 , 𝜂𝑡) until
after all of the birth/deaths). As we scan across the one-parameter family the intersection
matrix changes as we pass handle slides. Passing a 3/3 handle slide at time 𝑡 causes the
matrix to change by multiplication on the left by 𝑒±𝑔

𝑖, 𝑗
where 𝑖 and 𝑗 are determined by the

ordering of the critical points and 𝑔 = 𝛾𝑧 𝑖𝑡
◦ 𝜑 ◦ 𝛾−1

𝑧
𝑗

𝑡

, with 𝜑 the arc that the handle slide

occurs over. Similarly, passing a 2/2 handle slide at time 𝑡 multiplies the matrix on the
right by 𝑒±𝑔

𝑖, 𝑗
, where 𝑖 and 𝑗 are again determined by the ordering of the critical points and

𝑔 = 𝛾𝑏 𝑖𝑡
◦ 𝜑 ◦ 𝛾−1

𝑏
𝑗

𝑡

, with 𝜑 again the handle slide arc.

Write
∏
ℓ 𝑒

±𝑔ℓ
𝑖ℓ , 𝑗ℓ

for the result of these multiplications. At the end of this process (since
the critical points must cancel) our matrix is of the form 𝑃𝐷, where 𝑃 is a permutation ma-
trix and 𝐷 is a diagonal matrix with elements 𝑑𝑖 = ±𝑔𝑖 for some 𝑔𝑖 ∈ 𝜋1(𝑋). Hatcher and

Wagoner show that this matrix can be written in the form 𝑃𝐷 =
∏

𝑚 𝑒
±ℎ𝑚
𝑝𝑚 ,𝑞𝑚 𝑒

∓ℎ−1
𝑚

𝑞𝑚 .𝑝𝑚 𝑒
±ℎ𝑚
𝑝𝑚 ,𝑞𝑚 .

Define

Π(𝐹) :=
∏
ℓ

𝑒
±𝑔ℓ
𝑖ℓ , 𝑗ℓ

(∏
𝑚

𝑒
±ℎ𝑚
𝑝𝑚 ,𝑞𝑚 𝑒

∓ℎ−1
𝑚

𝑞𝑚 ,𝑝𝑚 𝑒
±ℎ𝑚
𝑝𝑚 ,𝑞𝑚

)−1

∈ 𝐾2(ℤ[𝜋1(𝑋)]).

We then define Σ(𝐹) := [Π(𝐹)] ∈ Wh2(𝜋1(𝑋)). Hatcher and Wagoner show that this does
not depend on the various choices that were made.

2.2. Definition of Θ. We will briefly recall the definition of the obstruction Θ : kerΣ →
Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋)). Hatcher and Wagoner show that the kernel of Σ is the ‘unicity
of death’ subgroup in high dimensions, which corresponds to pseudo-isotopies whose
Cerf graphic can be deformed to that of a single ‘eye’. As Quinn notes in [Qui86, Section
4.1], the final step of the proof wherein the Cerf graphic is reduced from a family of
‘nested eyes’ to a single eye does not apply in dimension four. Hence, this Θ will be
defined on pseudo-isotopies whose Cerf graphic can be deformed to consist only of a
nested family of eyes (see 3). By a Cerf graphic with only "a nested family of eyes" we
mean a Cerf graphic describing a one-parameter family of handle decompositions that
has independent births and deaths of handles.

Definition 2.6. We follow Singh’s exposition [Sin22, 7.1] and the original exposition
[HW73, Part I, Chapter VII] to define Wh1(𝜋1(𝑋);ℤ/2 ×𝜋2(𝑋)). Let 𝜋 be a group with an
action on an abelian group Γ. We define a ring 𝑅 := Γ[𝜋] × ℤ[𝜋] and describe the ring
structure by showing the multiplication of two generic elements:(∑

𝑖

(𝛾𝑖 + 𝑛𝑖)𝑔𝑖

) ©­«
∑
𝑗

(𝛾′
𝑗 + 𝑛′𝑗)𝑔′𝑗

ª®¬ :=
∑
𝑖 , 𝑗

(𝑛𝑖(𝑔𝑖 · 𝛾′
𝑗) + 𝑛′𝑗𝛾𝑖 + 𝑛𝑖𝑛′𝑗)𝑔𝑖 𝑔′𝑗 .



10 DANIEL GALVIN AND ISACCO NONINO

Above we have that 𝛾𝑖 , 𝛾′
𝑗
∈ Γ, 𝑛𝑖 , 𝑛′𝑗 ∈ ℤ and 𝑔𝑖 , 𝑔

′
𝑗
∈ 𝜋. We then define

GL(Γ[𝜋]) = ker (GL(𝑅) → GL(𝑅/Γ[𝜋]))
and define

𝐾1(Γ[𝜋]) := GL(Γ[𝜋])/[GL(𝑅),GL(Γ[𝜋])].
If we denote the trivial group as 𝟙, there is then a natural map Γ[𝟙] → 𝐾1(Γ[𝜋]) which
sends 𝛾 to the equivalence class of the 1 × 1 matrix (𝛾). We then define Wh1(𝜋;Γ) to be
the cokernel of this map. We remark that Hatcher showed that:

Wh1(𝜋;Γ) � Γ[𝜋]/(𝛾𝑔1 − (𝑔2 · 𝛾)(𝑔2𝑔1𝑔
−1
2 ), 𝛾′)

for all 𝛾, 𝛾′ ∈ Γ and 𝑔, 𝑔′ ∈ 𝜋.

We will apply this construction specifically when 𝜋 = 𝜋1(𝑋) and Γ = ℤ/2 × 𝜋2(𝑋)
where the action of 𝜋 on Γ is the product of the trivial action on the ℤ/2-factor and the
standard action on the 𝜋2(𝑋)-factor.

In the original definition, Θ lived in Wh1(𝜋1(𝑋);ℤ/2×𝜋2(𝑋)), but Igusa [Igu84] showed
that this only works if the first 𝑘-invariant 𝑘1(𝑋) vanishes. In general we have a map

𝜒 : 𝐾3(ℤ[𝜋1(𝑋)]) → Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))
where 𝐾3 denotes the third algebraic 𝐾-group, and Igusa showed that Θ is only well-
defined in (Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))) /(Im 𝜒). If the first 𝑘-invariant of 𝑋 vanishes then
𝜒 = 0. In Section 9 we will only consider examples where 𝑘1(𝑋) = 0 and hence this
subtlety will not matter for us.

The following definition will be rather terse. For details, see [HW73, Part I, Chapter
VII] or [Sin22, Section 7.2].

Definition 2.7. Let 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼 such that 𝐹 lies in the unicity of death subgroup,
i.e. its Cerf graphic can be deformed to consist only of nested eyes. We now describe
how to produce an element in Γ[𝜋] associated to 𝐹. This will not be well-defined, but
the equivalence class of this element in Wh1(Γ;𝜋)/𝜒 will be, and this will be the element
Θ([𝐹]). We will not touch on the well-definedness of Θ here and instead direct the reader
to [HW73, Part II].

Assume that we have already chosen a deformation of the one-parameter family as-
sociated to 𝐹 to a one-parameter family (𝑔𝑡 , 𝜂𝑡) whose Cerf graphic consists of 𝑛 nested
eyes, with all births and deaths at height 1/2. Assume that there exist times 0 < 𝑡0 <
𝑡1 < 𝑡2 < 𝑡3 < 1 such that the following is true. The 𝑛 births occur between time 𝑡0 and
𝑡1 and for 𝑡0 ≤ 𝑡 ≤ 𝑡1 the 3-handles are still in cancelling position with their respective
2-handles; the 𝑛 deaths occur between time 𝑡2 and 𝑡3 and that for 𝑡2 ≤ 𝑡 ≤ 𝑡3 the 3-handles
are in cancelling position with their respective 2-handles (see [Gab22, Section 2]). Now
we fix a diffeomorphism that identifies the middle level with⋃

𝑡∈[𝑡1 ,𝑡2]
𝑔−1
𝑡 (1/2) � (𝑋#𝑛(𝑆2 × 𝑆2)) × 𝐼.
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Let 𝐵𝑖 denote the trace of the belt sphere of the 𝑖-th 2-handle inside the middle level (note
that via our identification this corresponds to some ({pt}×𝑆2)×𝐼 ⊂ 𝑋#𝑛(𝑆2×𝑆2))×𝐼), and
let 𝐴𝑖 denote the trace of the attaching sphere of the 𝑖-th 3-handle inside the middle level
(which looks non-standard). The intersection 𝑇𝑖 := 𝐴𝑖 ∩ 𝐵𝑖 is a 1-manifold which consists
of a single arc component and an unknown number of circle components denoted 𝐶 𝑗

𝑖
. For

each circle component we will obtain an element 𝛾 𝑗
𝑖
∈ 𝜋1(𝑋) and an element 𝛼 𝑗

𝑖
∈ ℤ/2 ×

𝜋2(𝑋), and then we will define Θ((𝑔𝑡 , 𝜂𝑡)) to be the sum
∑
𝑖 , 𝑗 𝛼

𝑗

𝑖
𝛾
𝑗

𝑖
∈ (ℤ/2×𝜋2(𝑋))[𝜋1(𝑋)].

We first describe how to obtain 𝛾
𝑗

𝑖
. The circle 𝐶 𝑗

𝑖
comes with two basing arcs given by

the attaching sphere and the belt sphere associated to it and together they form a loop
𝛾
𝑗

𝑖
(since the circle 𝐶 𝑗

𝑖
is null-homotopic in 𝑋 × 𝐼, this is well-defined). Now we describe

how to obtain 𝛼
𝑗

𝑖
. Since 𝐴𝑖 and 𝐵𝑖 are simply-connected, null-homotopies of 𝐶 𝑗

𝑖
in them

determine two discs which glue together to give a 𝜋2 element in 𝑋. Similarly, 𝐴𝑖 and
𝐵𝑖 determine two different framings for 𝐶 in 𝐴𝑖 and the difference in these framings is
a well-defined integer, whose value modulo two we record and combine with the 𝜋2

element to produce 𝛼
𝑗

𝑖
. Finally, we define

Θ([𝐹]) := [Θ((𝑔𝑡 , 𝜂𝑡))] ∈ Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/Im 𝜒.

Some remarks on the above definition.

Remark 2.8. (i) Hatcher and Wagoner show that, in higher dimensions, circles 𝐶 𝑗

𝑖
and

𝐶ℓ
𝑖

such that 𝛾 𝑗
𝑖
= 𝛾ℓ

𝑖
may be surgered to a single circle, hence geometrically justify-

ing the fact that the invariant is valued in the group ring. This surgery step does not
hold in dimension four, but we nevertheless choose to lose information by passing
to the group ring.

(ii) In higher dimensions, there is only a modulo two choice for the framing of the circle
in 𝐴𝑖 . In dimension four, there is an integers worth of framings and so we could
choose to record the difference as an integer. However, the well-definedness of Θ,
proven in [HW73, Part II], relies on suspending the given (𝑔𝑡 , 𝜂𝑡), and so only the
version of Θ defined using the ℤ/2 framing is known to be well-defined, even in
dimension four.

2.3. Suspension. The aim of this subsection is to introduce the suspension operation for
pseudo-isotopies. We will directly follow Hatcher-Wagoner (see [HW73, Part I, Chapter
I, §5]). Note that the original definition in [HW73] was done for CAT = DIFF. Here we
will work only in the topological category. As such, we will omit the superscript TOP.

We need to make a small technical modification. For convenience in defining the sus-
pension map we will first replace 𝒫(𝑋, 𝜕𝑋) with 𝒫 ′(𝑋, 𝜕𝑋), which is the subspace of
pseudo-isotopies 𝐹 satisfying:

■ 𝐹|𝑋×[0,𝜖]∪𝜕𝑋×𝐼 = 𝐹|𝑋×0,
■ 𝐹|𝑋×[1−𝜖,1] = 𝐹|𝑋×1.



12 DANIEL GALVIN AND ISACCO NONINO

Here 𝜖 is a small positive number. In practice we are assuming that the pseudo-isotopy
coincides with the identity around the boundary and a small subinterval [0, 𝜖] and it also
coincides with the top-end map around a small interval [1 − 𝜖, 1].

It is not hard to show these two spaces are homotopy equivalent and hence, in a slight
abuse, we will keep writing 𝒫(𝑋, 𝜕𝑋) to ease the notation.

Definition 2.9 (Suspension map). We define the suspension map 𝑆+ : 𝒫(𝑋, 𝜕𝑋) → 𝒫(𝑋 ×
𝐽 , 𝜕(𝑋 × 𝐽)), where 𝐽 = [−1, 1].

Let 𝐼 = [0, 1]. Define 𝐶 ⊂ 𝐽 × 𝐼 to be the set 𝐶 = 𝐽 × [0, 1 − 𝜖
2 ]. Define an embedding

𝜑 : 𝐶 → 𝐽 × 𝐼 such that:

■ 𝜑(1, 𝑡) = (1 − 𝑡 , 1)
■ 𝜑(−1, 𝑡) = (𝑡 − 1, 1)
■ 𝜑(𝑠, 𝑡) = (𝑠, 𝑡 + 𝑠2) for |𝑠| ≤ 𝜖

4
■ for a fixed 𝑡 ∈ [0, 1 − 𝜖

2 ] the map [−1, 1] → [0, 1] : 𝑠 → 𝜑(𝑠, 𝑡) followed by the
projection 𝐽 × 𝐼 → 𝐼 has a critical point only at 𝑠 = 0.

Using the embedding 𝜑 we can introduce coordinates 𝑢 and 𝑣 on the image 𝜑(𝐶). The
lines 𝑣 = constant are of the form 𝑢 = 𝜑(𝑠, 𝑡) with 𝑡 = constant, and the lines 𝑢 = constant
are of the form 𝑣 = 𝜑(𝑠, 𝑡) with 𝑠 = constant.

FIGURE 4. Pictorial description of the embedding of 𝜑 : 𝐶 → 𝐽 × 𝐼, taken
from [HW73, Part I, Chapter I, §5].

Let 𝐹 ∈ 𝒫(𝑋, 𝜕𝑋). We define 𝑆+(𝐹) ∈ 𝒫(𝑋 × 𝐽 , 𝜕(𝑋 × 𝐽)) to be:

■ 𝐹|𝑋×[0,1− 𝜖
2 ] on each of the sections 𝑋 × {𝑢 = constant, 0 ≤ 𝑣 ≤ 1 − 𝜖

2}.
■ 𝐹|𝑋×0 for each of the points 𝑋 × {(𝑠, 𝑡)} below the line 𝑣 = 0.
■ 𝐹|𝑋×1 for each of the points 𝑋 × {(𝑠, 𝑡)} above the line 𝑣 = 1 − 𝜖

2 .
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Remark 2.10. The suspension map 𝑆+ is defined so that it is “well-behaved” in terms of
critical points of the pseudo-isotopy 𝐹. The square 𝐽 × 𝐼 is bent so that for each critical
point of 𝐹, the critical point is preserved and no additional critical points are created.
Moreover we stress that increasing the dimension in the trivial way (meaning taking the
product with the identity on the square 𝐽2) not only would introduce a line of critical
points for every critical point of 𝐹 (this would be not ideal for the smooth functional
approach used in [HW73]), but would actually not even produce a pseudo-isotopy, since
the result would not be constant on the "vertical" boundary of 𝑋 × 𝐽2 × 𝐼.

The behaviour with respect to critical points of course only makes sense in CAT =

DIFF, and plays an important role in the definition of the Hatcher-Wagoner invariants in
[HW73]. As for now, we only need this to be a well-defined map. The smooth properties
will mostly on be useful for us for comparing with suspension in the smooth category,
which we will do in Section 4 and Section 8.

We now show that the map 𝑆+ descends to a well-defined map on 𝜋0(𝒫(𝑋, 𝜕𝑋)).

Lemma 2.11. 𝜋0(𝒫(𝑋, 𝜕𝑋))
𝑆+∗−−→ 𝜋0(𝒫(𝑋 × 𝐽 , 𝜕(𝑋 × 𝐽))) is a well-defined map.

Proof. Let 𝐹 and𝐺 be two pseudo-isotopies in 𝒫(𝑋, 𝜕𝑋) such that [𝐹] = [𝐺] ∈ 𝜋0(𝒫(𝑋, 𝜕𝑋)).
Then there exists an isotopy 𝐻𝑡 : 𝑋 × 𝐼 → 𝑋 × 𝐼 so that 𝐻0 = 𝐹 and 𝐻1 = 𝐺. We now build
an isotopy 𝐻𝑠 that connects 𝑆+(𝐹) and 𝑆+(𝐺). To do so, we suspend the path 𝐻 by taking
the suspension of the isotopy 𝐻.

This is defined on each time 𝑠 to be 𝐻̂𝑠 : (𝑋 × 𝐽) × 𝐼 → (𝑋 × 𝐽) × 𝐼 as:

■ 𝑆+(𝐻𝑠)0 below the line 𝑣 = 0.
■ 𝑆+(𝐻𝑠) along radial lines 𝑋 × {𝑢 = constant, 0 ≤ 𝑣 ≤ 1 − 𝜖

2}.
■ 𝑆+(𝐻𝑠)1 above the "horizontal" line 𝑣 = 1 − 𝜖

2 . □

Remark 2.12. In Section 9 we will work quite extensively with the suspension map. As in
[HW73] we will slightly modify the embedding 𝜙 : 𝐶 → 𝐽 × 𝐼 so that the "bent" rectangle
does not touch {0} × 𝐼. This is useful to work with smooth properties of the suspension.

We will need the property that the suspension maps are compatible with the smooth
Hatcher-Wagoner invariants.

Lemma 2.13. The following diagrams, concerning Σ, Θ and the suspension 𝑆+, commute.

𝜋0𝒫DIFF(𝑋, 𝜕𝑋) Wh2(𝜋1(𝑋))

𝜋0𝒫DIFF(𝑋 × 𝐽 , 𝜕(𝑋 × 𝐽)) Wh2(𝜋1(𝑋 × 𝐽))

Σ

𝑆+

Σ
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𝑆+(𝐻𝑠)0

𝑆+(𝐻𝑠)1

𝑆+(𝐻𝑠)

FIGURE 5. A time slice 𝑠 of the isotopy 𝐻̂𝑠 .

and

kerΣ Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒

kerΣ Wh1(𝜋1(𝑋 × 𝐽);ℤ/2 × 𝜋2(𝑋 × 𝐽))/𝜒

Θ

𝑆+

Θ

In both cases the rightmost vertical map is induced by the natural identification 𝜋𝑘(𝑋) � 𝜋𝑘(𝑋 ×
𝐽) for 𝑘 = 1, 2.

