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Abstract. This is an expository note presenting several low-dimensional applications of Kirby’s torus
trick. After a discussion of explicit immersions of a punctured n-torus into Rn that have appeared in
the literature [Milnor, Ferry, Barden], we use the torus trick to construct smooth structures on surfaces
[Hatcher] and PL structures on 3-manifolds [Hamilton].

Structure of the note The goal of Section 1 is to give an exposition of three explicit constructions
of immersions of punctured tori that appeared in the literature. We start by visualizing such an
immersion in dimensions 2 and 3 in Section 1.1. Then we look at Milnor’s inductive argument in
Section 1.2, continue with Ferry’s explicit version in Section 1.3 and finish with Barden-Siebenmann’s
construction Section 1.4 as presented in Rushing’s work.

Hatcher’s application to smooth structures on surfaces is taken up in Section 2. PL structures on
3-manifolds following Hamilton are treated in Section 3.
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1 Explicit immersions of the n-torus into Rn

An important ingredient for the torus trick, is an immersion of a punctured n-torus into Rn. For
this section, we work in the smooth category, where a smooth immersion is a smooth map f : M → N
between the smooth manifolds M , N such that its differential Tx(f) : Tx(M)→ Tf(x)(N) is injective
at every point x ∈M . An equivalent condition would be to require that the map f is locally a smooth
embedding. Note that an injective immersion is not necessarily a (global) embedding, because an
embedding is required to be a homeomorphism onto its image. Wrapping a half-open interval onto a
circle, [0, 1)→ S1 is an example of this (an injective immersion which is not a homeomorphism onto
its image).

There is a notion of a topological immersion between topological manifolds, where the defining
property is that every point in the source has a neighborhood on which the map restricts to an
embedding.

Remark 1.1. A smooth submersion s : M → N between the smooth manifolds M , N is a smooth map
f : M → N between the smooth manifolds M , N such that its differential Tx(f) : Tx(M)→ Tf(x)(N)
is surjective at every point x ∈M . For a map between manifolds of the same dimension, the notions
of immersion and submersion coincide. In particular, our immersions Tn − {pt} # Rn are in this
codimension 0 setting. In his letter Milnor uses the ’submersion’ terminology, but here we plan to
stick with ’immersion’.

The existence of an immersion Tn − {pt}# Rn can be concluded from Smale-Hirsch theory, which
is a tool to study the homotopy type of embedding spaces. In particular, a theorem of Hirsch claims
that a smooth, open, parallelizable n-manifold (for example, a punctured n-torus) can be smoothly
immersed into Rn.
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Figure 1. Two pictures of an immersion of a punctured 2-torus into the plane.

Figure 2. Embedding the 1-skeleton of the 3-torus into 3-space.

1.1 Pictures in dimensions 2 and 3

We write Tn0 for the n-torus where an n-call has been removed. Observe that it does not make a
difference whether we remove a point or a closed n-cell.

The 2-torus T2 has a handle decomposition with one 0-handle, two 1-handles and one 2-handle. An
immersion of the 0-handle D2×D0 together with the two 1-handles (D1×D1 attached along S0×D1)
into the plane is shown in Figure 1. Since the images of the 1-handles cross, this map is not injective.
We can also describe the image of this immersion as the union of two annuli S1 × [0, 1] ∪ S1 × [0, 1],
where one of the overlapping squares takes the role of the 0-handle, while the other square is the region
of intersection of the 1-handles.

The 3-torus T3 has a handle decomposition with one 0-handle, three 1-handles, three 2-handles
(which are attached along pairwise commutators of the 1-handles) and a single 3-handle. We would
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Figure 3. Thickened 2-torus with boundary of tubular neighborhood around longitude.
This looks like the spin of the immersion in Figure 1.

Figure 4. Seeing part of the handle decomposition of the 3-torus in the overlaps of
the immersion in Figure 3.

like to immerse everything except the top-dimensional handle into 3-space. The 1-skeleton

h0 ∪ h1
a ∪ h1

b ∪ h1
c = D3

3⋃
S0×D2

D1 ×D2

homeomorphic to a 3-dimensional handlebody \3S1 ×D2 can be embedded into R3 as for example in
Figure 2. Attaching the 2-handles D2×D1 along S1×D1 so that the attaching spheres S1×{0} read
off the words aba−1b−1, bcb−1c−1 and cac−1a−1 will introduce (self-)intersections.

The following indication of an immersion T3 − 3-handle# R3 is inspired by Ryan Budney’s answer
[Bud]. We would like to describe the image of the immersion as the union

S1 × S1 × [0, 1] ∪ S1 × [0, 1]× S1 ∪ [0, 1]× S1 × S1
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Figure 5. The circle S1 satisfies Milnor’s property I.

of thickened tori (the interval factor [0, 1] corresponding to the thickening), where we have to arrange
the overlaps so that we can suitably interpret them as handles and double or triple point regions. For
example Figure 3, shows an immersion of the union S1 × S1 × [0, 1] ∪ S1 × [0, 1]× S1 with overlaps
compatible to the handle decomposition of the 3-torus, see also Fig. 4. We would still have to add
another 2-handle to the picture to complete the immersion of the punctured 3-torus, but we will stop
here and move on to the proofs giving general constructions.

1.2 Milnor’s inductive argument

Main idea: Milnor’s letter printed in [KS77, Essay I, Appendix B]
− Suppose Mk can be embedded in Euclidean space so that projection onto a hyperplane defines

an immersion Mk − disk# Rk
− Will show that then also Mk+1 = Mk × S1 has this condition
− Starting with M1 = S1 inductively get immersions of punctured torus

Slogan: Spin and perturb (now can immerse by projecting), or keep going to spin and perturb (and
project), ...

Definition 1.2 (Property I). Let Mk−1 be a smooth manifold. We say that M satisfies Property I if
it has a codimension 1 embedding into Euclidean space Mk−1 ↪→ Rk so that for some smooth closed
disk D ⊂ M there exists a k − 1-dimensional hyperplane P ⊂ Rk so that the orthogonal projection
prP : M − D→ P is an immersion.
Proposition 1.3. The circle S1 satisfies property I.