Proof. This fact is used often and implicitly in [HW73]. The key observation is in [HW73,
Part I, Chapter I, §5] where it is shown that one can define a compatible suspension
of the one-parameter family (𝑔𝑡 , 𝜂𝑡) associated to 𝐹, and that the suspension operation
preserves all critical points, all handle slides and all intersections between the various
ascending and descending manifolds. This means that the data that goes into defining Σ

and Θ is entirely preserved by the suspension. □

2.4. Naturality of the smooth Hatcher-Wagoner invariants. Since it will be useful later,
we establish that the smooth Hatcher-Wagoner invariants satisfy naturality under the
inclusion of codimension zero submanifolds. This will be needed when showing the
well-definedness of our topological invariants, and also in proving that they satisfy the
analogous property.

Lemma 2.14. Let 𝑋 be an 𝑛-dimensional smooth compact manifold (𝑛 ≥ 4) and let 𝑁 be a
compact codimension zero submanifold of 𝑋 . Let 𝑖 : 𝑁 → 𝑋 be defined as the inclusion. We
have a natural map from 𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) to 𝜋0(𝒫DIFF(𝑋, 𝜕𝑋)) given by extending via the



PSEUDO-ISOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS OF 4-MANIFOLDS 15

identity over 𝑋 \ 𝑁 . Let 𝐹 be a pseudo-isotopy of 𝑁 and 𝐹# Id the extension over 𝑋. Then we
have Σ([𝐹# Id]) = 𝑖∗(Σ([𝐹])) and, if 𝐹 ∈ kerΣ, then Θ([𝐹# Id]) = 𝑖∗(Θ([𝐹])).

Proof. We first deal with Σ, so we start by showing that the following diagram commutes.

𝜋0(𝒫DIFF (𝑋, 𝜕𝑋)) Wh2(𝜋1(𝑋))

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) Wh2(𝜋1(𝑁))

Σ

Σ

Let (𝑔𝑁𝑡 , 𝜂𝑁𝑡 ) be the one-parameter family for 𝐹, which we already assume to have been
deformed such that it is in the position for defining Σ (see Section 2.1). The 𝑔𝑁𝑡 : 𝑁× 𝐼 → 𝐼

can be extended to a one-parameter family of generalised Morse functions 𝑔𝑡 : 𝑋 × 𝐼 → 𝐼

via extending by the projection map. In particular, since we extended by the projection
map, they have exactly the same critical points, critical values, births and deaths as 𝑔𝑁𝑡 .
We can also extend 𝐹 via the identity to a pseudo-isotopy 𝐹, and it is clear that 𝑔𝑡 is a one-
parameter family for 𝐹 (in particular, 𝑔1 = pr2 ◦𝐹). Similarly, the one-parameter family
of gradient-like fields 𝜂𝑁𝑡 can be extended to 𝜂𝑡 such that the one-parameter family of
handle decompositions induced by (𝑔𝑡 , 𝜂𝑡) is the trivial one-parameter family outside of
𝑁 .

Let ∏
ℓ

𝑒
±𝑔ℓ
𝑖ℓ , 𝑗ℓ

be the matrix corresponding to the handle slides for (𝑔𝑁𝑡 , 𝜂𝑁𝑡 ), with 𝑔ℓ ∈ 𝜋1(𝑁). Then
from the above observation it follows that the matrix corresponding to the handle slides
for (𝑔𝑡 , 𝜂𝑡) is ∏

ℓ

𝑒
±𝑖∗(𝑔ℓ )
𝑖ℓ , 𝑗ℓ

.

From this and the definition of Σ we see that 𝑖∗(Σ([𝐹]) = Σ([𝐹]), which proves that the
stated square commutes.

We now deal with Θ by showing the following diagram commutes.

ker
(
Σ : 𝜋0(𝒫DIFF(𝑋, 𝜕𝑋)) → Wh2(𝜋1(𝑋))

)
Wh1(𝜋2(𝑋);ℤ/2 × 𝜋1(𝑋))/𝜒

ker
(
Σ : 𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) → Wh2(𝜋1(𝑁))

)
Wh1(𝜋2(𝑁);ℤ/2 × 𝜋1(𝑁))/𝜒

Θ

Θ

Again let (𝑔𝑁𝑡 , 𝜂𝑁𝑡 ) be the one-parameter family for 𝐹, we already assume we have
deformed such that it is in the position for defining Θ (see Section 2.2). Again, as we did
when we considered Σ, we may extend (𝑔𝑁𝑡 , 𝜂𝑁𝑡 ) to a one-parameter family (𝑔𝑡 , 𝜂𝑡) which
is associated to the pseudo-isotopy 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼 which is obtained by extending 𝐹
via the identity.
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We now use the notation in Section 2.2. Let 𝐴𝑁
𝑗

and 𝐵𝑁
𝑗

be the traces of the attaching

spheres and the belt spheres in the middle level for (𝑔𝑁𝑡 , 𝜂𝑁𝑡 ) and let 𝑇𝑁
𝑗

denote their
intersection. By the way we defined the extension (𝑔𝑡 , 𝜂𝑡), the induced one-parameter
family of handle decompositions for 𝑋 × 𝐼 is constant and trivial away from 𝑁 . This
means that the traces of the attaching spheres and the belt spheres in the middle level
for (𝑔𝑡 , 𝜂𝑡) are simply 𝑖(𝐴𝑁

𝑖
) and 𝑖(𝐵𝑁

𝑖
), and their intersection is 𝑖(𝑇𝑁

𝑗
). It follows that the

circles used for computing Θ(𝐹) are produced by including the circles used to compute
Θ(𝐹) into 𝑋 × 𝐼. By choosing the basing arcs for the attaching spheres and belt spheres
in the middle level for (𝑔𝑡 , 𝜂𝑡) to be compatible with the ones used for (𝐺𝑁𝑡 , 𝜂𝑡) it can
be seen that the 𝜋2 element, the 𝜋1 element and the framing difference associated to a
given circle component in 𝑖(𝑇𝑁

𝑗
) are obtained from the corresponding elements for the

corresponding circle component in 𝑇𝑁
𝑗

by the inclusion induced map (or, in the case of
the framing difference, this is simply the same framing difference). This proves that the
above diagram involving Θ commutes, finishing the proof. □

3. DEFINING THE TOPOLOGICAL OBSTRUCTIONS

Using the suspension map 𝑆+, we are able to increase the dimension of the topological
manifold we are working with. This is crucial in our approach, since we need to apply
the machinery from Burghelea-Lashof-Rothenberg [BL74, BLR75], which is only available
in dimensions ≥ 6 (c.f. Theorem 3.3 and Theorem 3.4). Hence we need to suspend our
pseudo-isotopies twice.

3.1. Smoothing pseudo-isotopies. Our goal is to manipulate our topological pseudo-
isotopy until we reach a smooth pseudo-isotopy on which we can evaluate the Hatcher-
Wagoner invariants. In order to do so, we need to find a way to pass from CAT = TOP
to CAT = DIFF. In this process we also have to make sure not to lose any relevant
information about the connectivity of the space 𝒫TOP(𝑋, 𝜕𝑋). We start by suspending
our pseudo-isotopy twice, and will denote the suspended 𝑋 by 𝑋 × 𝐽2. We need the
following definition.

Definition 3.1. Let 𝑀 be a 𝑛-manifold with a fixed handle decomposition. Then we
denote the 𝑘-handle-skeleton of 𝑀 by 𝑀(𝑘). This is the union of all handles in the given
decomposition of index ≤ 𝑘.

First note that 𝑋 × 𝐽2 is a 6-manifold and hence it has a handle decomposition by the
work of [KS77, Essay III, Theorem 2.1]. If 𝜕𝑋 ≠ ∅, we always take the handle decompo-
sition to be relative to 𝜕𝑋 × 𝐽2. Fix one, and then we can consider the 3-handle-skeleton
(𝑋 × 𝐽2)(3). Let 𝑁 be a neighbourhood of (𝑋 × 𝐽2)(3) inside (𝑋 × 𝐽2).

We now need the following lemma.

Lemma 3.2. The inclusion map 𝑁 → 𝑋 × 𝐽2 induces an isomorphism

𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
�−→ 𝜋0

(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
.
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To prove the result we start from the work of [BLR75]. We adapt for this proof part
of their notation. Let 𝑊 ⊂ 𝑉̊ be a compact submanifold with dim𝑊 = dim𝑉 . Then we
have an injection 𝛾 : 𝒫(𝑊, 𝜕𝑊) → 𝒫(𝑉, 𝜕𝑉) that takes a pseudo-isotopy 𝐹 of 𝑊 and
extends it via the identity to the rest of 𝑉 . We have the following result. Note that this is
stated in terms of CAT = DIFF or CAT = PL in [BLR75].

Theorem 3.3 ([BLR75, Theorem 3.1′]). Let 𝑉𝑛 , 𝑛 ≥ 5, and 𝑊𝑛 ⊂ 𝑉̊𝑛 . Assume:
(1) 𝜋𝑖(𝜕𝑊) � 𝜋𝑖(𝑊), 𝑖 = 0, 1,
(2) 𝜋𝑖(𝑊,𝑉) = 0 for 𝑖 ≤ 𝑟 where 𝑟 ≤ 𝑛 − 4 ( or 𝑟 ≤ 𝑛 − 3 if 𝑛 > 5 and 𝜋𝑖(𝜕𝑉) � 𝜋𝑖(𝑉),

𝑖 = 0, 1 ),
(3) 𝑊 is 𝑘-connected, for some 0 ≤ 𝑘 ≤ 𝑟.

Then 𝜋 𝑗(𝛾) = 0 for:
■ 𝑗 ≤ inf(2𝑟 − 3, 𝑟 + 𝑘 − 2) if CAT = DIFF,
■ 𝑗 ≤ inf(2𝑟 − 3, 𝑟 + 𝑘 − 2, 𝑟 + 2) if CAT = PL.

For the purposes of this paper and specifically for the proof of Lemma 3.2 we need a
CAT = TOP version of Theorem 3.3.

This result in fact holds in the TOP category as well. In fact, this is implicitly stated in
[BLR75] but not exactly spelled out. We describe how to obtain the topological version.

Theorem 3.3 (CAT = PL version) follows from [BLR75, Theorem 3.1, CAT = PL ver-
sion]. This result is proved using [BLR75, Lemma 𝑏)]. This lemma is in turn a conse-
quence of Morlet’s Disjunction Lemma (due to Morlet, proven also in [BLR75]). Using
Pedersen’s work – which appears briefly as an appendix in [BLR75] – on concordance
straightening and a topological notion of transversality 1 one can adapt the proof of the
Disjunction Lemma appearing in [BLR75] to CAT = TOP. Hence all the results directly
depending on Morlet’s result presented in [BLR75] – more specifically, we focus on The-
orem 3.3 – can be restated by changing PL to TOP (and hence all the relevant categorical
objects have to be turned into the corresponding TOP version). Note that we also have to
assume that the ambient manifold has to have dimension at least 6 – this is necessary to
use Pedersen’s result of concordance implies isotopy [Ped77].

We can thus obtain the analogue of Theorem 3.3.

Theorem 3.4. Let 𝑉𝑛 , 𝑛 ≥ 6, and 𝑊𝑛 ⊂ 𝑉̊𝑛 be an embedded handlebody. Assume:
(1) 𝜋𝑖(𝜕𝑊) � 𝜋𝑖(𝑊), 𝑖 = 0, 1,
(2) 𝜋𝑖(𝑊,𝑉) = 0 for 𝑖 ≤ 𝑟 where 𝑟 ≤ 𝑛 − 4 ( or 𝑟 ≤ 𝑛 − 3 if 𝑛 > 5 and 𝜋𝑖(𝜕𝑉) � 𝜋𝑖(𝑉),

𝑖 = 0, 1 ),
(3) 𝑊 is 𝑘-connected, for some 0 ≤ 𝑘 ≤ 𝑟.

Then 𝜋 𝑗(𝛾) = 0 for

(3.1) 𝑗 ≤ inf(2𝑟 − 3, 𝑟 + 𝑘 − 2, 𝑟 + 2).
1Pedersen’s approach uses a local version of 𝑃𝐿 transversality. At the time topological transversality from

[KS77] was not yet available—we believe it can now be used to simplify Pedersen’s approach.
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Remark 3.5. Note that the first two conditions in Theorem 3.4 are satisfied when

𝑉 =𝑊 ∪ (𝑛 − 𝑎) − handles,

where 𝑛 − 𝑎 > 𝑟.

Now we can proceed to prove Lemma 3.2.

Proof of Lemma 3.2. Let 𝑉 be our twice suspended manifold 𝑋 × 𝐽2 and 𝑊 be the neigh-
bourhood 𝑁 of (𝑋 × 𝐽2)(3). Our goal is to show that 𝜋1(𝛾) = 0, where 𝛾 is the inclusion
map:

𝛾 : 𝒫TOP(𝑊) → 𝒫TOP(𝑉).

We apply Theorem 3.4 to 𝑋 × 𝐽2 and 𝑁 . Set 𝑟 = 3. The conditions 1) and 2) in Theo-
rem 3.4 are satisfied since 𝑋 × 𝐽2 is built from 𝑁 by attaching handles of index > 𝑟 = 3. In
general we do not have more information regarding the connectivity of 𝑁 , so 𝑘 will be 0.
We thus obtain that 𝜋 𝑗(𝛾) = 0 for:

𝑗 ≤ inf(3, 1, 5) = 1

i.e. 𝜋0(𝛾) = 0 and 𝜋1(𝛾) = 0.
In particular, 𝛾 is 1-connected and using the long exact sequence in (relative) homo-

topy groups we obtain that 𝜋0(𝒫(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) � 𝜋0(𝒫(𝑁, 𝜕𝑁)), concluding our
proof. □

Notation 3.6. We will denote the inverse of the inclusion-induced map from Lemma 3.2
by

𝔦 : 𝜋0

(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
�−→ 𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
.

Remark 3.7. Note that the above result requires 𝑟 = 3. If we had chosen a lower index we
would have obtained less information on the connectivity of 𝛾. In particular, if we were
to instead take the 2-handle skeleton and a neighbourhood 𝑁 ′ of it, Theorem 3.4 would
only give us that 𝜋0(𝒫(𝑁 ′, 𝜕𝑁 ′)) → 𝜋0(𝒫(𝑋× 𝐽2 , 𝜕(𝑋× 𝐽2))) is onto. This is not surprising,
however, as the presence of 𝜋2 in the definition of Θ implies that relevant data is encoded
in the 3-handles.

We will, however, make use of the surjectivity of 𝜋0(𝒫TOP(𝑁 ′, 𝜕𝑁 ′)) → 𝜋0(𝒫TOP(𝑋 ×
𝐽2 , 𝜕(𝑋 × 𝐽2))) in Lemma 4.1.

With Lemma 3.2 in our hands we restrict to pseudo-isotopies of a neighbourhood 𝑁 of
the 3-handle-skeleton of 𝑋 × 𝐽2. The next step is to pass to CAT = DIFF. In order to do
so, we first need to smooth the 3-handle-skeleton of 𝑋 × 𝐽2.

Lemma 3.8. The 3-handle-skeleton (𝑋 × 𝐽2)(3) can be given a smooth structure 𝒮. The 2-handle-
skeleton (𝑋 × 𝐽2)(2) can be given a smooth structure which is unique up to isotopy.
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Proof. The existence statements follow from simple applications of the smoothing theory
of Kirby-Siebenmann, and we prove that first. Note that it suffices to show that the 3-
handle-skeleton is smoothable, since the 2-handle-skeleton inherits a smooth structure
from it.

Since our handle decomposition is relative to 𝜕𝑋 × 𝐽2, we always assume that we al-
ready have smoothed such portion of the manifold – there is a unique way to do so
[KS77].

We will prove this by finite induction on the index of handles. Let 𝒞 be the collection
of the handles we have already smoothed. At the beginning, 𝒞 = ∅.

Start from the collection 𝐶0 of 0-handles. This clearly has a smooth structure obtained
by pulling back the standard structure on

⊔
𝑖 𝐷

6 via the corresponding homeomorphism
– one for each handle; all of them are disjoint. Hence, we can say that 𝒞 = 𝐶0.

Now assume we have extended this smooth structure up until the (𝑘 − 1)-handles, i.e.
𝒞 = 𝐶𝑘−1. We begin by extending the smooth structure onto a small neighbourhood of
the 𝑘-handles attaching regions, canonically smoothing corners as necessary. Denote the
𝑘-handles as ℋ𝑖 , 𝑖 ∈ 𝐼 and denote the attaching region of these handles by 𝜕𝐴ℋ𝑖 . Using
smoothing theory [KS77, Essay IV, Theorem 10.1], we know that the first obstruction to
extending this smooth structure onto the rest of the handles lies in

⊕
𝑖 𝐻

4(ℋ𝑖 , 𝜕𝐴ℋ𝑖 ;ℤ/2).
A simple computation gives that this cohomology group vanishes for handles of index
three or lower; the further obstructions lie in even higher degree cohomology groups, and
hence also vanish. Hence we obtain obtain a smooth structure on 𝐶𝑘 as well. Applying
this to 𝑘 = 1, 2, 3 we have 𝒞 = 𝐶0 ∪ 𝐶1 ∪ 𝐶2 ∪ 𝐶3.

Now we deal with the uniqueness statement for the 2-handle-skeleton. This follows
from the computation the homotopy groups of TOP/𝑂 [KS77, Essay IV, Chapter 10],
which means that the only obstruction for the smooth structures to be concordant relative
to the chosen structure on (𝑋× 𝐽2)(2) lies in

⊕
𝑖 𝐻

3(ℋ𝑖 , 𝜕𝐴ℋ𝑖 ;ℤ/2), and hence vanishes for
handles of index two or lower (higher degree obstructions also appear but these similarly
vanish in our case). Applying the concordance implies isotopy theorem [KS77, Essay I,
Theorem 4.1] finishes the proof. □

Remark 3.9. The uniqueness obstructions lying in
⊕

𝑖 𝐻
3(ℋ𝑖 , 𝜕𝐴ℋ𝑖 ;ℤ/2), mentioned at

the end of the proof of Lemma 3.8 means that the 3-handle-skeleton does not in general
admit a unique smooth structure. In fact, each different element of

⊕
𝑖 𝐻

3(ℋ𝑖 , 𝜕𝐴ℋ𝑖 ;ℤ/2)
corresponds to a (potentially) distinct (up to isotopy) smooth structure on (𝑋 × 𝐽2)(3), and
we will have to take this non-uniqueness into account later in Lemma 4.1.