Proof. The proof is by picture in Figure 5. �

Theorem 1.4. If M satisfies Property I, then so does the product with a circle M × S1.
Let us assume the inductive Theorem 1.4 for now, then the immersion of the punctured torus can

be built as follows. Inductively, the n-dimensional torus Tn = (S1)×n−1 × S1 satisfies Property I, so
that the orthogonal projection

Tn0 ∼= Tn − D→ Rn+1 prP−−→ P ∼= Rn

gives the immersion of the punctured torus.
Proof of Theorem 1.4. Let us make some simplifying assumptions on the embedding of Mk−1 ⊂ Rk:
We will arrange it so that we can pick the hyperplane P = {x1 = 0} for the immersion of M − D and
that the image of M lies in the open “slab” {0 < xk < β} of Rk.
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Figure 6. Spinning the embedding Mk−1 ↪→ Rk (assuming it lies in the half-space
{xk > 0}) to obtain an embedding Mk−1 × S1 ↪→ Rk+1.

Figure 7. Checking that the projection to a hyperplane is an immersion of a subman-
ifold by looking at the normal vector.

Think of Rk+1 with its open book decomposition with binding Rk−1 and pages the half-spaces Rk+,
as in Figure 6. We can “spin” the subset M ⊂ Rk to obtain an embedding

M × S1 ↪→ Rk+1

((x1, . . . , xk−1, xk), θ) 7→ (x1, . . . , xk−1, xk · cos θ, xk · sin θ)

Here θ ∈ [0, 2π]/0 ∼ 2π ∼= S1 is the coordinate on the circle.
We still need a slight deformation of this embedding to check property I, and find the hyperplane

into which we want to immerse.
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Figure 8. Embedding a neighborhood Mk−1 × (−ε, ε) into Rk.

Figure 9. An example for the function t : S1 → (−ε, ε). (© Milnor’s letter in [KS77])

Figure 10. Schematic of Milnor’s perturbation of the spin. (© Milnor’s letter in [KS77])
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Let us set up the notation to describe projections to hyperplanes: A normal vector v ∈ Rk+1

determines the hyperplane v⊥ = {x ∈ Rk+1 | 〈v, x〉 = 0}. Orthogonal projection to v⊥ will give
an immersion of a submanifold W ⊂ Rk+1 as long as the normal vector pw to W at w ∈ W is
not orthogonal to the vector v describing the hyperplane v⊥, see Figure 7. In other words, in our
perturbation attempts we want to chose an orthogonal projection direction v so that 〈pw, v〉 > 0 at all
points w ∈W .

As an Ansatz, look in the direction of the first unit vector e1 = (1, 0, . . . , 0) ∈ Rk+1, and then tilt
your head slightly away from the last unit vector ek+1 = (0, . . . , 0, 1) ∈ Rk+1. We will try to project to
the plane orthogonal to

v = e1 − αek+1

where the amount of tilting α ∈ R+ will be determined momentarily.
To parameterize the perturbation of the spin, we use the following equation, whose components will

be described in the following enumeration. Also see Figure 10 for a schematic.

Mk−1 × S1 ↪→ Rk+1

(x, θ) 7→ rotθ(x+ t(θ) · n(x))

(1) The coordinates x = (x1, . . . , xk) ∈M come from the embedding M ↪→ Rk
(2) n(x) = (n1(x), . . . ,nk(x)) is the unit normal vector to x ∈Mk−1 in Rk.
(3) Since M is compact we can choose an ε > 0 so that (potentially after a translation) the map

M × (−ε, ε) ↪→ Rk

(x, t) 7→ x+ t · n(x)

is an embedding with image in {0 < xk < β}, see Figure 8.
(4) The amount by how much we wiggle in the normal direction will vary when we go around the

spinning circle, and we specify it with a smooth function t : S1 → (−ε, ε), θ 7→ t(θ). We require
two further properties of this function t, the graph of an example is shown in Figure 9.
− cos θ d t

dθ ≥ 0 for all θ ∈ S1.
− At θ = 0, d t

dθ ≥
2β
α . Remember that β > 0 was an upper bound on the xk-coordinate of

the embedding of Mk−1 × (−ε, ε) into Rk. Now we want to specify α > 0 which is also
the amount by how much we tilt our projection axis away from the ek+1-direction: 2α is
supposed to be a positive lower bound for the first component n1(x) of the normal vector
for x ∈M − D. Such a lower bound exists, since by assumption projecting to {x1 = 0}
was an immersion on M − D, so the normal vector cannot be orthogonal to e1 on (the
closure) of this set.

(5) The rotation of the spinning can be encoded in matrix form as

rotθ : Rk+1 → Rk+1

rotθ =


1

. . .
1

cos θ − sin θ
sin θ cos θ


We will now check that projecting to the hyperplane v⊥, e1 − αek+1, gives an immersion of the

perturbed (M × S1)− disk. For this, we check the condition 〈p(x, θ), v〉 > 0, where

p(x, θ) = p((x1, . . . , xk), θ) = (xk + t(θ) · nk(x)) · rotθ(n(x))− d t(θ)
dθ
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is the normal vector to the perturbed embedding of M × S1. We can compute the scalar product as

〈p(x, θ), v〉 = (xk + t(θ) · nk(x)) · (n1(x)− α · sin θ · nk(x))︸ ︷︷ ︸
A

+α · cos θ · d t(θ)
dθ︸ ︷︷ ︸

B≥0

Bounding this from below splits up into two cases:
− For x ∈M − D, arbitrary θ: Remember that α was a lower bound for the first component of

the normal vector on this set, so we conclude for the first summand in the scalar product that
A ≥ (xk + t(θ) · nk(x)) · (2α− α) > 0

The second summand B is non-negative by our construction of the function t. So on this set,
〈p(x, θ), v〉 > 0

− For all x ∈ M , but θ = 0: Here A ≥ −β and B ≥ α2β
α . This shows 〈p(x, 0), v〉 > 0 and by

continuity 〈p(x, θ), v〉 > 0 for all θ which are sufficiently close to 0, say for |θ| ≤ η, η > 0.
In conclusion, projecting to the hyperplane v⊥ is an immersion on

(M × S1)− (D× [η, 2π − η])# v⊥

which is M × S1 without a disk. This concludes the proof that M × S1 satisfies property I. �

Remark 1.5. Milnor cites the paper [Gra74] which contains another explicit construction of an
immersion, but unfortunately we were not able to track down this reference.