Once 𝑁 is smoothed, we can pass to 𝜋0
(
𝒫DIFF(𝑁𝒮)

)
. We have to make sure that this

step does not cause loss of information with respect to the path-connectedness in the TOP
category. In order to do so, we appeal to Burghelea-Lashof [BL74, Theorem 6.1, Theorem
6.2] which gives:

𝜋0
(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

) �−→ 𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
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via the forgetful map.

Notation 3.10. We denote the inverse of this isomorphism by 𝔣𝒮 .

3.2. Defining the topological obstruction. We briefly recall what we have obtained so
far. Starting from the manifold 𝑋4, we twice-suspended it to 𝑋× 𝐽2. Using the TOP Theo-
rem 3.4 we showed that the space of path components of 𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2)) depends
only on a neighbourhood 𝑁 of the 3-handle skeleton. We then smoothed 𝑁 and used
the work of [BL74] to transition into the DIFF category, i.e. smoothed the pseudo-isotopy,
without losing information with respect to the connected-components of the pseudo-
isotopy spaces.

The last step is to use Hatcher-Wagoner as in [HW73] to define the obstruction maps
Σ and Θ for CAT = DIFF. These maps have image in Wh2

(
𝜋1(𝑋 × 𝐽2)

)
and

Wh1
(
𝜋1(𝑋 × 𝐽2);ℤ/2 × 𝜋2(𝑋 × 𝐽2)

)
/𝜒.

Showing that the choice of smoothing of 𝑁 does not affect the result of the composition
map that is involved in our definition, which is a key step to have an actual unique
definition of the invariant, will be the content of Lemma 4.1. We postpone the proof for
now.

Definition 3.11 (Topological Hatcher-Wagoner invariants). Let 𝑋 be a compact, topo-
logical 4-manifold. Let 𝑆2 := 𝑆+ ◦ 𝑆+ : 𝜋0𝒫TOP(𝑋, 𝜕𝑋) → 𝜋0𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2)) be
the two-fold suspension homomorphism and let 𝒮 denote a smooth structure on 𝑁 , the
neighbourhood of the 3-handle-skeleton of 𝑋 × 𝐽2. Then we define:

ΣTOP := Σ ◦ 𝔣𝒮 ◦ 𝔦 ◦ 𝑆2 : 𝜋0𝒫TOP(𝑋, 𝜕𝑋) → Wh2(𝜋1(𝑋))
where 𝔦 is from Notation 3.6, 𝔣𝒮 is from Notation 3.10 and Σ is the smooth, first Hatcher-
Wagoner invariant from Section 2.1.

Similarly, we define

ΘTOP := Θ ◦ 𝔣𝒮 ◦ 𝔦 ◦ 𝑆2 : kerΣTOP → Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒,
where Θ is the smooth, second Hatcher-Wagoner invariant from Section 2.2.

Lemma 3.12. The maps ΣTOP and ΘTOP are group homomorphisms.

Proof. By definition, both ΣTOP and ΘTOP are compositions of homomorphisms. □

Definition 3.11 a priori depends on the choice of smooth structure 𝒮 on 𝑁 , but this is
not reflected in the notation. We will justify this notation in Lemma 4.1 by showing that
our invariants do not depend on the choice of 𝒮.

Remark 3.13. Note that there could be elements [𝐹] in kerΣTOP that vanish because they
lie in ker 𝑆2. For such elements, ΘTOP also automatically vanishes. This however does
not imply that [𝐹] is isotopic to the identity (e.g. Budney-Gabai’s examples [BG23]). It is
also important to notice that there could be elements for which ΣTOP vanishes and whose
Θ invariant is non-trivial. For such elements, it is evident by the definitions that they
cannot lie in ker 𝑆2.
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Theorem 3.14. If either ΣTOP([𝐹]) ≠ 0 and ΘTOP([𝐹]) ≠ 0 then 𝐹 is not topologically isotopic
to an isotopy.

Proof. Following Lemma 3.12, the maps ΣTOP and ΘTOP are homomorphisms. Hence if
[𝐹] = [Id] then ΣTOP([𝐹]) = 0 and ΘTOP([𝐹]) = 0. □

4. PROPERTIES OF THE TOPOLOGICAL HATCHER-WAGONER INVARIANTS

We start this section by showing that the choice of smoothing of 𝑁 does not affect the
result of the composition map in Definition 3.11. We then proceed to prove the main
properties that our topological invariants satisfy. Namely, they possess naturality under
the inclusion of certain codimension zero submanifolds (see Proposition 1.3) and that
the topological and smooth Hatcher-Wagoner invariants coincide for smooth pseudo-
isotopies, which was stated in the last part of Theorem 1.1 in the introduction.

Lemma 4.1. The maps ΣTOP and ΘTOP are independent of the choice of smooth structure 𝒮 on
𝑁 .

Proof. We only prove this for ΣTOP. The proof for ΘTOP is analogous. The general idea is
that we will combine Definition 3.11 with an analogous ‘definition’ using the 2-handle-
skeleton instead. As in Definition 3.11, choose a smooth structure 𝒮 on 𝑁 , the neighbour-
hood of the 3-handle-skeleton, and denote a neighbourhood of the 2-handle-skeleton by
𝑁 ′. We now draw the relevant diagram.

𝜋0
(
𝒫TOP(𝑋, 𝜕𝑋)

)
𝜋0

(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
𝜋0

(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
𝜋0

(
𝒫DIFF(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
Wh2(𝜋1(𝑁 ′)) Wh2(𝜋1(𝑁))

Wh2(𝜋1(𝑋))

𝑆2

𝑎

𝔦′ 𝔦

�

�
𝑏

𝑐

��𝔣

𝑑

� 𝑒 𝔣𝒮�

�

Σ Σ

�

We describe the maps in the diagram. The maps 𝑎, 𝑏, 𝑐 and 𝑑 are all inclusion induced
maps. By appealing to [BL74, Theorem 6.1, Theorem 6.2], we have the existence of the
inverse map 𝔣 to 𝑒, which does not depend on a choice of smooth structure, since, by
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Lemma 3.8, 𝑁 ′ is uniquely smoothable. As in Definition 3.11, we have the existence of 𝔦,
the inverse to 𝑏. Similarly, 𝔣𝒮 is the inverse to the forgetful map, as in Definition 3.11. In
the above diagram we can see the map ΣTOP for the smooth structure 𝒮: map down the
right hand side of the diagram. We now aim to show that the diagram commutes.

We first consider the top section of the diagram, then the middle rectangle and even-
tually the bottom rectangle.

4.0.1. The upper triangle.

𝜋0
(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
𝜋0

(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)𝑎

𝑐

𝑏

Start with a class [𝐹] ∈ 𝜋0
(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
. The map 𝑎 is given by extending via the

identity outside the neighbourhood 𝑁 ′ of the 2-handle-skeleton. We have:

𝑎([𝐹]) = [𝐹̂],
where 𝐹̂|𝑁 ′ = 𝐹 and 𝐹̂|𝑋×𝐽2\𝑁 ′ = Id. Surjectivity of this map is guaranteed by Theo-
rem 3.4. The map 𝑏 is defined in a similar way—the only difference is that we are ex-
tending over the complement of a neighbourhood of the 3-skeleton. Start with [𝐺] ∈
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
. This is sent to:

𝑏([𝐺]) = [𝐺],
where 𝐺|𝑁 = 𝐺 and 𝐺|𝑋×𝐽2\𝑁 = Id. The map 𝑏 is an isomorphism thanks to Lemma 3.2.

The map 𝑐 is defined by extending via the identity from 𝑁 ′ to 𝑁 . In particular if [𝐹] is
in 𝜋0

(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
, then:

𝑐([𝐹]) = [𝐺],
where 𝐺|𝑁 ′ = 𝐹 and 𝐺|𝑁\𝑁 ′ = Id. This map is surjective by an application of Theorem
3.4.

It is immediate from the definitions of the maps to show that 𝑎 = 𝑏 ◦ 𝑐:
𝑏 ◦ 𝑐([𝐹]) = 𝑏([𝐺]) = [𝐺],

where 𝐺|𝑁 ′ = 𝐹 and 𝐺|𝑋×𝐽2\𝑁 ′ = Id, which is exactly the same as [𝐹] = 𝑎([𝐹]).

4.0.2. The middle rectangle. We now prove commutativity of the middle rectangle.

𝜋0
(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
𝜋0

(
𝒫DIFF(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
𝑐

�

𝑑

�

A class [𝐹] ∈ 𝜋0
(
𝒫DIFF(𝑁 ′, 𝜕𝑁 ′)

)
(resp. in 𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
) is sent by forgetting

the smooth structure to [𝐹] ∈ 𝜋0
(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
(resp. in 𝜋0

(
𝒫TOP(𝑁𝒮 , 𝜕𝑁𝒮)

)
). The
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map 𝑐 was previously defined in Section 4.0.1. The map 𝑑 is the smooth analogue of 𝑐,
i.e. extension via the identity from 𝑁 to 𝑁 ′. Note that this map is also surjective (using
Theorem 3.3).

We start with [𝐹] ∈ 𝜋0
(
𝒫DIFF(𝑁 ′, 𝜕𝑁 ′)

)
. This is sent to [𝐹] ∈ 𝜋0

(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
via

the vertical isomorphism. Next we have 𝑐([𝐹]) = [𝐺], where 𝐺|𝑁 ′ = 𝐹 and 𝐺|𝑁\𝑁 ′ = Id.
On the other hand, following the bottom part of the diagram, we have:

𝑑([𝐹]) = [𝐺],

with 𝐺 now smooth and with 𝐺|𝑁 ′ = 𝐹 and 𝐺|𝑁\𝑁 ′ = Id. This is then sent to [𝐺] ∈
𝜋0

(
𝒫TOP(𝑁𝒮 , 𝜕𝑁𝒮)

)
. The properties of 𝐺 are not lost. It is now clear that the diagram

commutes.

4.1. The main diagram.

𝜋0
(
𝒫TOP(𝑋, 𝜕𝑋)

)
𝜋0

(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
𝜋0

(
𝒫TOP(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
𝜋0

(
𝒫DIFF(𝑁 ′, 𝜕𝑁 ′)

)
𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
Wh2(𝜋1(𝑁 ′)) Wh2(𝜋1(𝑁))

Wh1(𝜋1(𝑋))

𝑆2

𝔦′ 𝔦

𝑐

𝔣 𝔣𝒮

𝑑

�

Σ Σ

�

We now return to the main diagram, noting that the commutativity of the bottom
rectangle follows from Lemma 2.14. We have only included the arrows in the direction
for defining the topological Hatcher-Wagoner invariants, i.e. going downwards. It is a
simple exercise to see that the commutativity proved above for the more natural maps
implies the commutativity for the above diagram (note that 𝔦′ denotes a choice of lift, not
a map).

We can similarly draw the same diagram for a different choice of smooth structure,
say 𝒮′, and let 𝐹 be a topological pseudo-isotopy of 𝑋. Then the commutativity of the
diagrams involving 𝒮 and 𝒮′ give

Σ(𝔣𝒮 ◦ 𝔦 ◦ 𝑆2(𝐹)) = Σ(𝔣 ◦ 𝔦′ ◦ 𝑆2(𝐹)) = Σ(𝔣𝒮′ ◦ 𝔦 ◦ 𝑆2(𝐹))

and this implies that our definition of ΣTOP(𝐹) does not depend on the choice of 𝒮. □
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4.2. The topological and smooth obstructions coincide for smooth pseudo-isotopies.
We now prove that our topological invariants are compatible with the smooth ones. This
will complete the proof of Theorem 1.1.

Lemma 4.2. Let 𝑋 be a smooth 4-manifold i.e. a topological manifold 𝑋 with a given choice of
smooth structure 𝒮, and let 𝐹 : 𝑋 → 𝑋 be a smooth pseudo-isotopy, [𝐹] ∈ 𝜋0

(
𝒫DIFF(𝑋, 𝜕𝑋)

)
.

Then
Σ(𝐹) = ΣTOP(𝐹),

and
Θ(𝐹) = ΘTOP(𝐹).

Proof of Lemma 4.2. We begin by showing that the following diagram commutes.

𝜋0
(
𝒫TOP(𝑋, 𝜕𝑋)

)
𝜋0

(
𝒫DIFF(𝑋𝒮 , 𝜕𝑋𝒮)

)
𝜋0

(
𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

)
𝜋0

(
𝒫DIFF(𝑋𝒮 × 𝐽2 , 𝜕(𝑋𝒮 × 𝐽2))

)
𝜋0

(
𝒫TOP(𝑁, 𝜕𝑁)

)
𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
where in 𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
we choose the smoothing that coincides with the restric-

tion of 𝒮 to 𝑁 , and the horizontal maps are just forgetful maps. We chose the suspension
map so that it matches the one used in [HW73] in the smooth case. Thus the upper square
commutes.

Commutativity of the lower square is equivalent to forgetting the smooth structure
and then extending the pseudo-isotopy via the identity, which yields the same result
as extending the smooth pseudo-isotopy via the identity and the forgetting the smooth
structure (this is almost identical to the proof in 4.0.2, so we omit the details). Now
that we have established commutativity of the above diagram, the proof of the lemma is
finished by showing that the following diagrams commute.2

𝜋0
(
𝒫DIFF(𝑋𝒮 , 𝜕𝑋𝒮)

)
Wh2 (𝜋1(𝑋))

𝜋0
(
𝒫DIFF(𝑋𝒮 × 𝐽2 , 𝜕(𝑋𝒮 × 𝐽2))

)
Wh2

(
𝜋1(𝑋 × 𝐽2)

)
𝜋0

(
𝒫DIFF(𝑁𝒮 , 𝜕𝑁𝒮)

)
Wh2 (𝜋1(𝑁𝒮))

�

� �

and

2In the second diagram (given𝑌) we write ker(ΣDIFF
𝑌

) to indicate kerΣ : 𝜋0(𝒫DIFF(𝑌, 𝜕𝑌)) → Wh2(𝜋1(𝑌)).
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kerΣ𝑋𝒮 Wh1(𝜋2(𝑋𝒮),ℤ/2 × 𝜋1(𝑋𝒮))/𝜒

kerΣ𝑋𝒮×𝐽2 Wh1(𝜋2(𝑋𝒮 × 𝐽2),ℤ/2 × 𝜋1(𝑋𝒮 × 𝐽2))/𝜒

kerΣ𝑁𝒮 Wh1(𝜋2(𝑁𝒮),ℤ/2 × 𝜋1(𝑁𝒮))/𝜒

�

� �

The commutativity of the top squares follow from Lemma 2.13. The commutativity of
the bottom squares follow from Lemma 2.14. This finishes the proof of Lemma 4.2, which
finally finishes the proof of Theorem 1.1. □

4.3. Naturality of the topological Hatcher-Wagoner invariants. This subsection is de-
voted to proving that our invariants are natural under certain inclusions of codimen-
sion zero submanifolds, i.e. Proposition 1.3, which we repeat here for the reader’s conve-
nience.

Proposition 4.3. Let 𝑋 = 𝑌 ∪𝑊 𝑍, where 𝑊 is a (connected) codimension-0 submanifold
of 𝜕𝑌. Let 𝐹 be a pseudo-isotopy of 𝑋 that satisfies 𝐹|𝑍×𝐼 = Id. Let 𝑖𝑌,𝑋 : 𝑌 → 𝑋 be the
inclusion map. Then ΣTOP(𝐹) = (𝑖𝑌,𝑋)∗ΣTOP(𝐹|𝑌). If 𝐹 lies in the kernel of ΣTOP, then we
have ΘTOP(𝐹) = (𝑖𝑌,𝑋)∗ΘTOP(𝐹|𝑌).

Proof. We start with ΣTOP. We can write the following diagram:

Wh2(𝜋1(𝑋)) Wh2(𝜋1(𝑌))

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑁, 𝜕𝑁)) 𝜋0(𝒫TOP(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) 𝜋0(𝒫TOP(𝑌 × 𝐽2 , 𝜕(𝑌 × 𝐽2)))

𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) 𝜋0(𝒫TOP(𝑌, 𝜕𝑌))

�

Σ

�

Σ

� �

Here 𝑁 is a neighbourhood of the 3-handle-skeleton in 𝑋 × 𝐽2 and 𝑁 ′ is a neighbour-
hood of the 3-handle skeleton in𝑌× 𝐽2, where we choose the handle decompositions such
that the handle decomposition of 𝑌 × 𝐽2 extends to the chosen handle decomposition of
𝑋 × 𝐽2. This is possible because the handle decomposition of 𝑌 × 𝐽2 needs to be relative
to 𝜕𝑌 × 𝐽2 and hence relative to 𝑊 × 𝐽2. The point is to show that the above diagram
commutes. We start with the bottom square.
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𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) 𝜋0(𝒫TOP(𝑌 × 𝐽2 , 𝜕(𝑌 × 𝐽2)))

𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) 𝜋0(𝒫TOP(𝑌, 𝜕𝑌))
𝑆2 𝑆2

The upward pointing maps are given by the suspension maps 𝑆2 on 𝑋 and 𝑌 respec-
tively. The bottom map 𝜋0(𝒫TOP(𝑌, 𝜕𝑌)) −→ 𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) is given by extension via
the identity over 𝑍. This makes sense since the pseudo-isotopies in 𝜋0(𝒫TOP(𝑌, 𝜕𝑌)) fix
𝑊 . The map 𝜋0(𝒫TOP(𝑌× 𝐽2 , 𝜕(𝑌× 𝐽2))) −→ 𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) is given by the sus-
pended version of the extension via the identity. It is clear that this diagram commutes
by definition of the maps. We consider the next square.

𝜋0(𝒫TOP(𝑁, 𝜕𝑁)) 𝜋0(𝒫TOP(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) 𝜋0(𝒫TOP(𝑌 × 𝐽2 , 𝜕(𝑌 × 𝐽2)))

The arrows pointing downwards are given by extending via the identity outside a neigh-
bourhood 𝑁 (resp. 𝑁 ′) of the 3-handle-skeleton of 𝑋 × 𝐽2 (resp. 𝑌 × 𝐽2). The bottom
horizontal arrow is given by the suspended-identity extension. The top horizontal map
is given by extending via the identity. Note that this is well defined thanks to our choice
for the handle decompositions on 𝑋 × 𝐽2 and on 𝑌 × 𝐽2 to be compatible—plus, we know
that all pseudo-isotopies have to fix𝑊× 𝐽2. Thus the top horizontal map is defined by ex-
tending via the identity over the 3-handle skeleton of 𝑍. It is clear now that the diagram
commutes. The next square is easier to study.

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑁, 𝜕𝑁)) 𝜋0(𝒫TOP(𝑁 ′, 𝜕𝑁 ′))

The downward pointing arrows are just given by forgetful maps. The horizontal maps
are extensions (topological and smooth) via the identity. Commutativity of the diagram
is immediate (again, the argument is just like in 4.0.2).

The only thing left to check is the topmost square, which can be factored into the fol-
lowing diagram:

Wh2(𝜋1(𝑋)) Wh2(𝜋1(𝑌))

Wh2(𝜋1(𝑁)) Wh2(𝜋1(𝑁 ′))

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))
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The bottom part commutes thanks to Lemma 2.14. The topmost portion commutes by
analysing the definition of Wh2(𝜋1) (in particular, note that the corresponding square
on 𝜋1 commutes). We now analyse the Θ case. We write the following commutative
diagram:

Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋)/𝜒 Wh1(𝜋1𝑌;ℤ/2 × 𝜋2𝑌)/𝜒

ker(ΣDIFF
𝑁

) ker(ΣDIFF
𝑁 ′ )

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑁, 𝜕𝑁)) 𝜋0(𝒫TOP(𝑁 ′, 𝜕𝑁 ′))

𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))) 𝜋0(𝒫TOP(𝑌 × 𝐽2 , 𝜕(𝑌 × 𝐽2)))

𝜋0(𝒫TOP(𝑋, 𝜕𝑋)) 𝜋0(𝒫TOP(𝑌, 𝜕𝑌))

� �

� �

As before, 𝑁 is a neighbourhood of the 3-handle skeleton in 𝑋 × 𝐽2 and 𝑁 ′ is a neigh-
bourhood of the 3-handle skeleton in 𝑌 × 𝐽2, where we choose the handle decomposition
such that the handle decomposition of𝑌× 𝐽2 extends to the chosen handle decomposition
of 𝑋 × 𝐽2.

We will consider the above diagram. Note that, thanks to the above steps we know that
ifΣ(𝐹|𝑌) = 0 thenΣ(𝐹) = 0. As such, 𝐹 lies inside ker(Σ : 𝒫TOP(𝑋, 𝜕𝑋) → Wh2(𝜋1𝑋)). The
goal is to show the diagram is commutative. We will use it to compute ΘTOP for maps in
ker(Σ𝑋). Hence for our purposes we know that once we land in 𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) (resp.
𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))) we actually land in ker(Σ𝑁 ) (resp. ker(Σ𝑁 ′)).

For most of the squares the proofs are identical to the ones for ΣTOP. We only focus on
the other squares. The square:

ker(ΣDIFF
𝑁

) ker(ΣDIFF
𝑁 ′ )

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁 ′, 𝜕𝑁 ′))

commutes trivially since inclusion of the kernel commutes by extension with the identity—
note that the top map is well defined thanks to Lemma 2.14. Finally we need to analyse
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the following diagram.

Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋)/𝜒 Wh1(𝜋1𝑌;ℤ/2 × 𝜋2𝑌)/𝜒

Wh1(𝜋1𝑁 ;ℤ/2 × 𝜋2𝑁)/𝜒 Wh1(𝜋1𝑁
′;ℤ/2 × 𝜋2𝑁

′)/𝜒

ker(ΣDIFF
𝑁

) ker(ΣDIFF
𝑁 ′ )

Θ Θ

As for ΣTOP, the bottom part of the diagram commutes thanks to Lemma 2.14. The
topmost part commutes by analysing the definition of Wh1 and by noting that the corre-
sponding squares involving 𝜋1 and 𝜋2 also commute. □

5. ONE-PARAMETER FAMILIES OF HANDLE DECOMPOSITIONS

We now shift our attention to the realisation problem for Σ and Θ. The first step in that
direction is to define a potential candidate pseudo-isotopy (or, more precisely, isotopy
class of pseudo-isotopies) that might realise the desired element 𝑥 ∈ Wh2(𝜋1(𝑋)) or, if
𝑥 = 0, the desired 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2×𝜋2(𝑋))/𝜒. We do this by carefully emulating the
smooth functional approach in a purely topological setting.

In this section we describe the framework needed to describe the candidate pseudo-
isotopies. We give a definition of an allowed one-parameter family of topological handle
decompositions on 𝑋 × 𝐼, where 𝑋 is a topological 4-manifold, and we will see that from
these objects we obtain a well defined topological pseudo-isotopy. This construction will,
roughly speaking, mimic the “one-parameter family of Morse functions in nested eyes
position" discussion in [HW73]. Later, in Section 6 and Section 7, we will then show how
to construct a specific allowed one-parameter family of handle decompositions which
will correspond to an element 𝑥 ∈ Wh2(𝜋1(𝑋)) or 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒.

It is important to stress that this is an “ad hoc" construction. We do not claim any
genericity of our families of handle structures and we do not claim that there is a strong
correspondence between a space of handle structures and our invariants. In particular,
we are not describing anything that could be described as topological Cerf theory and, at the
current time, such a thing does not exist in the literature. We will satisfy ourselves with
producing some concrete examples of one-parameter families of handle decompositions
that will suffice to realise our invariants.

5.1. Allowed one-parameter families of topological handle decompositions.

Notation 5.1. Let

𝐷+ := {(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) ∈ ℝ5 | (𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥2

4 + 𝑥2
5 ≤ 1), 𝑥5 ≥ 0}

denote the standard 5-dimensional half-disc of radius one in ℝ5 centred at the origin.
There is a natural decomposition 𝜕𝐷+ = 𝜕−𝐷+∪𝜕+𝐷+ where 𝜕− denotes the region given
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by setting 𝑥5 = 0, and 𝜕+ denotes the remaining portion of the boundary. We fix once and
for all a decomposition 𝐷+ = 𝔥2 ∪ 𝔥3, where

𝔥3 := {(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5) ∈ 𝐷+ | 𝑥2
1 + 𝑥2

2 + 𝑥2
5 ≤ 3/5}

and 𝔥2 := 𝐷+ \ 𝔥̊3. This decomposes 𝐷+ into a cancelling 2-handle and 3-handle pair, after
fixing parameterisations 𝔥2 = 𝐷2 × 𝐷3 and 𝔥3 = 𝐷3 × 𝐷2, which we do now (and use
implicitly throughout).

Definition 5.2 (Allowed one-parameter families of topological handle decompositions).
Let 𝑋 be a compact topological 4-manifold. Suppose we have the following input data.

■ A collection of distinct times ℬ := {𝑏1 , . . . , 𝑏𝑛 ∈ [0, 1]} called the birth times;
■ A collection of distinct times 𝒟 := {𝑑1 , . . . , 𝑑𝑛 ∈ [0, 1] \ ℬ} called the death times

such that 𝑏𝑘 < 𝑑𝑘 for all 𝑘;
■ A collection of times 𝒜2 := {𝑎2

1 , . . . , 𝑎
2
𝑚 ∈ [0, 1] \ (ℬ ∪𝒟)} called the 2-handle

slide times such that for each time there is an associated sliding 2-handle index pair
𝑘(𝑎2

𝑖
) = ( #»

𝑘 (𝑎2
𝑖
), ¤𝑘(𝑎2

𝑖
)) and such that 𝑏 #»

𝑘 (𝑎2
𝑖
) < 𝑎2

𝑖
< 𝑑 #»

𝑘 (𝑎2
𝑖
) and 𝑏 ¤𝑘(𝑎2

𝑖
) < 𝑎2

𝑖
< 𝑑 ¤𝑘(𝑎2

𝑖
);

■ A collection of times 𝒜3 := {𝑎3
1 , . . . , 𝑎

3
𝑝 ∈ [0, 1] \ (ℬ ∪𝒟)} called the 3-handle

slide times such that for each time there is an associated sliding 3-handle index pair
𝑘(𝑎3

𝑖
) = ( #»

𝑘 (𝑎3
𝑖
), ¤𝑘(𝑎3

𝑖
)) and such that 𝑏 #»

𝑘 (𝑎3
𝑖
) < 𝑎3

𝑖
< 𝑑 #»

𝑘 (𝑎3
𝑖
) and 𝑏 ¤𝑘(𝑎3

𝑖
) < 𝑎3

𝑖
< 𝑑 ¤𝑘(𝑎3

𝑖
);

Then an allowed one-parameter family of handle decompositions ℱ𝑡 , 𝑡 ∈ [0, 1], for 𝑋 × 𝐼 is
given by the following data.

■ A continuous 1-parameter family of embeddings 𝐹−𝑡 : 𝑋 × [0, 1/2] → 𝑋 × 𝐼 such
that 𝐹−𝑡 |𝑋×{0}∪𝜕𝑋×𝐼 is the inclusion map.

■ A continuously varying one-parameter family of collections of 2-handle embed-
dings ℰ𝑡

2 := {2ℎ𝑘𝑡 : 𝐷2 ×𝐷3 ↩→ 𝑋 × 𝐼} such that 2ℎ𝑘𝑡 |𝑆1×𝐷3 maps into 𝐹−𝑡 (𝑋 × {1/2})
(except for times near 𝑡 ∈ 𝒜2, as explained below) where for each 𝑘 the time pa-
rameter lives in the range 𝑡 ∈ (𝑏𝑘 , 𝑑𝑘). In a small neighbourhood of each 𝑎 ∈ 𝒜2,

the embedding 2ℎ
#»

𝑘 (𝑎)
𝑡 |𝑆1×𝐷3 is allowed to map into(

𝐹−𝑡 (𝑋 × {1/2}) \ 2ℎ
¤𝑘(𝑎)
𝑡 (𝑆1 × 𝐷3)

)
∪ 2ℎ

¤𝑘(𝑎)
𝑡 (𝐷2 × 𝑆2)

(this is a slide of the
#»

𝑘 (𝑎)-th 2-handle over the ¤𝑘(𝑎)-th 2-handle).
■ A continuously varying one-parameter family of collections of 3-handle embed-

dings ℰ𝑡
3 := {3ℎ𝑘𝑡 : 𝐷3 × 𝐷2 ↩→ 𝑋 × 𝐼} such that 3ℎ𝑘𝑡 |𝑆2×𝐷2 maps into

𝑀−
𝑡 :=

(
𝐹−𝑡 (𝑋 × {1/2}) \

⋃
𝑘

(
2ℎ𝑘𝑡 (𝑆1 × 𝐷3)

))
∪

⋃
𝑘

2ℎ𝑘𝑡 (𝐷2 × 𝑆2)

(except for times near 𝑡 ∈ 𝒜3, as explained below) where for each 𝑘 the time
parameter lives in the range 𝑡 ∈ (𝑎𝑘 , 𝑑𝑘). In a small neighbourhood of each 𝑎 ∈ 𝒜3,
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the embedding 3ℎ
#»

𝑘 (𝑎)
𝑡 is allowed to attach along(
𝑀−
𝑡 \ 3ℎ

¤𝑘(𝑎)
𝑡 (𝑆2 × 𝐷2)

)
∪ 3ℎ

¤𝑘(𝑎)
𝑡 (𝐷3 × 𝑆1)

(this is a slide of the
#»

𝑘 (𝑎)-th 3-handle over the ¤𝑘(𝑎)-th 3-handle).
■ A one-parameter family of homeomorphisms

𝐹+𝑡 : 𝑋 × [1/2, 1] → 𝑋 × 𝐼 \
(
𝐹−𝑡 (𝑋 × [0, 1/2]) ∪

⋃
𝑘

2ℎ𝑘𝑡 ∪
⋃
𝑘

3ℎ𝑘𝑡

)
such that 𝐹+𝑡 |𝑋×{1/2} glues together with 𝐹−𝑡 |𝑋×{1/2} wherever they meet, which is
continuous everywhere except at times 𝑡 ∈ ℬ∪𝒟, where the the limits from below
and above exist separately. We now define the behaviour at such a birth point, e.g.
𝑡 = 𝑏 𝑗 . Fix notation for the limit from below as �𝐹+𝑡 := lim𝑡↗𝑏 𝑗 𝐹

+
𝑡 (respectively, the

limit from above as �𝐹+𝑡 := lim𝑡↘𝑏 𝑗 𝐹
+
𝑡 ).

(1) We require that there is a given embedding 𝐷𝑗 : 𝐷+ ↩→ 𝑋 × [1/2, 1] such that
𝐷𝑗(𝜕−𝐷+) lies on 𝑋×{1/2} and such that �𝐹+𝑡 (𝐷𝑗(𝜕−𝐷+)) lies on 𝐹−𝑡 (𝑋×{1/2}).

(2) We require that the 𝑗-th 2-handle embedding 2ℎ
𝑗

𝑡 can be described immedi-
ately after its birth as

lim
𝑡↘𝑏 𝑗

(
2ℎ

𝑗

𝑡

)
= �𝐹+

𝑏 𝑗
(𝐷𝑗(𝔥2))

and similarly for the 𝑗-th 3-handle embedding we require that

lim
𝑡↘𝑏 𝑗

(
3ℎ

𝑗

𝑡

)
= �𝐹+

𝑏 𝑗
(𝐷𝑗(𝔥3)).

(3) The embedding 𝐷𝑗(𝐷+) guides an ambient isotopy of 𝐷𝑗(𝜕−𝐷+) to 𝐷𝑗(𝜕+𝐷+).
Applying isotopy extension to this and post-composing with �𝐹+

𝑏 𝑗
describes

an isotopy of �𝐹+
𝑏 𝑗

relative to most of the boundary (all but the piece cor-
responding to 𝐷𝑗(𝜕−𝐷+), which clearly moves) to a new homeomorphism
which we denote by 𝐺. We require that �𝐹+

𝑏 𝑗
= 𝐺.

Similarly for a death point, e.g. 𝑡 = 𝑑 𝑗 we require the same but in the reverse
time direction; for brevity we leave the details to the reader.

Remark 5.3. The condition on the homeomorphisms 𝐹+𝑡 means that for times 𝑡 before any
births have occured or after all deaths have occured ℱ𝑡 consists of a single homeomor-
phism 𝐹𝑡 := 𝐹−𝑡 ∪ 𝐹+𝑡 : 𝑋 × 𝐼 → 𝑋 × 𝐼.

Definition 5.4. Let ℱ𝑡 be an allowed one-parameter family of handle decompositions of
𝑋 × 𝐼. Then the pseudo-isotopy associated to ℱ𝑡 is given by 𝐹1 : 𝑋 × 𝐼 → 𝑋 × 𝐼.

We also have the analogous notion of isotopy for allowed one-parameter families of
handle decompositions, i.e. a separate isotopy of each piece of constituent data of ℱ𝑡 such
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that for each time slice of the isotopy, the data still fits together to form a one-parameter
family, as in Definition 5.2. We will omit the details for this.

We will need the following compatibility result between smooth one-parameter fami-
lies and our allowed one-parameter families of topological handle decompositions.

Lemma 5.5. Let 𝑋 be a smooth 4-manifold and let (𝑔𝑡 , 𝜂𝑡) be a one-parameter family for a smooth
pseudo-isotopy 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼. Then there exists a one-parameter family of topological handle
decompositions ℱ𝑡(𝑔𝑡 , 𝜂𝑡) such that 𝐹 is equal to the pseudo-isotopy associated to ℱ𝑡 .

Proof. We sketch the proof. Deform (𝑔𝑡 , 𝜂𝑡) to one with only index two and three critical
points and such that first all births occur, then all handle slides, then all deaths [HW73,
Part I, Chapter V, Theorem 3.1]. Choose a one-parameter family of Morse coordinate
charts 2𝜑𝑘

𝑡 and 3𝜑𝑘
𝑡 for the critical points of 𝑔𝑡 as in [Lau14, Section 3], as well as a one-

parameter family of collars for 𝑋 ×{0} which we denote by 𝐹−𝑡 . At a time slice 𝑡 where no
births, deaths or handle slides occur, the Morse coordinate neighbourhoods for the index
two critical points determine smooth handle embeddings 2ℎ𝑘𝑡 after flowing down to the
collar using 𝜂𝑡 . Similarly, the Morse coordinate neighbourhoods for the index three crit-
ical points then determine smooth handle embeddings 3ℎ𝑘𝑡 after flowing with 𝜂𝑡 . Since
all of the data was chosen in a one-parameter fashion, this yields not just handle embed-
dings at each 𝑡, but actually a smooth one-parameter family of handle embeddings. To
complete the handle decomposition, we produce the final collar by flowing down from
𝑋 × {1} using 𝜂𝑡 to form another collar embedding 𝐹+𝑡 .

If we are at time 𝑎 when a handle slide occurs (see [HW73, Part I, Chapter II, Proof
of Lemma 1.2]) then we append the time 𝑎 to 𝒜2 or 𝒜3, depending on the index of the
handle slide. Assume the index of the handle slide is 2, for simplicity. By independence
of trajectories [HW73, Part I, I §7], we can assume that all of the other data stays fixed in
a small time neighbourhood of the handle slide. Let the label of sliding handle be

#»

𝑘 (𝑎)
and the label of the handle that is being slid over be ¤𝑘(𝑎) and then the sliding 2-handle
index pair is 𝑘(𝑎) := ( #»

𝑘 (𝑎), ¤𝑘(𝑎)). By arrangement, during a small time neighbourhood of

𝑎, the construction in the above paragraph means that the handle 2ℎ
#»

𝑘 (𝑎)
𝑡 attaches along

not just the collar, but also the belt region of the handle 2ℎ
¤𝑘(𝑎)
𝑡 . However, this is precisely

what is allowed in Definition 5.2.
Since births and deaths are inverses to each other, we will only describe what happens

at a time 𝑏 when a birth occurs, involving index 2 and 3 critical points with label 𝑘. First
we append 𝑏 to ℬ. At time 𝑏 + 𝜀 the corresponding pair of handles are in cancelling
position. We can assume that the collar of 𝑋 × {0} stays constant throughout the handle
birth (again by independence of trajectories), and so the Morse coordinate charts 2𝜑𝑘

𝑏+𝜀
and 3𝜑𝑘

𝑏+𝜀 and the handle cancellation lemma [Mil65, Lemma 5.3] give that there exists a
diffeomorphism

𝑓 : 2𝜑𝑘
𝑏+𝜀 ∪

3𝜑𝑘
𝑏+𝜀 → 𝐷+

5
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and this diffeomorphism describes how to absorb the union of the handles 2ℎ𝑘
𝑏+𝜀 and

3ℎ𝑘
𝑏+𝜀 into the collar 𝐹+𝑡 ; this is what it needed to describe the data for the one-parameter

family of handle decompositions immediately before the handle birth. Again using in-
dependence of trajectories, we can assume that all of the other data stays fixed in a small
time neighbourhood of the birth and hence contracting the data of the birth for times
𝑏 < 𝑡 < 𝑏 + 𝜀 creates the situation described in Definition 5.2. Throwing away the
smoothness data then produces the given allowed one-parameter family of handle de-
compositions. □

We call any such ℱ𝑡(𝑔𝑡 , 𝜂𝑡) the allowed one-parameter family of handle decompositions
induced by (𝑔𝑡 , 𝜂𝑡), despite it not being unique by any means.