1.3 Ferry’s explicit version

Main idea: [Fer74]
− Define a “standard embedding” Tn × (0, 1) ↪→ Rn+1 via explicit coordinates
− Perturb the image of Tn × {0} in its normal bundle
− projection to Rn is an immersion in a neighborhood of the (n− 1)-skeleton of Tn (which is a

punctured torus)
Slogan: Spin iteratively until we embedded the torus, then after one perturbation at the end we can
project to the first coordinates

We will use the coordinates
~θ = (θ1, . . . , θn) ∈ Tn = (S1)×n

with θi ∈ S1 ∼= [0, 2π]/0 ∼ 2π to describe points on the n-torus, where we usually pick the representative
to lie in the interval θi ∈ [0, 2π).

We will now describe the standard embedding of Tn × (−1, 1) into Rn+1 via an iterated spinning
construction. The idea of the spinning is the same as appeared in Milnor’s construction, but the
difference here is that we will perturb the image only once at the end, and not after each spinning
step. The advantage of this is that we can write down the spinning in explicit coordinates.

Start with the standard embedding of the thickened 1-torus
S1×(−1, 1) ↪→ R2

(θ1, t) 7→ ((1 + t)· cos θ1, (1 + t)· sin θ1+2)
Nos suppose we have constructed an embedding

Tn×(−1, 1) ↪→ Rn+1

(~θ, t) 7→ (f1(~θ, t), . . . , fn(~θ, t), fn+1(~θ, t))

where we assume that we have shifted the last coordinate so that fn+1(~θ, t) > 0. This assumption
on the last coordinate is the reason for the +2 in the standard embedding of the 1-torus. Then by
spinning we can construct a new embedding

Tn+1×(−1, 1) ↪→ Rn+2
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Figure 11. The 1-skeleton of the 2-torus T2
(1) and the 2-skeleton of the 3-torus T3

(2).

(~θ, t) 7→ (f1(~θ, t), . . . , fn(~θ, t), fn+1(~θ, t) · cos θn+1, fn+1(~θ, t) · sin θn+1, )

where after each spinning stage, add 2n to the last coordinate to force the last coordinate to be > 0.
Here are the first steps in this construction:

T1×(−1, 1) ↪→R2

(~θ = (θ1), t) 7→((1 + t)· cos θ1, (1 + t)· sin θ1+2)
T2×(−1, 1) ↪→R3

(~θ = (θ1, θ2), t) 7→((1 + t)· cos θ1, ((1 + t)· sin θ1+2) · cos θ2, ((1 + t)· sin θ1+2) · sin θ2+4)
T3×(−1, 1) ↪→R4

(~θ = (θ1, θ2, θ3), t) 7→((1 + t)· cos θ1, ((1 + t)· sin θ1+2) · cos θ2,

(((1 + t)· sin θ1+2) · sin θ2+4) · cos θ3, (((1 + t)· sin θ1+2) · sin θ2+4) · sin θ3+8)

In the circle coordinates, we can explicitly describe the (n− 1)-skeleton of the n-torus as

Tn(n−1) = {(θ1, . . . , θn) ∈ Tn | θi = 0 for some i ∈ {1, . . . , n}}

Observe that an open neighborhood of Tn(n−1) ⊂ Tn is everything except a closed disk in the n-cell of
Tn. See also Figure 11 for an illustration in low dimensions.

Our goal now will be to perturb Tn × {0} in the normal t-direction so that projecting to the first
n coordinates, i.e. to Rn × {0} ⊂ Rn+1, is an immersion on an open tubular neighborhood of Tn(n−1).
See Figure 12 for a schematic illustration. Here the perturbation contains ε > 0 as a small positive
parameter, and we pick the function

ϕ : Tn → R

~θ 7→ sin θ1 · sin θ2 · . . . · sin θn
2n + sin θ2 · . . . · sin θn

2n−1 + . . .+ sin θn−1 · sin θn
22 + sin θn

2
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Figure 12. Schematic of the projection of the perturbed torus in Ferry’s proof

to determine by how much we wiggle in the normal direction. Putting this together, we have the
following:

Tn × (−1, 1)→ Rn+1

(~θ, t) 7→ (f1(~θ, t), . . . , fn(~θ, t), fn+1(~θ, t))
 pert : Tn → Rn+1

~θ 7→ (f1(~θ, ε · ϕ(~θ)), . . . , fn(~θ, ε · ϕ(~θ)), fn+1(~θ, ε · ϕ(~θ)))
 pr ◦ pert : Tn → Rn

~θ 7→ (f1(~θ, ε · ϕ(~θ)), . . . , fn(~θ, ε · ϕ(~θ)))

Showing that this composition of the perturbation with the projection has injective differential in a
neighborhood of the (n− 1)-skeleton would prove that is restricts to an immersion of Tn −Dn into Rn
as desired.

We will skip the calculation, but now it is possible to compute that the differential of the map
pr ◦ pert at points ~θ ∈ Tn(n−1) and t = ε · ϕ(~θ) = 0 is given by

−ε
2n · det(Df)

where Df is the determinant of the Jacobian of the standard embedding of the n-torus into Rn. For
details of the computation see Barden’s paper [Fer74]. Here we will be content with observing that
this Jacobian of the standard embedding is non-singular, and so by continuity of the differential
the determinant of D(pr ◦ pert) is non-zero in a small open neighborhood of Tn(n−1) and for small
parameters ε. This concludes our exposition of Ferry’s construction.
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Figure 13. Setting up the notation for the subsets of the n-torus, where the circle
factors are S1 = I ∪∂ J . Also pictures is an embedding Rn × S1 ↪→ Rn+1. where the
I-fibres {pt.} × I ⊂ Rn × I ⊂ Rn × S1 are straight and vertical in Rn+1.

1.4 Barden’s inductive proof

Main idea: [Rus73, Immersion Lemma 5.6.1]
− Inductively build immersions Tn × I# Rn × I
− they restrict to a product map on (Tn − n-cell)× I
− the first factor of the product map gives the desired immersion

Slogan: Add an extra dimension useful for the induction, then restrict to the first factor

This section closely follows Chapter 5 in Rushing’s book [Rus73]. The proof originates from Barden,
with contributions to the exposition by Edwards and Siebenmann.

We write Tn0 for the n-torus where an n-cell has been removed.

Proposition 1.6 ((Bardn) = Inductive statement in dimension n). There exists an immersion

f : Tn × [−1, 1]# Rn × [−1, 1]
such that the restriction to Tn0 × [−1, 1] is a product map, that is

f |Tn
0×[−1,1] = α× Id[−1,1] : Tn0 × [−1, 1]# Rn × [−1, 1]

We will prove Proposition 1.6 inductively. Then α : Tn0 # Rn is the immersion of the punctured
torus that we are looking for.

Proposition 1.7 ((Bard1) = Base case). There exists an immersion

f : T1 × [−1, 1]# R1 × [−1, 1]
such that the restriction to T1

0 × [−1, 1] is a product map, that is

f |T1
0×[−1,1] = α× Id[−1,1] : T1

0 × [−1, 1]# R1 × [−1, 1]

We will use this opportunity to set up some notation for the inductive step, also see Figure 13. We
will write the circle S1 = I ∪∂ J as the endpoint-union of two interval segments I = [−1, 1] = J . Then,
we can use Jn as the n-cell of the product Tn = (S1)×n, and identify Tn0 = Tn − Jn. Figure 13 also
shows an embedding Rn × S1 ↪→ Rn+1 where the I-fibres {pt.} × I ⊂ Rn × I ⊂ Rn × S1 are straight
and vertical in Rn+1.
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Figure 14. Base case: An immersion f : T1 × [−1, 1] # R1 × [−1, 1] such that the
restriction to T1

0 × [−1, 1] = I × [−1, 1] is a product map. (© [Rus73])

Figure 15. Inductive step. (© [Rus73])

Figure 16. The homeomorphism λ : [−1, 1]2 → [−1, 1]2 which is the identity on the
boundary ∂([−1, 1]2), and a π

2 -rotation on the smaller square [−2
3 ,

2
3 ]2. On the right is

a picture of extending the map via the identity to a homeomorphism λ : S1 × [−1, 1]→
S1 × [−1, 1]. (© [Rus73])

Proof of base case (Bard1) in Proposition 1.7. The immersion which is a product on the punctured
1-torus is pictured in Figure 14. �

Proof sketch of the inductive step (Bardn)⇒ (Bardn+1) for Proposition 1.6. Assume f : Tn×[−1, 1]#
Rn × [−1, 1] is given so that f |T1

0×[−1,1] = α× Id[−1,1] : T1
0 × [−1, 1]# R1 × [−1, 1] is a product map.
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Figure 17. Conjugation with λ applied to several squares. (© [Rus73])

Figure 18. The global situation in the final construction. (© [Rus73])

By crossing with another circle factor and composing with the embedding Rn × S1 ↪→ Rn+1 from
Figure 13 we can construct an immersion

f̃ : Tn × S1 × [−1, 1]
f×IdS1−−−−−→ Rn × S1 × [−1, 1] ↪→ Rn+1 × [−1, 1]
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For an illustration of the inductive step, see Figure 15. Check that f̃ is a product on Tn0 ×S1× [−1, 1]1.
We want to construct an immersion which is a product on Tn+1

0 × [0, 1], so we have to correct for this
on the missing piece

(Tn+1
0 × [0, 1])− Tn0 × S1 × [−1, 1] = Int Jn × I × [−1, 1]

We will do this by conjugating with a 90 degree rotation on the I × [−1, 1] factor, which is possible
because f̃ |Tn

0×I×[−1,1] is a product on the I × [−1, 1] factor.
For convenience, assume that the map f : Tn × [−1, 1]# Rn × [−1, 1] satisfies f(Tn × [−1

2 ,
1
2 ]) ⊂

Rn × [−2
3 ,

2
3 ]. Now see Figure 16 for a description of the “rotation homeomorphism” λ : S1 × [−1, 1]→

S1 × [−1, 1] by which we will conjugate. With this setup, we consider the following immersion
h : Tn × S1 × [−1, 1]# Rn+1 × [−1, 1]

h = (IdRn ×λ−1) ◦ f̃ ◦ (IdTn ×λ)
The remaining ideas are contained in Figure 17 and Figure 18, see the reference [Rus73] for the
concluding arguments. �

2 Torus trick for surfaces
A slogan that is often heard in manifold theory is that ’the categories are the same’ in dimension

≤ 3. That is to say there is no difference between smooth, PL, or topological manifolds in these low
dimensions. The aim of this section is to elucidate this idea in dimension 2, i.e. for surfaces. This will
be achieved via proving the following two theorems, the proofs of which will use the torus trick. The
discussion will follow [Hat13].
Theorem 2.1. Every topological surface can be given a smooth structure.

Theorem 2.2. Every homeomorphism of smooth surfaces is isotopic to a diffeomorphism.

Putting these two theorems together, we get the immediate corollary:
Corollary 2.3. Every topological surface can be given a smooth structure, which is unique up to
diffeomorphism.

This result is the precise statement hiding behind the slogan ‘the categories are the same’. We can
also use this result to classify topological surfaces, since it means that the topological classification
immediately follows from the smooth classification of surfaces. The proofs of these theorems will use
the handle smoothing theorem which we will state and use in Section 2.1.