5.2. Constructions. Definition 5.2 gives an extension of the smooth one-parameter fam-
ilies considered in Cerf and Hatcher-Wagoner, but so far the only way we have to build
one is to take the one induced by a smooth family (as in Lemma 5.5). This will almost suf-
fice for our methods; we will need to have a way to arrange for handle deaths that does
not rely on the smooth machinery. In contrast, all handle births and handle slides will be
constructed smoothly. One could in principle construct these topologically. Roughly, one
should use a result of Freedman-Quinn [FQ90, 8.7D] which says that 𝑋×𝐼\𝐹−𝑡 (𝑋×[0, 1/2])
is smoothable away from a proper 1-dimensional submanifold, and then one should per-
form all of the smooth constructions (such as handle births and handle slides) in the
complement of this submanifold. We will not discuss this idea further since we will not
need it.

5.2.1. Deaths of cancelling handle pairs. Assume we are at a time 𝑡 where we have all of
the data used in Definition 5.2 but no deaths have occurred. To simplify the notation
we will assume that the embedding 𝐹−𝑡 simply given by the inclusion map in a time-
neighbourhood where the deaths will occur. The extra data is then a collection of handle
embeddings 2ℎ𝑘𝑡 and 3ℎ𝑘𝑡 .

Our aim here is to describe the geometric data necessary for these handles can be
cancelled, i.e. such that at some future time 𝑡′ our data consists only of an embedding
𝐹𝑡′ : 𝑋 × 𝐼 → 𝑋 × 𝐼, which will then be the pseudo-isotopy that has been created by this
whole process.

Consider the submanifold
𝑀−
𝑡 ≈ 𝑋#𝑛(𝑆2 × 𝑆2)

from Definition 5.2. The homeomorphism is given by an identification that we choose
and fix throughout this discussion, which has the property that the 𝑛 2-spheres 𝐵𝑘 :=
2ℎ𝑘𝑡 (𝐷2 × 𝑆2) = {pt} × 𝑆2 ⊂ 𝑋#𝑘(𝑆2 × 𝑆2) are the framed images of the belt spheres of
the 2-handles 2ℎ𝑘𝑡 . The embeddings of the 3-handles 3ℎ𝑘𝑡 when restricted to the attaching
region gives embeddings 3ℎ𝑘𝑡 |𝑆2×𝐷2 which determines framed embedded 2-spheres 𝐴𝑘 ⊂
𝑀−
𝑡 ≈ 𝑋#𝑘(𝑆2 × 𝑆2). In the smooth category a necessary and sufficient condition for 2-

and 3-handles to cancel is given by the Morse cancellation theorem [Mil65, Theorem 5.4].
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We will make do without this at the expense of needing a stronger hypothesis on the
intersection between the attaching spheres and the belt spheres.

Let 𝐴+
𝑘

(resp. 𝐴−
𝑘
) denote the upper (resp. lower) hemisphere of the framed attaching

sphere of the 𝑘-th 3-handle, and let 𝐵+
𝑘

(resp. 𝐵−
𝑘

) denote the upper (resp. lower) hemi-
sphere of the framed belt sphere of the 𝑘-th 2-handle.

Lemma 5.6. Assume that the attaching spheres 𝐴𝑘 are all disjoint and 𝐴𝑘 ∩𝐵 𝑗 = ∅ if 𝑘 ≠ 𝑗.
Further assume that the 𝐴𝑘+ and 𝐵𝑘− completely coincide (as subsets) inside 𝑀−

𝑡 and that
no other part of 𝐴𝑘 intersects ℎ𝑘2 . Then there are 𝑛 embeddings 𝑑𝑘2,3 : 𝐷+ → 𝑋 × 𝐼 such
that 𝑑𝑘2,3|𝔥2 =

2ℎ𝑘𝑡 and similarly 𝑑𝑘2,3|𝔥3 =
3ℎ𝑘𝑡 .

Proof. The region where the embeddings 2ℎ𝑘𝑡 and 3ℎ𝑘𝑡 of 𝔥2 and 𝔥3, respectively, coincide
is homeomorphic to a copy of 𝐷2 × 𝐷2 ≈ 𝐷4 and hence (relative to the boundary 𝑆3

after using that 𝜋0 Homeo(𝑆3) is trivial) we can make the embeddings match using the
Alexander trick. Now we can glue together the embeddings and form

𝑑2,3 := ℎ𝑘2 ∪ ℎ𝑘3 : 𝔥2 ∪ 𝔥3(= 𝐷+) → 𝑋 × 𝐼 ,
which has the desired properties. □

We now describe the handle death procedure. We say that a pair of handles which
satisfy the conditions of Lemma 5.6 are in topological cancelling position. Assume that our
two handles ℎ𝑘2 and ℎ𝑘3 are in topological cancelling position. Then by Lemma 5.6 we
can combine these two embeddings into a single embedding 𝑑𝑘2,3. We now absorb this
embedding into the upper collar 𝐹+

𝑡+𝛿, as in Definition 5.2, which can be done after a
potential isotopy of the embedding 𝑑𝑘2,3 to ensure that the embedding glues to the upper
collar. By a further isotopy of the new collar 𝐹+

𝑡+𝛿, it can be arranged that 𝐹+
𝑡+𝛿 and 𝐹−

𝑡+𝛿
match along the new region where they meet.

Before we end this subsection, we prove a lemma which shows how we can achieve
the hypotheses of Lemma 5.6 in practice. This lemma (and its applications) are used
implicitly in the proof of the smooth to topological h-cobordism theorem [FQ90, Theorem
7.1D]. We provide a statement and a proof of such a lemma here.

Lemma 5.7. Let 𝑋 be a compact, smooth 4-manifold with good fundamental group. As-
sume that we have a smooth handle decomposition of 𝑋 × 𝐼 which consists 𝑛 2-handles
and 𝑛 3-handles. Denote the belt spheres of the 2-handles by 𝐵𝑘 and the attaching
spheres of the 3-handles by 𝐴𝑘 inside the middle level 𝑋#𝑛(𝑆2 × 𝑆2). Further assume
that 𝜆(𝐴𝑘 , 𝐵𝑘) = 1 and 𝜆(𝐴𝑘 , 𝐵𝑗) = 0 if 𝑘 ≠ 𝑗, where 𝜆 here denotes the equivariant in-
tersection form, and that there exist smoothly immersed, framed Whitney discs pairing
up all of the excess intersections between each 𝐴𝑘 and 𝐵 𝑗 for all 𝑘 and 𝑗, whose interi-
ors are disjoint from 𝐴𝑘 and 𝐵 𝑗 . Then we can arrange via a topological isotopy that the
conditions of Lemma 5.6 are satisfied.

Proof. First we assume that 𝑛 = 1, i.e. there is only one 2-handle/3-handle pair (we drop
the 𝑘 subscript in the notation). To begin with, the belt sphere 𝐵, the attaching sphere
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𝐴 and Whitney discs pairing up the intersections are all smooth. Denote the framed
attaching map of𝐴 by 𝑓 . This data determines the non-excess intersection point 𝑝 ∈ 𝐴∩𝐵,
and we isotope 𝐴 such that 𝑝 = (0, 1) ∈ 𝐴 = 𝐷2 × 𝑆2 ⊂ 𝑆2 × 𝑆2. Pick a sufficiently small
neighbourhood 𝑈 ⊂ 𝑆2 of the preimage of 𝑝 such that 𝑈 is mapped to 𝐷2

𝜀(0) × {1} ⊂
𝐷2×𝑆2, isotoping 𝐴 if required. Further isotope the Whitney discs such that the (framed)
Whitney arcs lying on 𝐵 do not intersect 𝑓 (𝑈). All of the smooth setup is now complete.

Now apply the procedure detailed in Freedman-Quinn [FQ90, Proof of theorem 7.1D]
to replace the smoothly immersed Whitney discs by topologically, disjointly embedded
Whitney discs with the same (framed) boundaries. Applying simultaneous Whitney
moves across these Whitney discs then changes 𝐴 to a topological embedding which
has a single point of intersection, 𝑝, with 𝐵.

By an application of the classical 2-dimensional annulus theorem there is an isotopy of
𝑓 (𝑈) to 𝐷2 × {1} which fixes the point 𝑝 throughout. Ambient isotopy extension yields
an isotopy of 𝑓 which pushes all of 𝐴\𝑈 off this 𝐷2×𝑆2. Taking 𝑓 (𝑈) to be 𝐴+ (the upper
hemisphere of 𝐴) and 𝐷2×{1} to be 𝐵− (the lower hemisphere of 𝐵), we have made those
portions of the embeddings entirely coincide as subsets inside 𝑀−

𝑡 . □

5.3. Producing pseudo-isotopies from one-parameter families of handle decomposi-
tions. The purpose of our allowed one-parameter families of topological handle decom-
positions is to be a sufficient stand-in for one-parameter families (𝑔𝑡 , 𝜂𝑡). In the smooth
category one can freely go between these one-parameter families and smooth pseudo-
isotopies, but we are only able to go one way. Namely, we can produce topological
pseudo-isotopies from allowed one-parameter families. Given an allowed one-parameter
family of topological handle decompositions ℱ𝑡 a conditition is that for 𝑡 = 1 the family
consists only of a single piece of a data: a homeomorphism 𝐹1 : 𝑋×𝐼 → 𝑋×𝐼 and this is the
pseudo-isotopy produced by ℱ𝑡 . There is no clear way to build a one-parameter family
of topological handle decompositions from a given pseudo-isotopy and so our approach
is not a priori helpful for determining if a given pseudo-isotopy can be straightened, as
was the original purpose of Cerf theory. However, we hope that our work concerning the
realisation side of the story will eventually be useful in future developments.

6. REALISATION FOR ΣTOP

Theorem 6.1. Let 𝑋 be a compact, topological 4-manifold with good fundamental group. Then
given 𝑥 ∈ Wh2(𝜋1(𝑋)) there exists a pseudo-isotopy 𝐹 : 𝑋 × 𝐼 → 𝑋 × 𝐼 with ΣTOP(𝐹) = 𝑥.

We will produce 𝐹 by building an allowed one-parameter family of handle decom-
position ℱ𝑡 that ‘looks like’ it should realise the given element 𝑥 ∈ Wh2(𝜋1(𝑋)), with 𝐹

produced by ℱ𝑡 as in Section 5.3. Given the circuitous nature of our definition of ΣTOP,
it is then a non-trivial matter to show that ΣTOP(𝐹) = 𝑥. We will first describe the initial
step, before going on to the computation step.



PSEUDO-ISOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS OF 4-MANIFOLDS 35

6.1. Producing the pseudo-isotopy. Assume𝑋 is a compact smoothable 4-manifold with
good fundamental group and let 𝑥 ∈ Wh2(𝜋1(𝑋)), and now pick a smooth structure on
𝑋 which we fix once and for all. As in the smooth realisation of Σ (see [HW73, Part
I, Chapter VI, Theorem 2] and [Sin22, Chapter 6] we choose a word 𝜆 in the Steinberg
group representing 𝑥 and then begin building a one-parameter family (𝑔𝑡 , 𝜂𝑡) which has
index 2 and 3 critical points and handle slides which describe the word 𝜆. Note that by
Lemma 5.5 we have all of the data necessary to describe our one-parameter family of
topological handle decompositions ℱ𝑡 except the data necessary to describe the deaths.
We will explain how to produce this now. After performing all of these handle slides, the
picture in the middle level has the all of the belt spheres of the 2-handles and all of the
attaching spheres of the 3-handles in algebraically cancelling position, i.e. the equivariant
intersection matrix is a permutation matrix multiplied by the identity matrix. In dimen-
sions ≥ 5, as in the proof of the s-cobordism theorem, one can now use the Whitney trick
repeatedly to ensure that the belt spheres and attaching spheres are geometrically can-
celling. By the standard argument in the smooth to topological s-cobordism theorem (see
[FQ90, Theorem 7.1D]) there exist a system of smoothly immersed, framed Whitney discs
𝒲 , whose interiors are disjoint from the belt spheres and attaching spheres, pairing up
all of the excess intersections between the belt spheres and attaching spheres and hence
we can apply Lemma 5.7 to put our handles into topological cancelling position. Then
an application of Lemma 5.6 allows us to ‘cancel’ the handles and by the construction
described in Section 5.2.1 we can complete our one-parameter family ℱ𝑡 ‘corresponding’
to 𝑥. Note that this is by no means well-defined, in particular since the construction de-
scribed in Section 5.2.1 has no uniqueness statement attached to it: there may exist many
ways to ‘kill’ a 2-3 handle pair topologically, but we ignore these differences. Similarly,
we will not make any comment on the choice of smooth structure on 𝑋 picked at the
beginning.

We now describe how to produce the corresponding ℱ𝑡 when 𝑋 is not smoothable. By
Quinn [Qui82, Theorem 2.3.1] (c.f. [FQ90, Theorem 9.1])𝑋×𝐼 has a handle decomposition;
pick such a handle decomposition. As in Section 3, let 𝑁 be an open neighbourhood of
the 3-handle-skeleton of 𝑋 × 𝐼. By a similar argument to that used in Section 3, 𝑁 can be
smoothed, but we will be more careful in how we build the smooth structure on it.

By [FQ90, Theorem 8.6, Proof of Theorem 10.1], 𝑋#𝑙𝐸8#𝑘(𝑆2 × 𝑆2) is smoothable for
some 𝑙 ∈ {0, 1} and 𝑘 ≥ 0 (here 𝑙 is given by the Kirby-Siebenmann invariant of 𝑋). We
pick a smooth structure on 𝑋#𝑙𝐸8#𝑘(𝑆2 × 𝑆2) that we fix once and for all. By topological
transversality3 [KS77, Essay III, Theorem 1.5] we can assume that 𝑁 ⊂ 𝑋 × 𝐼 is disjoint

3Apply topological transversality [KS77, Essay III, Theorem 1.5] to the cores of the relevant handles in the
handle decomposition for 𝑁 (note that these all satisfy the relevant dimensions restrictions in [KS77, Essay
III, Theorem 1.5]). These are of index 0, 1, 2 and 3 and hence all of these admit normal vector bundles—the
rest of the handles—see the discussion in [FQ90, Section 9.4]. By shrinking the handles using the vector
bundle structures we can make the handles themselves disjoint from the arc, and performing this operation
handle by handle gives the required disjointness.
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from a neighbourhood of {pt} × 𝐼 ⊂ 𝑋 × 𝐼 and then we form the connected sum along an
interval 𝑋#𝑙𝐸8#𝑘(𝑆2 × 𝑆2) × 𝐼. This can be equipped with the product smooth structure
that we can then restrict to 𝑁 . This is the smooth structure we will use on 𝑁 .

Since we picked 𝑁 to be a neighbourhood of the 3-handle-skeleton, this means that we
have an inclusion induced isomorphism 𝜋1(𝑁) � 𝜋1(𝑋). So, after picking 𝑥 ∈ Wh2(𝜋1(𝑋)),
on 𝑁 we can build a one-parameter family just as in the smoothable case which ‘corre-
sponds’ to 𝑥. Note that since 𝑁 is not a product of a 4-manifold with an interval we are
not producing a pseudo-isotopy of 𝑁 , but we are producing a one-parameter family of
topological handle decompositions ℱ𝑡 for 𝑋 × 𝐼, since we can build the data for the one-
parameter family of homeomorphisms 𝐹𝑡 : 𝑋× 𝐼 → 𝑋× 𝐼 by extending the one-parameter
family on 𝑁 via the trivial handle decomposition. In particular, this means that all births,
handle slides and deaths occur inside 𝑁 ⊂ 𝑋 × 𝐼.

Construction 6.2. Given a compact 4-manifold 𝑋 with good fundamental group and 𝑥 ∈
Wh2(𝜋1(𝑋)), we carry out the above procedure, making choices to produce an allowed
one-parameter family of handle decompositions which we denote by ℱ𝑡(𝑥). By Sec-
tion 5.3 this produces a pseudo-isotopy, which we denote by 𝐹𝑥 .

6.2. An alternative viewpoint on stable surjectivity of Σ. To prove Theorem 6.1 we
will compare our realisation ℱ𝑡 to the stable smooth realisation result for Σ due to Singh
[Sin22, Theorem E] using the stable surface smoothing theorem of Cha-Kim [CK23, Theo-
rem D]. Singh builds a smooth pseudo-isotopy realising 𝑥 ∈ Wh2(𝜋1(𝑋)) after 𝑋 has been
stabilised, i.e. after taking connected-sums with 𝑆2 × 𝑆2. We will briefly describe an alter-
native way to achieve the same stable smooth realisation, which more easily compares
with our one-parameter family of handle decompositions ℱ𝑡 .

Lemma 6.3. Let 𝑋 be a compact, smooth 4-manifold, let 𝑥 ∈ Wh2(𝜋1(𝑋)) and let ℱ𝑡(𝑥) be a one-
parameter family of topological handle decompositions associated to 𝑥 (from Construction 6.2),
with induced pseudo-isotopy 𝐹𝑥 : 𝑋 × 𝐼 → 𝑋 × 𝐼. Then there exists a smooth pseudo-isotopy
𝐺𝑥 : 𝑋#𝑘(𝑆2 × 𝑆2) × 𝐼 → 𝑋#𝑘(𝑆2 × 𝑆2) × 𝐼 with Σ(𝐺𝑥) = 𝑥 and 𝐹𝑥 stably isotopic to 𝐺𝑥 .