2.1 Handle smoothing

Here we will state the handle smoothing theorem and use it to prove Theorem 2.1 and Theorem 2.2.
We will prove the handle smoothing theorem in Section 2.3.
Theorem 2.4. Let n and k be non-negative integers such that n+k = 2 and let h : Bk×Rn → R2 be a
topological embedding which is smooth in a neighbourhood of ∂(Bk×Rn). Then h may be (topologically)
isotoped to a smooth embedding on Bk × Bn, staying fixed near ∂(Bk × Rn) and outside a larger
neighbourhood of Bk × {0}.

Lemma 2.5. An open set W ⊂ R2 admits a triangulation such that the size of the simplices approaches
0 on the (topological) boundary of W .

Proof. We prove this by simply constructing such a triangulation. Divide R2 into unit squares by
drawing lines parallel to the x and y-axis.

− Step 1: Throw away all squares that lie entirely outside of W .
1This uses the property that the embedding Rn × S1 ↪→ Rn+1 has vertical I-fibres.
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Figure 19. Smoothing a handle Bk × Rn which is already smooth near ∂Bk × Rn,
staying fixed in the red region.

Figure 20. Four iterations of steps 1-2 shown for an open set in R2 (shown in blue).
The squares that have not been thrown away are shaded in red.

− Step 2: Divide squares that lie partially inside W into four 1
2 ×

1
2 squares each.

Repeat these steps indefinitely (see Fig. 20). The union of the remaining squares is now W and
the size of these squares approaches 0 on the (topological) boundary of W . We then turn this into
a triangulation by adding a single vertex at the centre of every square and adding in a new edge
connecting this central vertex to each other vertex on the square. �

We now prove the existence of smooth structures on surfaces. Note that we always have local
smooth structures on surfaces, induced by the standard Euclidean neighbourhoods about points. The
difficulty is in piecing together all of these local structures into a single global structure.

Proof of Theorem 2.1. We first consider the closed case. Let S be a closed surface, and hi : R2 → S be
(topological) embeddings such that hi(R2), i = 0, 1, 2, . . . form an open cover of S. We now proceed
via induction, our base case being covered by the existence of local smooth structures. Assume there
exists a smooth structure on Un−1 = ⋃n−1

i=1 hi(R2), and we want to extend this to a smooth structure
on Un = ⋃n

i=1 hi(R2). Let W : = h−1
n (Un−1). Since hn is continuous and Un−1 is open, W is an open

set and we can use Lemma 2.5 to construct a triangulation of W with the size of simplices approaching
0 on the (topological) boundary. This triangulation gives us an induced handle decomposition for W ,
and we can apply the handle smoothing theorem in turn on each handle to smooth hn on W . This
gives us an isotopy htn such that h0

n = hn |W and h1
n is smooth on W and we need to extend this

isotopy onto all of R2. This is possible since the size of the simplices of our triangulation approaches 0
on the (topological) boundary of W , which means that the isotopy approaches the constant isotopy,
and thus can be extended onto all of R2 via the constant isotopy. Now we have extended the smooth
structure onto Un, and this completes the induction.

The case with boundary is similar, but starts with the existence of a collar neighbourhood of the
boundary. This collar is of the form ∂M × I, where ∂M is a closed 1-manifold. Since all 1-manifolds
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Figure 21. Pair of trousers (left) and twisted pair of trousers (right).

are smoothable (see Section 2.4), we know that we can give ∂M a smooth structure and can extend
this onto the whole collar. At this point the proof proceeds identically to the closed case, where we
start by setting U1 := ∂M × I. �

We now move to proving the uniqueness of smooth structures on surfaces, but first we state and
prove another lemma.

Lemma 2.6. A smooth surface S admits a smooth triangulation.

By a smooth triangulation we mean there exists a simplicial complex S, such that S is homeomorphic
to X and the inclusion map ∆→ X is a smooth embedding for every simplex ∆ ∈ S. We say that a
map ∆→ X is smooth if there exists a smooth extension of the map to an open set U ⊃ X in R2.

Proof. The idea of this proof is to construct a smooth cellulation which we then turn into a smooth
triangulation. We start by picking a Morse function on our surface S. We can then cut along
non-critical levels of our Morse function to cut our surface into smaller pieces. If we only allow a
maximum of one critical point to lie between our cuts, then the pieces we can obtain are as follows: if
no critical point lies between our cuts, we obtain an annulus; if one index 0 or 2 critical point lies
between our cuts, we obtain a disc; if one index 1 critical point lies between our cuts, we obtain either
a pair of trousers or a twisted pair of trousers, depending on whether the 1-handle was twisted when
attached (see Figure 21). A twisted pair of trousers can be thought of as a punctured Möbius band,
and so we can further cut a twisted pair of trousers into a regular pair of trousers and a Möbius band
by cutting along a circle that winds twice around the band, avoiding the puncture (see Figure 22).

We now have a decomposition on S into discs, annuli, pairs of trousers, and Möbius bands. This can
be turned into a smooth cellulation by adding in one vertex to each boundary circle on every piece, and
then adding in edges depending on the type of piece. For discs, we add no edges; for annuli, we add a
single edge connected the two vertices directly; for pairs of trousers, we add in two edges connecting
two of the boundary circles to the third; for a Möbius band, we add in a single edge connecting the
sole vertex to itself, winding all the way along the band. This cuts all of our pieces into polygons,
giving us a smooth cellulation. We can then further cut these polygons into triangles by adding an
extra vertex in the interior of each piece and connecting it to all other vertices by edges (this step isn’t
necessary for the Möbius band, which has already been cut into a triangle). This gives us the required
smooth triangulation of S. �

Proof of Theorem 2.2. Let f : S → S′ be a homeomorphism of smooth surfaces. We want to show that
f is isotopic to a diffeomorphism. We start by considering the closed case ∂S = ∅. Lemma 2.6 gives us
a smooth triangulation of S. We can then apply Theorem 2.4 successively. First, we smooth f near the
vertices of our triangulation. Every vertex in S has a B2 neighbourhood which f (topologically) embeds
inside a copy of R2 ⊂ S′ and hence we can use the Theorem 2.4 to smooth f on this neighbourhood.
Next we smooth f near the edges of our triangulation in the analogous manner. Since f is already
smooth near the vertices at the ends of each edge, we can isotop f to be smooth on a B1 × B1

neighbourhood of the edge and the isotopy stays fixed near the vertices, hence keeping the smoothness
of f that we have already achieved. The final step is to smooth f on the faces of our triangulation,
and again we can do this precisely because we have already smoothed f near all of the edges and
vertices of our triangulation. f is now locally a smooth embedding, and hence a local diffeomorphism.
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Figure 22. Twisted pair of trousers cut along a circle to give a Möbius band (green)
and a normal pair of trousers (red).

f is also still injective by its construction and so is a global (topological) embedding of homeomorphic
surfaces, and hence must be surjective. Therefore we have isotoped f to a global diffeomorphism.

Now assume ∂S is non-empty. Pick a smooth collar for S, and then glue on another smooth collar
∂S× I, extending f onto it via the identity. We now have a smooth collar such that f is constant with
respect to the collar parameter on a smaller sub-collar. Now f restricted to ∂S is a homeomorphism of
smooth 1-manifolds and hence is isotopic to a diffeomorphism (see Section 2.4). We can then extend
this isotopy onto the subcollar such that it is constant on the internal boundary of the subcollar,
allowing us to extend the isotopy onto the rest of S as the constant isotopy. We now have that f is
already smooth on a collar of S, and we can then proceed with exactly the same method for the empty
boundary case to smooth f on the rest of S, provided that we ensure our smooth triangulation of S
restricts to a smooth triangulation of the collar. �

2.2 Studying surfaces using graphs

To prove the handle smoothing theorem, we will need to employ a number of techniques for dealing
with smooth surfaces. In this section we will describe the general scheme in which this will be done,
which develops the ideas used in the proof of Lemma 2.6.

Let S be a smooth surface, possibly with boundary and choose a Morse function f for S. As in the
proof of Lemma 2.6, we cut along non-critical levels of f to obtain pieces Pi, which are discs, annuli,
pairs of trousers or Möbius bands. Note that if we allow for non-compact surfaces, then we can get
more types of pieces: open-discs, half-open discs (D1 × R) etc., but the general idea is the same. We
now have a decomposition of our surface into pieces Pi, which are joined together by circles which we
will denote by Cj .

We now construct a graph from our surface. Let ΓS be the graph such that ΓS has one vertex
for every piece Pi and two vertices are connected by an edge for each boundary circle Cj that they
share. We then have a natural map p : S → ΓS that maps product neighbourhoods of Cj to their
corresponding edges and collapses the remaining portions of the Pj to their corresponding vertices (see
Figure 23). Consider the induced map on fundamental groups p∗ : π1(S)→ π1(ΓS). Since the pieces Pi
are path-connected, we can construct well-defined loops in S (up to homotopy) mapping to any loops
in ΓS , so this map must be split surjective. Note that when choosing the segment of the loop in each
piece Pi, if the piece is not simply-connected the segment should be chosen such that it is trivial in
π1(Pi). Hence, we can conclude that there exists of subgroup of π1(S) which is isomorphic to π1(ΓS).
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Figure 23. Constructing a graph from a torus, cut along four circles into four pieces.

The strength of this viewpoint is that we can simplify our graphs homotopically and have the
simplifications pull back to simplifications of our surface. If we have an index-1 vertex on ΓS , we can
remove it and its corresponding edge, leaving a homotopy equivalent graph. Now we see how this
change can be pulled back to S. At each Cj , the pieces are glued together via a diffeomorphism of
S1, which up to isotopy are either the identity or the inverse map z 7→ z−1 = z∗. When one of the
pieces corresponds to an index-1 vertex, this piece must be a disc and this diffeomorphism makes
no difference to the diffeomorphism type of the resulting surface. This means that we can alter our
Morse function to remove this disc piece, provided that the other piece was not also a disc. If the disc
was attached to an annulus, we simply decrease the level at which the index-2 critical point occurs,
whereas if the disc was attached to a pair of trousers, we cancel out the index-2 critical point with the
index-1 critical point in the pair of trousers. The upshot of this is that we can always simplify finite
sub-trees in ΓS , with the result representing a diffeomorphic surface to S. We illustrate this technique,
and end this subsection, with an example.
Example 2.7. Consider a topological torus with some smooth structure S, denoted TS. We want to
show that TS is diffeomorphic to the standard torus T , and we will do this using the graph ΓTS . Since
π1(TS) ∼= Z ⊕ Z is abelian, and π1(ΓTS) is a free subgroup, we know that π1(ΓTS) is isomorphic to
either Z or the zero group. If it is the zero group, then ΓTS is a tree and we can cancel sub-trees until
we end up with the graph with two vertices connected by a single edge. This must correspond to TS
being diffeomorphic to a sphere, which cannot be true as the fundamental group of TS is non-trivial.
So, the group must be Z, which implies that ΓTS is a circle with finitely many sub-trees attached.
Again, we can cancel these sub-trees to obtain a circular graph, which corresponds to TS being made of
finitely many annuli glued together in a circle, corresponding to either a standard Klein bottle or the
standard torus (depending on the type of the glueing diffeomorphisms on the Cj). Since π1(TS) does
not match that of a Klein bottle, we must conclude that TS is diffeomorphic to the standard torus.

2.3 Proof of the handle smoothing theorem

We will now prove Theorem 2.4, using the techniques we have just developed along with the torus
trick. We will take the cases k = 0, 1, 2 separately, as their proofs are very different.
Proof of Theorem 2.4.
k = 0 case, or 0-handle smoothing: It may be useful to refer to Fig. 24 throughout this proof to
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visualise the sequence of steps. We begin at the bottom of the diagram, and work our way up to
the top. Let h : B0 × R2 = R2 → S be the embedding that we wish to smooth and suppose we are
given a fixed (topological) immersion T 2 \ ∗# R2. Such immersions were explicitly constructed in the
previous section. We can pull back the smooth structure on S to give a smooth manifold structure on
T 2 \ ∗ that we will denote as (T 2 \ ∗)S. We want to be able to extend this to a smooth structure on
the whole torus, but to do so we need to prove that it is standard near the puncture.