Proof. Assume we are in the same situation as in Section 5.3 at the point where we are
trying to close the eyes: we have immersed Whitney discs 𝒲 pairing the excess intersec-
tions between the belt spheres and the attaching spheres. In Singh’s proof [Sin22, Section
6.1] he uses the Norman trick [Nor69] to make the Whitney discs embedded after stabili-
sation. We will refine this argument to show that we can stably smooth the topologically
embedded Whitney discs given by the disc embedding theorem, though we refer the
reader to [Sin22, Section 6.1] for many of the details.

Singh assumes we have as many stabilisations as there are intersections between Whit-
ney discs 𝑊 , 𝑊 ′ ∈ 𝒲 (possibly 𝑊 = 𝑊 ′). For each intersection Singh performs the
Norman trick by tubing 𝑊 into 𝑆2 × {pt} ⊂ 𝑆2 × 𝑆2 and then using the {pt} × 𝑆2 to tube
off the intersection. Instead of doing this, apply the procedure detailed in Freedman-
Quinn [FQ90, Proof of theorem 7.1D] (c.f. the proof of Lemma 5.7) to build topologically
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embedded, framed Whitney discs 𝒲 TOP with the same framed boundaries. Note that
applying Lemma 5.7 and Lemma 5.6, as we did in Section 5.3, is how we produce our
one-parameter family ℱ𝑡 . Now we appeal to the stable surface smoothing theorem of
Cha-Kim [CK23, Theorem D] which says that, after some number of stabilisations, there
exists a topological isotopy 𝐻, relative to the boundary of each disc, taking each topo-
logically embedded disc 𝑊 ′′ ∈ 𝒲 TOP to a smoothly embedded one 𝑊 ′′′. These can be
arranged to still be all disjoint , and so the rest of Singh’s proof proceeds as written to
produce 𝐺𝑥 , still realising Σ(𝐺𝑥) = 𝑥. Note that the number of stabilisations is now the
number required by [CK23], rather than the number of intersections between Whitney
discs, which may not be the same.

We now show that 𝐹𝑥 is stably isotopic to 𝐺𝑥 . Let 𝒢𝑡 be the one-parameter family
of topological handle decompositions induced by the one-parameter family (𝑔𝑡 , 𝜂𝑡) as-
sociated to 𝐺𝑥 . First, choose an isotopy of ℱ𝑡 such that the homeomorphism 𝐹−𝑡 fixes a
𝐷4 × 𝐼 ⊂ 𝑋 × 𝐼 throughout (the 𝐷4 × 𝐼 is then away from all of the handle births, handle
deaths and handle slides). This allows us to define a stabilisation ℱ #

𝑡 which induces a
stabilised pseudo-isotopy

𝐹#
𝑥 : (𝑋#𝑘(𝑆2 × 𝑆2)) × 𝐼 → (𝑋#𝑘(𝑆2 × 𝑆2)) × 𝐼

that 𝐹𝑥 is stably isotopic to. One can arrange that the data for ℱ #
𝑡 and 𝒢𝑡 are completely

identical up until the point that the eyes are closed. Via isotopy extension, 𝐻 then pro-
vides the isotopy between the the rest of the data for ℱ #

𝑡 and 𝒢𝑡 . In particular, restricting
this isotopy to the end of the one-parameter families produces the isotopy between 𝐹#

𝑥

and 𝐺𝑥 . □

6.3. Proof of Theorem 6.1. We now give the proof of Theorem 6.1. We will first prove the
case for smoothable manifolds and then reduce the non-smoothable case to the smooth-
able one.

Lemma 6.4. Let 𝑋 be a compact, smooth 4-manifold and 𝑥 ∈ Wh2(𝜋1(𝑋)). Let 𝐹𝑥 be as in
Construction 6.2. Then ΣTOP(𝐹𝑥) = 𝑥.

Proof. Let 𝑋̊ denote 𝑋 with a small open ball removed. Consider the following diagram.

𝜋0𝒫TOP(𝑋, 𝜕𝑋) Wh2(𝜋1(𝑋))

𝜋0𝒫TOP(𝑋̊ , 𝜕𝑋̊) Wh2(𝜋1(𝑋̊))

𝜋0𝒫TOP(𝑋#𝑘(𝑆2 × 𝑆2), 𝜕𝑋) Wh2(𝜋1(𝑋#𝑘(𝑆2 × 𝑆2)))

𝜋0𝒫DIFF(𝑋#𝑘(𝑆2 × 𝑆2), 𝜕𝑋) Wh2(𝜋1(𝑋#𝑘(𝑆2 × 𝑆2)))

ΣTOP

ΣTOP

ΣTOP

Σ
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The vertical maps are either induced by inclusions or are forgetful maps. The top two
squares commute by our naturality for certain inclusions of codimension zero submani-
folds Proposition 1.3. The bottom square commutes by Lemma 4.2.

Using Lemma 6.3 and a diagram chase involving the above diagram gives that

ΣTOP(𝐹𝑥) = ΣTOP(𝐹#
𝑥) = Σ(𝐺𝑥) = 𝑥,

where 𝐹#
𝑥 is the stabilisation of 𝐹𝑥 compatible with 𝐺𝑥 , as in the proof of Lemma 6.3. □

Proof of Theorem 6.1. Lemma 6.4 provides the proof in the case that𝑋 is smoothable, so we
will now make no assumption that 𝑋 admits a smooth structure. We will instead show
that we can smooth 𝑋 after performing connected-sums with specific simply-connected
4-manifolds and then argue using Proposition 1.3 that we can still carry through the
calculation in this case.

Let 𝐹𝑥 , 𝑘 and 𝑙 be as in the non-smoothable case in Construction 6.2 and note that
in this construction we chose a smooth structure on 𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8 that we will use
throughout. Consider the following diagram.

𝜋0𝒫TOP(𝑋, 𝜕𝑋) Wh2(𝜋1𝑋)

𝜋0𝒫TOP(𝑋̊ , 𝜕𝑋̊) Wh2(𝜋1𝑋)

𝜋0𝒫TOP(𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8 , 𝜕𝑋) Wh2(𝜋1(𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8))

ΣTOP

ΣTOP

ΣTOP

All of the vertical maps are either induced by inclusions or are forgetful maps, and 𝑘

and 𝑙 are as determined in Construction 6.2. The diagram commutes by Proposition 1.3.
Note that by the definition of our pseudo-isotopy 𝐹𝑥 we can lift/map it down to bottom-
left of the diagram in such a way that we obtain a pseudo-isotopy 𝐹#

𝑥 as in Construc-
tion 6.2 for the smooth case. By Lemma 6.4 we have that ΣTOP(𝐹#

𝑥) = 𝑥 and hence, by the
commutativity of the diagram, we conclude that ΣTOP(𝐹𝑥) = 𝑥. □

7. REALISATION THEOREM FOR Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))

Theorem 7.1. Let 𝑋 be a compact topological 4-manifold with good fundamental group. Then
given 𝑦 ∈ Wh1(𝜋1𝑋;ℤ/2×𝜋2𝑋) there exists a pseudo-isotopy 𝐹 : 𝑋× 𝐼 → 𝑋× 𝐼 with vanishing
ΣTOP obstruction and ΘTOP(𝐹) = 𝑦.

We know that in dimension ≥ 5 ,

Θ : kerΣ → Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋))/𝜒(𝐾3ℤ[𝜋1𝑋])
is surjective. We are only concerned in the case where 𝑘1(𝑋) = 0, which is the case treated
in [Sin22]. Note that in [Sin22] a stable realisation theorem for Θ is proved. Unlike the
stable realisation for Σ, the result in [Sin22] requires only a single stabilisation. We will
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prove here a realisation theorem for ΘTOP that does not require stabilisation. In order to
do so, we will follow the steps in [Sin22]. During the process, we will find an immersed
geometrical dual sphere 𝑃; while in the smooth case there is some necessary work to be
done to embed the sphere—hence the stabilisation—in the topological case we do not
need to find an embedded sphere. Instead we appeal to the disc embedding theorem
[BKK+21] using the immersed 𝑃 to get the desired Whitney disc. As we did in Section 6,
we will produce 𝐹 by building an allowed one-parameter family of handle decomposi-
tions ℱ𝑡 that ’potentially’ realises the given element 𝑦 ∈ Wh1(𝜋1𝑋;ℤ/2 × 𝜋2(𝑋)). This
family ℱ𝑡 is first of all created so that ΣTOP(𝐹𝑦) = 0. In parallel with smooth Cerf theory,
one can think of this family as a ’nested-eyes’ Cerf family. We will consider two differ-
ent cases, depending whether 𝑋 is smoothable or non-smoothable. We begin with the
smoothable case, and then move to the non-smoothable case.

7.1. Producing the pseudo-isotopy. Assume𝑋 is a compact smoothable 4-manifold with
good fundamental group and let 𝑦 ∈ Wh1(𝜋1𝑋;ℤ/2 × 𝜋2(𝑋)). Pick a smooth structure
for 𝑋 and fix it once and for all. As in the smooth realisation for Θ (see [HW73, Sin22])
we choose elements 𝛼 ∈ ℤ/2 × 𝜋2(𝑋) and 𝛾 ∈ 𝜋1(𝑋) so that the sum 𝛼𝛾 ∈ (ℤ/2 ×
𝜋2(𝑋))[𝜋1(𝑋)] represents 𝑦 and then we begin building a one-parameter family (𝑔𝑡 , 𝜂𝑡)
which has one index 2 critical point and one index 3 critical point and no handle slides.4

Note that following Lemma 5.5 we have all the data necessary to describe our one-
parameter family of handle decompositions ℱ𝑡 except for how these two critical points
cancel, i.e. the death. Our goal is to instead cancel them in a non-trivial way which
encodes the data from 𝑦, by first performing an isotopy of the attaching sphere of the
3-handle. We show that the smooth realisation process of 𝑦, which requires (a single)
stabilisation to be fully carried out, can be terminated in the TOP category unstably.

We can represent the 𝜋2 part of 𝛼 by an immersed 2-sphere 𝑆 ⊂ 𝑋 (with an arc 𝜇
to the base point) and we can arrange that 𝑆 has only transverse double points of self-
intersection.

The family starts with the trivial handle structure on 𝑋×𝐼 and we generate a cancelling
2-3 handle pair. We make sure the birth region is disjoint from the sphere 𝑆. We then
consider the middle-level 𝑉 := 𝑋#(𝑆2 × 𝑆2). We denote the 2-handle belt sphere and
the 3-handle attaching sphere by 𝐴 and 𝐵 in 𝑉 respectively. At the beginning these are
𝑆2 × {𝑝} and {𝑞} × 𝑆2 in 𝑋#(𝑆2 × 𝑆2). Note we also have dual spheres 𝐴∗ and 𝐵∗ (see
[Sin22, Section 7.3.1]. Everything here is disjoint from 𝑆. Since 𝐴∪𝐵 is 𝜋1-negligible in𝑉 ,
𝛾 determines a finger move from 𝐴 to 𝐵. By simple dimension arguments, we can ensure
the finger move does not hit 𝑆 and the dual spheres 𝐴∗ and 𝐵∗ . We do this finger move
to obtain a new handle structure. Afterwards, it is clear we see the Whitney disc 𝑈 that
undoes the move. The interior of 𝑈 is disjoint from 𝐴,𝐵, 𝐴∗ and 𝐵∗.

This is our setup. Now our goal is to tube𝑈 into the sphere 𝑆 to create a new Whitney
disc 𝑊 , make 𝑊 embedded and perform a Whitney move. We will do this in such a

4We will just work with a single handle pair; this is sufficient to realise all possible elements.
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way that 𝑈 ∪𝑊 represents 𝛼 and so that 𝑊 has the correct framing (in Definition 2.7
we combined the framing value in ℤ/2 and the 𝜋2(𝑋) element into a single element 𝛼,
which is a slightly different convention from the one used in [Sin22]). Depending on the
values of 𝛼 we have four different cases to consider. Three of them can be dealt as in
[Sin22, Proposition 8.1] without appealing to the disc embedding theorem, since all of
the discussion in [Sin22, Proposition 8.1] produces a smooth pseudo-isotopy and then
we can then appeal to Lemma 4.2.

The last case left to realise is when 𝜔𝑋
2 (𝛼) = 0 and we have non-trivial framing. In the

smooth realm, this requires a single stabilisation to be realised. We basically follow the
proof in [Sin22, Proposition 8.2] up until when we can make use of the disc embedding
theorem, i.e. Lemma 5.7 to bypass the smooth problems and avoid the need for an extra
𝑆2 × 𝑆2 in the middle-middle level.

First of all, to get the correct value for the framing of 𝛼, we perform a single boundary
twist of𝑊 along the boundary componenet of𝑊∩𝐵. We then perform another boundary
twist on 𝑊 with 𝐴 (an opposite twist), so that 𝑊 remains a framed Whitney disc. Note
that 𝑊 intersects 𝐴 and 𝐵. Using the Norman trick on 𝐴∗ we can resolve the intersection
between 𝐴 and𝑊 . Similarly we can perform the Norman trick on 𝐵∗ to resolve the single
intersection between 𝐵 and𝑊 . This procedure adds a single self-intersection of𝑊 (as the
parallel copy of 𝐴∗ intersects the parallel copy of 𝐵∗).

We now consider 𝑇, the Clifford torus in 𝑉 for the Whitney disc 𝑊 . This Clifford torus
𝑇 intersects 𝑊 in exactly one point and it is disjoint from 𝐴, 𝐵, 𝐴∗ , 𝐵∗.

W

A

T
B

𝐷𝐴

FIGURE 6. Movie of the 4-dimensional space. In the middle time slice we
see the Whitney disc 𝑊 and a disc subset of the sphere 𝐵. In each slice
we see a line from 𝐴 that sweeps a disc subset of 𝐴. The Clifford torus is
denoted by 𝑇; it intersects𝑊 in exactly one point but does not intersect 𝐴
and 𝐵. The disc 𝐷𝐴 in the fourth slice is the one of the two caps. To see
the other one we can just re-draw the picture with the roles of 𝐴 and 𝐵

reversed. We credit the figures of this section to [Sin22].

There are two caps for 𝑇, i.e. embedded discs𝐷𝐴 and𝐷𝐵 which intersect 𝑇 on 𝜕𝐷𝐴 and
𝜕𝐷𝐵. The disc 𝐷𝐴 intersects 𝐴 in exactly one point but it is disjoint from𝑊, 𝐵, 𝐴∗ , 𝐵∗ and
the disc 𝐷𝐵 intersects 𝐵 in exactly one point but it is disjoint from𝑊, 𝐴, 𝐴∗ , 𝐵∗. Moreover,
𝐷𝐴 , 𝐷𝐵 intersect in a single point on their boundary.
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𝐷𝐴

𝐷𝐵

𝐵

𝑊

𝐴

FIGURE 7. The Clifford torus with the caps. Note that 𝐴 and 𝐵 do not
intersect 𝑇 and that 𝑊 only intersects 𝑇 in a single point.

We now modify the caps (see Figure 8). We remove the intersection of 𝐷𝐴 and 𝐴 using
the Norman trick, tubing it into 𝐴∗. We similarly remove the intersection of 𝐷𝐵 and 𝐵,
tubing into 𝐵∗, noting that this adds intersections with 𝑊 , and with the dual spheres 𝐴∗

and 𝐵∗, and adds a single point of intersection between 𝐷𝐴 and 𝐷𝐵.
All of this is done so we can now perform the symmetric capping operation introduced in

[FQ90, 2.3] using the resulting two discs 𝐷𝐴, 𝐷𝐵. To do so, we remove a neighbourhood
of 𝜕𝐴 ∪ 𝜕𝐵 from 𝑇 and glue back two parallel copies of 𝐷𝐴, two parallel copies of 𝐷𝐵 and
glue back in a square in 𝑇 around 𝜕𝐷𝐴 ∩ 𝜕𝐷𝐵 ∈ 𝑇 to fill the resulting hole (see Figure 9).

We smooth the edges of the resulting sphere and denote the result of this operation 𝑃.
Note that 𝑃 is an immersed sphere with double points. Moreover, as of now 𝑃 intersects
𝑊 in more than one point—we did introduce more intersections during our operations.
However, we can remove the extra intersections between 𝑊 and 𝑃 as follows. Start with
those between 𝐷𝐵 and𝑊 . Push down all such intersections into 𝑇 so that the intersection
points of 𝑊 and 𝑇 lie on 𝜕𝐷𝐴. Now when we perform symmetric capping to get 𝑃, 𝑊
will not intersect 𝑃 in there (see Figure 10). Same can be done for intersections between
𝐷𝐴 and 𝑊 . At the end, 𝑃 is an immersed sphere that is geometrically dual to 𝑊 . Here is
where our construction diverges from [Sin22].

We claim that we are in exactly in the position to apply Lemma 5.7. In the middle
level, the 𝐴 sphere and the 𝐵 sphere are algebraically cancelling with precisely two excess
points of intersection, and we have a smoothly immersed, framed Whitney disc𝑊 which
pairs up the double points and𝑊 has an immersed geometric dual sphere 𝑃. We can now
apply Lemma 5.7 and then Lemma 5.6 to complete the one-parameter family of handle
decompositions5, as in the construction in Section 5.3.

5This one-parameter family of handle decompositions ‘looks like’ it should realise the correct invariant,
since we used the correct 𝛼 and 𝛾 and the right framing in the construction, the latter because we performed
a single boundary twist with 𝐵.
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FIGURE 8. We picture the manipulation of the Clifford caps.

We now describe how to produce the corresponding ℱ𝑡 when 𝑋 is not smooth. This
will be done as in Section 6. By [FQ90, Theorem 8.6, Proof of Theorem 10.1], 𝑋#𝑙𝐸8#𝑘(𝑆2×
𝑆2) is smoothable for some 𝑙 = 0, 1 and 𝑘 ≥ 0. We pick a smooth structure on𝑋#𝑙𝐸8#𝑘(𝑆2×
𝑆2) that we fix once and for all. By topological transversality [KS77, Essay III, Theorem
1.5] we can assume that 𝑁 ⊂ 𝑋 × 𝐼 is disjoint from a neighbourhood of {pt} × 𝐼 ⊂ 𝑋 × 𝐼
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FIGURE 9. The symmetric capping operation

FIGURE 10. Removing intersections between 𝑃 and 𝑊 .

and then we form the connected sum along an interval 𝑋#𝑙𝐸8#𝑘(𝑆2 × 𝑆2) × 𝐼. This can be
equipped with the product smooth structure that we then restrict to 𝑁 .