First, we create the graph Γ for (T 2 \ ∗)S as in Section 2.2. Since π1((T 2 \ ∗)S) is finitely generated,
π1(Γ) must be also, which means that there exists a finite subgraph Γ0 such that the closure of Γ \ Γ0
is a disjoint union of finitely many trees. The key here is that since (T 2 \ ∗)S has only one end, one and
only one of these trees must be infinite. Simplify the graph by removing the finite trees and simplify
the infinite tree by removing any finite subtrees. These simplifications are simultaneously realised
on the surface, which means that there exists a compact set whose complement is diffeomorphic to
S1 × R, i.e. an infinite number of annuli glued together. This proves that the smooth structure was
standard near the puncture, and hence we can extend our smooth structure onto T 2 to give T 2

S.
From Example 2.7 we know that all smooth structures on a torus are diffeomorphic, so there exists a

diffeomorphism g : T 2
S → T 2. We want to lift this diffeomorphism up to a diffeomorphism g̃ : R2

S → R2

of the universal covers, but we first need to normalise g so that it induces the identity map on the
fundamental groups. Firstly, we may assume that g maps the basepoint to the basepoint, by rotating
the S1 factors in either the domain or the codomain. Then, note that g being a diffeomorphism implies
that the induced map on fundamental groups π1(g) is an isomorphism. π1(g)−1 ∈ GL2(Z) corresponds
naturally to diffeomorphism on T 2 given by the action of GL2(Z) on T 2 = R2/Z2. Post-composing g
with this diffeomorphism allows us to assume that g induces the identity map on fundamental groups.

We now have lifted our diffeomorphism g to a diffeomorphism g̃ : R2
S → R2. We would like to extend

this to a homeomorphism G : B2 → B2 that is the identity on the boundary. One way to prove that
this is possible is to show that g̃ is bounded, i.e. to show that the set {|g̃(x)− x| | x ∈ R2} is bounded
above. But this is easy, since we know that g̃ is bounded on [0, 1]× [0, 1] by compactness, and thus is
bounded on R2 by periodicity.

If we consider B2 as the unit disc in R2, we can then extend G onto R2 by extending via the
identity to construct a map G̃ : R2 → R2. By the Alexander trick, we know this is (topologically)
isotopic to the identity, so there exists an isotopy G̃t where G̃1 = G̃ and G̃0 = Id. We now claim that
ht = G−1

t ◦ h is the required isotopy that we wanted to construct originally. Clearly h0 = h, so it
suffices to show that h1 is smooth near 0 and that ht = h far away from 0. Since G̃t is the identity
outside of B2, this second condition is obviously satisfied. To see why the first is satisfied, note that
G̃1 is a diffeomorphism from the smooth structure S to the standard smooth structure near 0, and
that h is (by definition) smooth on the S smooth structure. This implies that h1 is smooth near 0,
completing the proof.
k = 1 case, or 1-handle smoothing: Let h : B1 × R → S be a topological embedding that is

already smooth near ∂B1×R. We want to smooth this embedding near B1×{0} with an isotopy that
stays fixed near ∂B1×R and outside some larger neighbourhood of B1×{0}. We can pull the smooth
structure on S back to B1 × R to give it a smooth structure which is standard near the boundary.
Denote this smooth manifold by (B1 × R)S.

We now construct a diffeomorphism f : (B1×R)S → B1×R. Consider the projection π : B1×R→ R.
We can perturb this to a Morse function h on (B1×R)S with h = π near ∂B1×R, since π was already
smooth there. Note that all of the critical points of h lie in the interior of the smooth manifold by
construction. We then construct the graph Γ as in Section 2.2. Since π1(B1 × R) = 0, our graph must
be a tree. Since B1×R has two ends, this must be a infinite tree in two directions, with finite sub-trees
attached. We can cancel out these finite sub-trees to leave Γ being homeomorphic to R. Our Morse
function h is correspondingly altered (staying fixed near ∂B1 × R, to remove all critical points. We
then use the flow lines of h to construct our required diffeomorphism. Any point x ∈ B1 × R lies on a
unique flow line lx which passes throught a point px on B1 × {0}. We then define f(x) : = (px, h(x),
which is the identity near ∂B1 × R since the flow lines of h are standard there.
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Figure 24. Torus trick diagram for the 0-handle case

Figure 25. The diffeomorphism f : (B1 × R)S → B1 × R fixing a neighbourhood of
∂B1 × R and sending flow lines of h to flow lines of π.

This means we can extend our smooth structure onto B1×S1 such that there exists a diffeomorphism
g : (B1 × S1)S → B1 × S1 which is the identity near ∂B1 × S1. We then proceed in a similar manner
to the k = 0 case by normalising g such that it induces the identity on fundamental groups and then
lifting to a diffeomorphism g̃ : (B1×R)S → B1×R. By the same argument for the k = 0 case, g̃ must
be bounded and hence we can radially reparameterise on the second factor and extend by the identity
to receive a map G : B1 × B1 → B1 × B1 which is the identity near ∂B1 × B1 and matches g near
B1 × {0}.