Since we picked 𝑁 to be an open neighbourhood of the 3-handle-skeleton, this means
that we have inclusion induced isomorphisms 𝜋1(𝑁) � 𝜋1(𝑋) and 𝜋2(𝑁) � 𝜋2(𝑋). So,
after picking 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2×𝜋2(𝑋)), on𝑁 we can build a one-parameter family just
as in the smoothable case which ‘corresponds’ to 𝑦. Note that since 𝑁 is not a product
of a 4-manifold with an interval we are not producing a pseudo-isotopy of 𝑁 , but we
are producing a one-parameter family of topological handle decompositions ℱ𝑡 for 𝑋 × 𝐼,
since we can build the data for the one-parameter family of homeomorphisms 𝐹𝑡 : 𝑋×𝐼 →
𝑋 × 𝐼 by extending the one-parameter family via the trivial handle decomposition. In
particular, this means that all births and deaths and moves dictated by 𝑦 occur inside
𝑁 ⊂ 𝑋 × 𝐼.

Construction 7.2. Given a compact 4-dimensional manifold 𝑋 with good fundamental
group and 𝑦 ∈ Wh1(𝜋1𝑋;ℤ/2×𝜋2(𝑋)) we carry out the above procedure, making choices
where necessary, to produce an allowed one-parameter family of handle decompositions
which we denote by ℱ𝑡(𝑦). By Section 5 this defines a pseudo isotopy 𝐹𝑦 .
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7.2. An alternative viewpoint on stable surjectivity of Θ. To prove Theorem 7.1, we
will compare our realisation of ℱ𝑡 to the stable smooth realisation of Θ. Instead of us-
ing Singh’s strategy [Sin22], we use again the stable surface smoothing theorem of Cha-
Kim [CK23]. This approach may require more than one stabilisation, but has the advan-
tage that this stabilized pseudo-isotopy will be much easier to compare with our one-
parameter family of handle decompositions ℱ𝑡 and 𝐹𝑋 .

Lemma 7.3. Let 𝑋 be a compact, smooth 4- manifold and let 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2×𝜋2(𝑋)).
Let ℱ (𝑦) be the one-parameter family of topological handle decompositions associated
to 𝑦, with induced pseudo-isotopy 𝐹𝑦 : 𝑋× 𝐼 → 𝑋× 𝐼. Then there exists a smooth pseudo-
isotopy 𝐺𝑦 : 𝑋#𝑘(𝑆2 × 𝑆2) × 𝐼 → 𝑋#(𝑆2 × 𝑆2) with Θ(𝐺𝑦) = 𝑦 and 𝐹𝑦 is stably isotopic
to 𝐺𝑦 .

Proof. The proof is essentially similar to that of Lemma 6.3. First we remark that for some
elements 𝑦 we have unstable smooth realisation: the one-parameter family that is cre-
ated smoothly gives us the candidate ℱ𝑡(𝑦), hence the proof of the lemma follows from
Theorem 1.1 for such elements. For the elements that require a stable statement, instead
of using Singh’s method, we work with the stable surface smoothing [CK23]. We build
ℱ𝑡(𝑦) using the disc embedding theorem to produce a topologically embedded Whitney
disc 𝒲 which is correctly framed. We then perform the Whitney move using this disc.
Due to Cha-Kim [CK23, Theorem D], after stabilisations, there exists a topological iso-
topy 𝐻, relative to the boundary of 𝒲 that takes 𝒲 to a smoothly embedded 𝒲 ′. Thus
we can terminate the proof by performing the Whitney move smoothly along this disc,
producing a pseudo-isotopy 𝐺𝑦 so that Θ(𝐺𝑦) = 𝑦.

We now show that 𝐹𝑦 is stably isotopic to 𝐺𝑦 . Let 𝐺𝑡 be the one-parameter family
of topological handle decompositions induced by the one-parameter family (𝑔𝑡 , 𝜂𝑡) as-
sociated to 𝐺𝑦 . First, choose an isotopy of ℱ𝑡 that makes the embedding 𝐹−𝑡 fixes a
𝐷4 × 𝐼 ⊂ 𝑋 × 𝐼 throughout (the 𝐷4 × 𝐼 is then away from handle births, deaths and
the isotopy in the middle level of the attaching sphere of the 3-handle). This allows to
define a stabilisation ℱ #

𝑡 which induces a stabilised pseudo-isotopy

𝐹#
𝑦 : (𝑋#𝑘(𝑆2 × 𝑆2)) × 𝐼 → (𝑋#𝑘(𝑆2 × 𝑆2)) × 𝐼

stably isotopic to 𝐹𝑦 . One can arrange the data for ℱ #
𝑦 and 𝒢𝑡 to be completely identical

up until the point that we need to perform the Whitney move in the middle level. Via
isotopy extension, 𝐻 provides the isotopy between the rest of the data for ℱ #

𝑦 and 𝒢𝑡 . In
particular, restricting this isotopy to the end of the one-parameter families produces the
isotopy between 𝐹#

𝑦 and 𝒢𝑦 . □

7.3. Proof of Theorem 7.1. We now give the proof of Theorem 7.1. We will start by
working with smoothable manifolds.

Lemma 7.4. Let 𝑋 be a compact, smooth 4-manifold and 𝑦 ∈ Wh1(𝜋1(𝑋);ℤ/2 × 𝜋2(𝑋)).
Let 𝐹𝑦 be as in 7.2. Then ΘTOP(𝐹𝑦) = 𝑦.
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Proof. Let 𝑋 be a smooth 4-manifold. We write down the following diagram, which mim-
ics the one in Section 6. Let 𝑋̊ be 𝑋 with a small open ball removed. Consider the follow-
ing.

kerΣTOP
𝑋

Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋)/𝜒

kerΣTOP
𝑋̊

Wh1(𝜋1𝑋̊;ℤ/2 × 𝜋2𝑋̊)/𝜒

kerΣTOP
𝑋#𝑘(𝑆2×𝑆2) Wh1(𝜋1𝑋#𝑘(𝑆2 × 𝑆2);ℤ/2 × 𝜋2(𝑋#𝑘(𝑆2 × 𝑆2))/𝜒

kerΣ𝑋#𝑘(𝑆2×𝑆2) Wh1(𝜋1𝑋#𝑘(𝑆2 × 𝑆2);ℤ/2 × 𝜋2(𝑋#𝑘(𝑆2 × 𝑆2))/𝜒

ΘTOP

ΘTOP

ΘTOP

Θ

The vertical arrows on the left are given by extension via the identity or forgetful maps.
To prove commutativity of the top two squares we use Proposition 1.3. The bottom

square commutes thanks to Lemma 4.2. Using Lemma 7.3 and a diagram chase involving
the above diagram we have

ΘTOP(𝐹𝑦) = ΘTOP(𝐹#
𝑦) = Θ(𝐺𝑦) = 𝑦,

where 𝐹#
𝑦 is the stabilisation of 𝐹𝑦 compatible with 𝐺𝑦 , as in the proof of Lemma 7.3. □

Proof of Theorem 7.1. Lemma 7.4 provides the proof when 𝑋 is smoothable, so we can
drop this assumption. We will instead show that we can smooth 𝑋 after some specific
connected-sums, as we did in the proof of Theorem 6.1. Let 𝐹𝑦 , 𝑘 and 𝑙 be as in the non-
smoothable case in Construction 7.2. Note that in this construction we chose a smooth
structure on 𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8 that we will use throughout. Consider the following dia-
gram:

kerΣTOP
𝑋

Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋)/𝜒(𝐾3ℤ[𝜋1𝑋])

kerΣTOP
𝑋̊

Wh1(𝜋1𝑋)/𝜒(𝐾3ℤ[𝜋1𝑋̊])

kerΣTOP
𝑋#𝑘(𝑆2×𝑆2)#𝑙𝐸8

Wh1(𝜋1(𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8))/𝜒(𝐾3ℤ[𝜋1(𝑋#𝑘(𝑆2 × 𝑆2)#𝑙𝐸8)])

�

All the vertical maps are either inclusions or forgetful maps, and 𝑘 and 𝑙 are as fixed in
Construction 7.2. The diagram commutes by Proposition 1.3. Note that by definition of
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𝐹𝑦 we can lift/map it down to the bottom left of the diagram so that we obtain a pseudo-
isotopy 𝐹#

𝑦 as in Construction 7.2 for the smooth case. By Lemma 7.4 we have ΘTOP(𝐹#
𝑦) = 𝑦

and hence, by commutativity, we conclude ΘTOP(𝐹𝑦) = 𝑦. □

8. INERTIAL PSEUDO-ISOTOPIES AND DUALITY

Given a homeomorphism 𝑓 ∈ Homeo(𝑋, 𝜕𝑋) which is pseudo-isotopic to the identity,
we may try to obstruct it from being isotopic to the identity by picking a pseudo-isotopy
𝐹 ∈ 𝒫 from Id to 𝑓 and then computing the invariants ΣTOP and ΘTOP. However, ΣTOP(𝐹)
and ΘTOP(𝐹) depend on the choice of the specific pseudo-isotopy. It is perfectly possible
that there exists a different pseudo-isotopy, say 𝐺, for which both obstruction vanish.

We note that the composition 𝐹 ◦ 𝐺−1 is still a pseudo-isotopy, and moreover it fixes
the whole boundary of 𝑋 × 𝐼. This motivates the following definition:

Definition 8.1 (Inertial pseudo-isotopy). Let 𝐹 ∈ 𝒫TOP(𝑋, 𝜕𝑋) be a pseudo-isotopy with
𝐹|𝑋×1 = 𝑖𝑑𝑋 . In fact, this forces 𝐹|𝜕(𝑋×𝐼) = Id |𝜕(𝑋×𝐼). We say that 𝐹 is an inertial pseudo-
isotopy, and denote the set of inertial pseudo-isotopies 𝒥 TOP(𝑋, 𝜕𝑋) ⊂ 𝒫TOP(𝑋, 𝜕𝑋).

To have a well defined obstruction for a homeomorphism pseudo-isotopic to the iden-
tity to be isotopic to the identity we need to mod out by the invariants of the inertial
pseudo-isotopies. See, for example, [Sin22] for a detailed explanation on why the quo-
tient map is well defined. In general, the images Σ(𝒥 (𝑋, 𝜕𝑋)) and Θ(𝒥 (𝑋, 𝜕𝑋) ∩ kerΣ)
are extremely hard to compute. In some cases, e.g. when our manifold is of the form
𝑌3 × 𝐼, we can say much about these two subgroups. In order to do so, we recall Hatcher-
Wagoner’s involution on the space on the space of pseudo-isotopies.

Definition 8.2 (Dual pseudo-isotopy). Let 𝐹 be a pseudo-isotopy. Denote the reflection
map on 𝑋 × 𝐼 which sends (𝑝, 𝑠) to (𝑝, 1 − 𝑠) by 𝑟. We define the dual pseudo-isotopy to 𝐹
to be:

𝐹 =
(
(𝐹|𝑋×{1})−1 × 𝑖𝑑𝐼

)
◦ 𝑟 ◦ 𝐹 ◦ 𝑟.

One can check that 𝐹 is indeed a pseudo-isotopy and that it connects Id with 𝐹|−1
𝑋×1 :=

𝐹−1
1 . Furthermore, one may verify that this involution is well-defined on 𝜋0(𝒫(𝑋, 𝜕𝑋)),

though we leave this as an exercise.
Our goal is to use this dualisation construction to obtain structural information about

𝒥 TOP(𝑋, 𝜕𝑋) ∩ kerΣTOP. Smoothly, this is encoded via a duality formula. However, the
proof of this formula uses Cerf’s approach to studying pseudo-isotopies; i.e. the strong
connection between the pseudo-isotopy space and one-parameter families of generalised
Morse functions. Since we do not have this correspondence, we will need to work harder
to prove a corresponding formula. The central idea will be to go through the definition of
our topological invariants and track how the involution behaves throughout the process.
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Proposition 8.3. [c.f. [HW73, I, Chapter VIII; II, §4]] Let 𝑋 be a compact topological 4-
manifold with 𝑘1(𝑋) = 0, and let 𝐹 ∈ 𝒫(𝑋) be a pseudo-isotopy. Then:

ΣTOP(𝐹) = ΣTOP(𝐹)

and, if 𝐹 ∈ kerΣ, then
ΘTOP(𝐹) = Θ(𝐹),

where the involutions on Wh2(𝜋1𝑋), Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋) are defined6 to be those in-
duced by the involution on the group ring ℤ[𝜋1(𝑋)] that sends∑

𝑔∈𝜋1(𝑋)
𝜆𝑔 𝑔 ↦→

∑
𝑔∈𝜋1(𝑋)

𝑤1(𝑔)𝜆𝑔 𝑔−1

for Wh2(𝜋1(𝑋)), and induced by the involution on the group ring (ℤ/2 × 𝜋2(𝑋))[𝜋1(𝑋)]
that sends ∑

𝑔∈𝜋1(𝑋)
(𝜆𝑔 , 𝜇𝑔)𝑔−1 ↦→

∑
𝑔∈𝜋1(𝑋)

(
𝜆𝑔 + 𝑤2(𝜇𝑔),−𝑤1(𝑔)(𝑔−1 · 𝜇𝑔)

)
𝑔

(here 𝑤1 and 𝑤2 denote the first and second Steifel-Whitney classes7).

Remark 8.4. We stress that we are working with 4-manifolds with 𝑘1𝑋 = 0. It is a priori
not clear that the involution respects 𝜒 and so we would need to take a further quotient
of Θ. Conjecturally, this is unnecessary (see [Sin22, Conjecture 9.7] and the surrounding
discussion for more details).

Before we prove Proposition 8.3, we establish how the involution interacts with the
suspension map.

Lemma 8.5. [Hat78, Appendix I, Lemma] Let 𝑋 be a compact CAT manifold and let 𝐹 ∈
𝒫CAT(𝑋, 𝜕𝑋). Then 𝑆+(𝐹) = −𝑆+(𝐹) in 𝜋0𝒫CAT(𝑋 × 𝐽 , 𝜕(𝑋 × 𝐽)).

Proof. Although the proof is given in the attribution, we spell out some initial details.
Firstly, the proof proceeds by first passing to a modification of the pseudo-isotopy space.
We denote by ℐ CAT(𝑋) the space of CAT automorphisms of 𝑋 × 𝐼 which send 𝑋 × {0}
to 𝑋 × {0} and restrict to isotopies along 𝜕𝑋 × 𝐼 modulo isotopies of 𝑋 × 𝐼. Hatcher
claims that the inclusion map 𝒫CAT(𝑋, 𝜕𝑋) → ℐ CAT(𝑋) is a homotopy equivalence. We
construct the homotopy inverse.

Let 𝐺 ∈ ℐ CAT(𝑋). One can verify that (𝐺−1
0 × Id) ◦ 𝐺 ∈ 𝒫CAT(𝑋). Since 𝐺 originally

restricted to an isotopy on 𝜕𝑋 × 𝐼, we can now ‘push out’ the identity map along 𝜕𝑋 × 𝐼
using the reverse of this isotopy, and further use of isotopy extension in a collar results
in a CAT pseudo-isotopy 𝐺′ ∈ 𝒫CAT(𝑋, 𝜕𝑋). We have now defined a map ℐ CAT(𝑋) →

6See [HW73, Part I, Chapter VIII; Part II, §4] for more details.
7In Section 9 the manifolds we consider are spin, and hence these involutions greatly simplify due to the

vanishing of 𝑤1 and 𝑤2.
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𝒫CAT(𝑋, 𝜕𝑋) which we claim is the homotopy inverse. We leave verifying this to the
reader.

To prove the lemma it now suffices to show it for the involution on ℐ CAT(𝑋, 𝜕𝑋). On
ℐ CAT(𝑋, 𝜕𝑋), note that the involution is now equal to the map which conjugates by the
reflection map 𝑟. Now the interested reader is equipped to read the proof in [Hat78]. □

Proof of Proposition 8.3. We will prove the formula for ΣTOP (the proof for ΘTOP is analo-
gous). Let 𝐹 ∈ 𝒫TOP(𝑋, 𝜕𝑋). We consider the following diagram:

𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2)) 𝜋0(𝒫TOP(𝑋 × 𝐽2 , 𝜕(𝑋 × 𝐽2))

𝜋0(𝒫TOP(𝑁, 𝜕𝑁)) 𝜋0(𝒫TOP(𝑁, 𝜕𝑁))

𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) 𝜋0(𝒫DIFF(𝑁, 𝜕𝑁))

·

�, 𝐾 �, 𝐾

·

�

·
�

The map 𝐾 on the left is given by straightening concordances (see Lemma 3.2) and the
map 𝐾 is defined as an isotopy 𝐾 : (𝑋 × 𝐽2 × 𝐼) × 𝐼 → (𝑋 × 𝐽2 × 𝐼) × 𝐼 which is given by
dualising 𝐾 on the last 𝐼 coordinate—treating this isotopy as a pseudo-isotopy—using the
· construction on 𝐾. We now prove commutativity of the diagram. The topmost square
commutes by definition of 𝐾. The bottom square commutes trivially, since forgetting
the smooth structure and dualizing is the same as dualizing and forgetting the smooth
structure.

Let 𝐺 ∈ 𝜋0(𝒫DIFF(𝑁, 𝜕𝑁)) be the resulting smooth pseudo-isotopy constructed in the
definition of ΣTOP(𝐹). We conclude that

ΣTOP(𝐹) = Σ(𝐺) = Σ(𝐺) = ΣTOP(𝑆+(𝑆+(𝐹))) = ΣTOP(𝐹)

where the first equality is via the definition of ΣTOP, the second is from the smooth duality
formula [HW73, Part I, Chapter VIII], the third is via the commutativity of the above
diagram,8 and finally the last is given by two applications of Lemma 8.5. □

9. APPLICATION TO HOMEOMORPHISMS OF 𝑌3 × 𝐼

In this section, we will use the realisation theorem (Theorem 1.2) and the duality for-
mula Theorem 1.4 to produce homeomorphisms of smooth 4-manifolds of the form 𝑀3×𝐼
which are topologically pseudo-isotopic to the identity, but not topologically isotopic to
the identity. We will only consider the second obstruction, ΘTOP, in this section.

8Note the abuse of notation ΣTOP(𝑆+(𝑆+(𝐹))); as defined in Section 3 this would mean first suspend
𝑆+(𝑆+(𝐹)) twice, but instead we skip this suspension step since this is already a 6-dimensional pseudo-
isotopy.
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9.1. Inertial pseudo-isotopies of 𝑌3 × 𝐼. In general, the duality formula Theorem 1.4
is not enough to be able to sufficiently control ΘTOP(𝜋0𝒥 TOP(𝑋, 𝜕𝑋)). Hatcher shows
in [HW73, Part II, Lemma 5.3] that if we restrict to the case that 𝑋 = 𝑀 × 𝐼, then we
can say more. To describe this, we note that there is a differential defined on Wh2(𝜋1𝑋)⊕
Wh1(𝜋1𝑋;ℤ/2×𝜋2𝑋) given by 𝑑𝑖(𝑥) = 𝑥−(−1)𝑖𝑥. We can define the subgroup 𝑍𝑖 = ker 𝑑𝑖 ,
which we can also split as:

𝑍𝑖 = 𝑍2
𝑖 ⊕ 𝑍1

𝑖 ⊂ Wh2(𝜋1𝑋) ⊕ Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋).

For simplicity we write 𝒥 for 𝜋0𝒥 (𝑋, 𝜕𝑋) when the 𝑋 in question is clear.

Lemma 9.1. Let 𝑋 = 𝑌3 × 𝐼 for some compact, orientable 3-manifold 𝑌. Then

ΣTOP(𝒥 ) ⊂ 𝑍2
4 , and ΘTOP(𝒥 ∩ kerΣTOP) ⊂ 𝑍1

4 .

Proof. We refer to Hatcher’s proof of the corresponding fact in the smooth case: [HW73,
Part II, Lemma 5.3]. The proof does not use the smooth category, only the duality formula
[HW73, Part I, Chapter VIII; Part II, §4], which we proved for our topological invariants
in Theorem 1.4. □

This lemma allows us to significantly control the values of ΘTOP realised by inertial
pseudo-isotopies, which we now use to produce interesting homeomorphisms.

9.2. Homeomorphisms of 𝑌3 × 𝐼. In this section we utilize the topological invariant
ΘTOP, together with Theorem 6.1 and Lemma 9.1 to construct homeomorphisms of 𝑌3 × 𝐼
(where 𝑌3 is a closed 3-manifold) that are pseudo-isotopic to the identity but not isotopic
to it. Later on, in Section 9.4, we will explain how to translate this into the closed case
i.e. homeomorphisms of 𝑌3 × 𝑆1. Our discussion mirrors the discussion of Singh [Sin22,
Section 9].

Recall that we have a splitting Wh1(𝜋1𝑋;ℤ/2×𝜋2𝑋) = Wh1(𝜋1𝑋;ℤ/2)⊕Wh1(𝜋1𝑋;𝜋2𝑋).
Moreover, we also have Wh1(𝜋1𝑋;Γ) = Γ[𝜋1𝑋]/⟨𝛼𝜎−𝛼𝜏𝜏𝜎𝜏−1 , 𝛽·1 | 𝛼, 𝛽 ∈ Γ, 𝜎, 𝜏 ∈ 𝜋1𝑋⟩.
In what follows we will only consider the summand Wh1(𝜋1(𝑋);ℤ/2), which can be de-
scribed as

Wh1(𝜋1𝑋;ℤ/2) � ℤ/2[𝜋1𝑋]/⟨𝛾(𝑔1 − 𝑔2𝑔1𝑔
−1
2 ), 𝛾′⟩

where 𝛾, 𝛾′ range over all elements in ℤ/2 and 𝑔1 , 𝑔2 range over all elements in 𝜋. It
follows that, as a ℤ/2-vector space, we have

Wh1(𝜋1(𝑋);ℤ/2) �
⊕
𝑐

ℤ/2

where 𝑐 ranges over all non-trivial conjugacy classes in 𝜋1(𝑋). Clearly the action of
𝜋1 on 𝜋2 is trivial and 𝑘1𝑋 ∈ 𝐻3(𝜋1𝑋;𝜋2𝑋) is trivial as well. We can hence consider
ΘTOP(kerΣTOP) ⊂ Wh1(𝜋1𝑋;ℤ/2 × 𝜋2𝑋) = Wh1(𝜋1𝑋;ℤ/2).

We know that

ΘTOP(𝒥 (𝑌3 × 𝐼)) ⊂ 𝑍4((𝑌3 × 𝐼)) = {ΘTOP ∈ Wh1(𝜋𝑋 ;ℤ/2) | ΘTOP = ΘTOP}.
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We would like to show that, for our cases of interest, the quotient

©­«
⊕

𝑐∈{𝑐𝑜𝑛 𝑗\1}
ℤ/2ª®¬ /

(
𝑍4 ∩ kerΣTOP

)
is non-trivial, i.e. there exist homeomorphisms that are pseudo-isotopic but not isotopic
to the identity. Before stating the main theorem we need one definition.

Definition 9.2. We say that a group is ambivalent if every element is conjugate to its in-
verse.

Theorem 9.3. Let 𝑌3 be a 3-manifold whose first 𝑘-invariant 𝑘1(𝑌) is trivial and with 𝜋1(𝑌)
good and not ambivalent. Then there exists a homeomorphism 𝑓 : 𝑌× 𝐼 → 𝑌× 𝐼 which is pseudo-
isotopic to the identity but not isotopic to the identity. In particular, there exists a homeomorphism
𝑌 × 𝐼 → 𝑌 × 𝐼 which is homotopic but not isotopic to the identity.

Proof. By the discussion immediately above we have that Wh1(𝜋1(𝑌);ℤ/2) �
⊕

𝑐 ℤ/2,
where 𝑐 ranges over all non-trivial conjugacy classes in 𝜋1(𝑌). Since 𝜋1(𝑌) is not ambiva-
lent, we have that there exists at least one non-trivial conjugacy class 𝑐 such that for every
𝑔 ∈ 𝑐, 𝑔−1 ∉ 𝑐. By Theorem 7.1 there exists a pseudo-isotopy 𝐹 : 𝑌 × 𝐼2 → 𝑌 × 𝐼2 such that
ΣTOP(𝐹) = 0 and

ΘTOP(𝐹) = 1 · 𝑐 ∈ Wh1(𝜋1(𝑌 × 𝐼);ℤ/2) ⊂ Wh1(𝜋1(𝑌 × 𝐼);ℤ/2 × 𝜋2(𝑌 × 𝐼)).
We define 𝑓 := 𝐹𝑌×𝐼×{1} : 𝑌×𝐼 → 𝑌×𝐼. Since 𝑐 ≠ 𝑐 by assumption, ΘTOP(𝐹) ∉ 𝑍4∩kerΣTOP

and hence ΘTOP(𝐹) cannot be killed by an inertial pseudo-isotopy. It follows that 𝑓 is not
isotopic to the identity (but it is clearly pseudo-isotopic to the identity via 𝐹). □

9.3. Non-ambivalent 3-manifold groups. We now briefly investigate which 3-manifolds
satisfy the condition in Theorem 9.3. This by no means constitutes a full investigation,
but serves to illustrate that our realisation applies to many 3-manifolds.

We make some brief observations about Definition 9.2.

Remark 9.4. The following two properties hold.

(1) A finite group is ambivalent if and only if all of its irreducible representations
have real characters [Isa76, Page 31].

(2) If a group is ambivalent then its centre is ambivalent (a simple exercise).

We start with the finite 3-manifold groups, where we can fully say for which 3-manifolds
our realisation will work.

Proposition 9.5. All ambivalent, finite 3-manifold groups are listed below. The rest are
not ambivalent.

(i) The cyclic groups ℤ𝑚 for 𝑚 = 1, 2.
(ii) The dicyclic group of order 8𝑛, Dic2𝑛 .

(iii) The binary octahedral group 𝑂48.
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(iv) The binary icosahedral group 𝐼120 .

Proof. We begin by showing that all of the listed groups are ambivalent. For (i) the claim is
clear. For the rest we prove this using (1) in Remark 9.4, i.e. we show that in all of the cases
these groups have all characters of irreducible representations being real. For (ii) we use
the fact that Dic2𝑛 and 𝐷4𝑛 , the dihedral group of order 8𝑛, have isomorphic character ta-
bles [Fei67, Page 64]. From the standard group presentation of 𝐷𝑘 it is not hard to see that
all dihedral groups are ambivalent, and hence all irreducible representations of 𝐷𝑘 have
real characters. For (iii) and (iv) we appeal to the character tables of these groups, which
can be found on GroupNames at https://people.maths.bris.ac.uk/~matyd/GroupNames/.

We now show that all other finite 3-manifold groups are not ambivalent. To begin
with, we appeal to the classification of finite 3-manifold groups which is essentially due
to Hopf [Hop26] (see also [Mil57, Orl72]). The useful fact is the following: every non-
cyclic finite 3-manifold group is a central extension of one of the following groups by an
even order cyclic group: dihedral groups 𝐷𝑛 , the tetrahedral group 𝐴4, the octahedral
group 𝑆4 or the icosahedral group 𝐴5. By (2) of Remark 9.4, we see that if the 3-manifold
group is a central extension by ℤ/2𝑚 where 𝑚 ≥ 2, then automatically the group is not
ambivalent. Hence we only have to show that the groups obtained via central extension
by ℤ/2 are not ambivalent, or were already included in the statement of the proposition.
The ones not appearing in the statement of the proposition are the following groups
(here we again appeal to the classification to know that these are the only ℤ/2 central
extensions which occur).

(a) Odd degree dicyclic groups Dic2𝑛+1.
(b) The binary tetrahedral group 𝑇24.

We deal with case (a) first. A presentation for Dicℓ is given by

Dicℓ = ⟨𝑎, 𝑥 | 𝑎2ℓ = 1, 𝑥2 = 𝑎ℓ , 𝑥−1𝑎𝑥 = 𝑎−1⟩,

and one can calculate from this presentation that the element 𝑥 is order 4 and is not
conjugate to 𝑥−1 provided that ℓ is odd.

For case (d) we simply appeal again to the character table, which again can be found
on GroupNames at the url listed above. □

We now consider the general class of Seifert fibred 3-manifolds, where we can give
some partial statements.

We follow Orlik [Orl72, Chapter 5]. Recall that the fundamental group of a Seifert
fibred 3-manifold 𝑌 is determined by its Seifert invariants

𝑌 = 𝑌(𝑏; (𝜀, 𝑔); (𝛼1 , 𝛽1), . . . , (𝛼𝑟 , 𝛽𝑟))

where 𝜖 ∈ {𝑜1 , 𝑜2 , 𝑛1 , 𝑛2 , 𝑛3 ,𝑛 4} is a “meta-variable" encoding which of six types 𝑌 is,
depending on the genus 𝑔 and orientability of the base orbifold of the Seifert fibration; 𝑏
is an integer or an integer modulo two depending on 𝜀; and (𝛼𝑖 , 𝛽𝑖) are pairs of relatively

https://people.maths.bris.ac.uk/~matyd/GroupNames/


52 DANIEL GALVIN AND ISACCO NONINO

prime integers, with 𝑟 the number of exceptional fibres. We refer the reader to [Orl72,
Chapter 5, Theorem 3] for further details.

The fundamental group then has the following presentation

𝜋1(𝑌) = ⟨𝑎1 , 𝑏1 , . . . , 𝑎𝑔 , 𝑏𝑔 , 𝑞1 , . . . , 𝑞𝑟 , ℎ | 𝑎𝑖ℎ𝑎−1
𝑖 = ℎ𝜀𝑖 , 𝑏𝑖ℎ𝑏

−1
𝑖 = ℎ𝜀𝑖 ,

𝑞 𝑗ℎ𝑞
−1
𝑗 = ℎ, 𝑞

𝛼 𝑗
𝑗
ℎ𝛽 𝑗 = 1, 𝑞1 · · · 𝑞𝑟[𝑎1 , 𝑏1] · · · [𝑎𝑔 , 𝑏𝑔] = ℎ𝑏⟩,

in the case that 𝜀 = 𝑜1 or 𝑜2 and

𝜋1(𝑌) = ⟨𝑣1 , . . . 𝑣𝑔 , 𝑞1 , . . . , 𝑞𝑟 , ℎ | 𝑣𝑖ℎ𝑣−1
𝑖 = ℎ𝜀𝑖 , 𝑞 𝑗ℎ𝑞

−1
𝑗 = ℎ,

𝑞
𝛼 𝑗
𝑗
ℎ𝛽 𝑗 = 1, 𝑞1 · · · 𝑞𝑟𝑣2

1 · · · 𝑣2
𝑔 = ℎ𝑏⟩,

in the case that 𝜀 = 𝑛1 , 𝑛2 , 𝑛3 or 𝑛4 (here 𝑜 stands for orientable and 𝑛 for non-orientable,
with these terms referring to the base space of the orbifold for the Seifert fibration).

Lemma 9.6. Let 𝑌(𝑏; (𝜀, 𝑔); (𝛼1 , 𝛽1), . . . , (𝛼𝑟 , 𝛽𝑟)) be a Seifert fibred 3-manifold with 𝜀 = 𝑜1 or
𝑛1 and |ℎ| > 2. Then 𝜋1(𝑌) is not ambivalent.

Proof. As noted in [Orl72, Section 5.3], 𝜀 = 𝑜1 or 𝑛1 corresponds precisely to the cases
when ℎ is central in 𝜋1(𝑌). By our assumption on the order of ℎ and (2) of Remark 9.4,
this implies that 𝜋1(𝑌) is not ambivalent. □

We verify a basic set of examples which satisfy this condition.

Proposition 9.7. Let 𝑌 be the 𝑆1 bundle over the orientable surface bundle of genus 𝑘
with Euler number 𝑒 ≠ 1. Then 𝜋1(𝑌) is not ambivalent.

Proof. The Seifert invariants of 𝑌 are as follows: 𝑏 = 𝑒 , 𝜀 = 𝑜1 and 𝑔 = 𝑘. By Lemma 9.6
we only have to verify that |ℎ| > 2. This is clear from the group presentation given
above. □

Note that Proposition 9.7 includes the 3-torus, since this is the Euler number zero 𝑆1

bundle over the 2-torus. Note that all of the examples in Proposition 9.7 have trivial 𝑘1

since they all have trivial 𝜋2 except for 𝑆1 × 𝑆2 (this can be deduced from the long exact
sequence of homotopy groups coming from the fibration). As a separate case, one can
also see that 𝑆1 × 𝑆2 has trivial 𝑘1, since 𝐾(ℤ, 1) is 1-dimensional.

Remark 9.8. For applications involving our realisation theorem Theorem 7.1, we also need
the fundamental group of the 3-manifold to be good, in the sense of Freedman-Quinn
[FQ90, Chapter 2.9] (c.f. [BKK+21, Definition 12.12]). Since all finite groups are good
[FQ90, Section 5.1] (c.f. [BKK+21, Theorem 19.2]), this does not provide any restrictions
on the elliptic 3-manifolds considered above. However, it does provide a restriction to the
class of 3-manifolds considered in Proposition 9.7; in particular, we have to restrict to 𝑆1

bundles over surfaces of genus 𝑘 < 2, since higher genus surface groups are not known
to be good. When 𝑘 < 2, the goodness of 𝜋1(𝑌) follows since goodness is closed under
extensions [FQ90, Exercise 2.9] (c.f. [BKK+21, Proposition 19.5], and ℤ is good [FQ90,
Section 5.1] (c.f. [BKK+21, Theorem 19.4]).
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Remark 9.9. By Proposition 9.5 and Remark 9.8, Theorem 9.3 applies to all lens spaces
except 𝑆3 and ℝℙ3, ‘most’ prism manifolds, all tetrahedral manifolds, all but one octa-
hedral manifold and all icosahedral manifolds except the Poincaré homology 3-sphere.
Since all of the finite fundamental group manifolds have vanishing 𝜋2, this means that
our topological second Hatcher-Wagoner invariant utterly fails to detect any interesting
homeomorphisms in these cases.

By Proposition 9.7 and Remark 9.4, Theorem 9.3 also applies to all 𝑆1 bundles over tori,
including the 3-torus.

9.4. Homeomorphisms of 𝑌3 × 𝑆1. In this subsection we will describe how to take the
homeomorphisms constructed in Section 9.2 and produce interesting homeomorphisms
of 𝑌3 × 𝑆1. It is clear that, given a homeomorphism 𝑓 : 𝑀 × 𝐼 → 𝑀 × 𝐼 that restricts to
the identity on the boundary, we can glue 𝑀 × {0} to 𝑀 × {1} via the identity map and
produce a new homeomorphism 𝑓 : 𝑀 × 𝑆1 → 𝑀 × 𝑆1. However, it is conceivable for
𝑓 to be isotopic to the identity even if 𝑓 was not isotopic to the identity. This is because
𝑀 × {pt} ⊂ 𝑀 × 𝑆1 may not be fixed throughout the isotopy.

Igusa [Igu21a, Lemma 5.1] showed9, that any isotopy of 𝑓 to the identity could be
deformed such that it fixes 𝑀 × {pt} throughout.

Lemma 9.10 ([Igu21b, Lemma 5.1]). Let 𝑀 be a compact, topological 𝑛-manifold. Then the
map 𝜋0(𝒫TOP(𝑀 × 𝐼 , 𝜕) → 𝜋0(𝒫TOP(𝑀 × 𝑆1) given by gluing 𝑀 × {0} to 𝑀 × {1} is injective.

The above lemma is stated in the smooth category in [Igu21b] but the smooth category
is not used essentially during the proof and all of the arguments follow through exactly
the same in the topological category.

As a corollary, we obtain interesting homeomorphisms of 𝑀 × 𝑆1 whenever we previ-
ously had interesting homeomorphisms of 𝑀 × 𝐼. In particular, we have the following
result which was Theorem 1.5 from the introduction.

Theorem 9.11. Let 𝑌3 be a 3-manifold whose first 𝑘-invariant 𝑘1(𝑌) is trivial and with 𝜋1(𝑌)
good and not ambivalent. Then there exists a homeomorphism 𝑓 : 𝑌 × 𝑆1 → 𝑌 × 𝑆1 which is
pseudo-isotopic to the identity but not isotopic to the identity. In particular, 𝑓 is homotopic but
not isotopic to the identity.

Proof. Apply Lemma 9.10 to the homeomorphisms produced by Theorem 9.3. □

9At the beginning of [Igu21b, Section 5], Igusa says that the lemma is well-known, but we know of no
other reference and hence attribute it to him.
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