The final step is to then extend G by the identity to a diffeomorphism G̃ : B1 ×R→ B1 ×R. Then
apply the Alexander trick to B1 ×B1 to construct an isotopy G̃t from G̃1 = G̃ to G̃0 = Id. Since G̃ is
already the identity outside of B1 ×B1 and near ∂B1 × R, we may assume the isotopy fixes both of
these regions. Thus, ht = h ◦ G̃−1

t is the desired smoothing isotopy, completing the proof.
k = 2 case, or 2-handle smoothing: Let h : B2 → S be a topological embedding that is already

smooth near ∂B2. We want to smooth this embedding completely with an isotopy that stays fixed
near ∂B2. First, pull the smooth structure on S back onto B2 to form B2

S which has the standard
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Figure 26. The diffeomorphism g : B2
S → B2 fixing a neighbourhood of ∂B2 and

sending flow lines for r̃ to flow lines of r.

smooth structure near ∂B2. We do not have any form of torus trick available to us so we will have to
construct a diffeomorphism that satisfies our requirements on our own.

Let r : B2 → [0, 1] be the radial function on B2. If we consider the restriction of r to a neighbourhood
of ∂B2 we can extend this to a Morse function r̃ : B2

S → [0, 1] since the smooth structure is standard
near ∂B2. Since we understand the behaviour of r̃ near the boundary, we know that all the critical
points of r̃ must lie in the interior of the disc. We can then construct Γ for B2

S as before. Since
π1(B2) = 0, we know that Γ is a tree and hence we can simplify it down to a single point. This
means that r̃ can be simplified to have only a single critical point of index 0. We then construct a
diffeomorphism g : B2

S → B2. Every point x in B2
S aside from the critical point of r̃ lies on a unique

flow line lpx ending at a point px ∈ ∂B2 and g maps x to g(x) where g(x) lies on the unique flow line
ending at the point px for the radial function on B2 such that r(g(x)) = r̃(x). Finally, the critical point
of r̃ is mapped to 0 ∈ B2. By construction, this map must a diffeomorphism that fixes a neighbourhood
of the boundary.

Now the Alexander trick gives us an isotopy Gt of g to the identity which we may assume to be
fixed near ∂B2, i.e. G0 = Id, G1 = g. Our required isotopy is then given by h ◦G−1

t . This finishes the
k = 2 case and hence finishes the whole proof. �

2.4 Smoothing and classifying one-dimensional topological manifolds

In our proofs of Theorem 2.1 and Theorem 2.2 we used that analogous results hold for 1-manifolds.
Here we give the outline of how to prove these results. It is much easier than the surfaces case and so
the treatment will be less detailed (so as to not labour the point). We will discuss how to prove a
1-dimensional handle smoothing theorem, leaving it to the reader to apply it to obtain existence and
uniqueness of smooth structures for topological 1-manifolds. We will use the smooth classification of
1-manifolds to do this (for a proof of this, see [Mil97, appendix]).

0-handle smoothing: Let h : R ↪→ O be a topological embedding into a smooth 1-manifold O. We
can pull the smooth structure on O back onto R. Now consider a topological ‘immersion’ S1 \ ∗# R,
which must in fact be a topological embedding of an open interval. We can then pull the smooth
structure induced by h onto this open interval to form (S1 \ ∗)O, which by the classification of smooth
1-manifolds must be diffeomorphic to the standard interval. Hence we can extend this smooth structure
onto the circle to form a smooth manifold S1

O. Again by the classification of smooth 1-manifolds, there
exists a diffeomorphism f : S1

O → S1. We then normalise f so that it maps 1 ∈ S1 to itself, and since
f already must induce the identity homomorphism on π1, this means that f lifts to a map on the
universal covers f̃ : RO → R.
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It is not hard to see now, following the proof of 0-handle smoothing for surfaces, how we can
construct a diffeomorphism F̃ : R→ R isotopic to the identity, such that F̃ is the identity outside of
D1 and h ◦ F̃−1 is a smooth embedding.

1-handle smoothing: Let h : I ↪→ O be a topological embedding that is smooth near ∂I. We
can pull the smooth structure on O back onto I, to form a smooth manifold IO which will have the
standard structure near ∂I. We can then decompose IO as I ∪ Ĩ ∪ I, two standard smooth intervals
glued to either end of a possibly non-standard interval. But by the classification of smooth 1-manifolds,
Ĩ is diffeomorphic to the standard interval, and so, possibly after smoothing glueing points, we have
a diffeomorphism f : IO → I which is the identity near the boundary. By the Alexander trick, f is
topologically isotopic to the identity, and this isotopy gives the required smoothing.

Using this handle smoothing to obtain existence and uniqueness results for smooth structures on
topological 1-manifolds, this allows us to now classify topological 1-manifolds. Since the smooth
classification of 1-manifolds says that there are only four such manifolds: the circle, the open interval,
the closed interval and the half-open interval, these must also be the only topological 1-manifolds.

3 Torus trick for 3-manifolds
In this section we present a version of the torus trick for 3-manifolds due to Hamilton [Ham76].

In particular, we will describe an alternative proof of the theorem that every topological 3-manifold
admits a unique PL structure up to isotopy using the torus trick. As we will see, this follows from a
3-dimensional version of the handle straightening theorem. By default, we assume that a manifold is
second-countable.

3.1 The 3-dimensional handle straightening theorem

Recall that in lectures we discussed a CAT handle straightening theorem where CAT is PL or DIFF
for manifolds of dimension 5 or higher (see Theorem 19.1 in the lecture notes). In Section 2 we describe
a similar result for surfaces for CAT=DIFF. In this section, we prove a PL-handle straightening
theorem for 3-manifolds.

We call an PL n-manifold irreducible if every PL (n− 1)-sphere bounds a PL n-ball. The following
Alexander’s theorem says that R3 is irreducible.

Theorem 3.1 (Alexander’s theorem). Every PL-embedded 2-sphere in R3 bounds a PL 3-ball.

Theorem 3.2. Let h : Bk × Rn → R3 be a topological embedding where n+ k = 3 such that h is PL
in a neighbourhood of the boundary ∂(Bk × Rn), then there exists a (topological) isotopy ht from h to
an embedding h1 such that

(1) h1 is PL on Bk ×Bn ⊂ Bk × Rn
(2) ht = h on ∂(Bk × Rn) and Bk × (Rn \ 2Bn) for all t.

As we shall see later, Bk × Rn will be viewed as an open k-handle lies in a chart of an ambient
manifold. The proof of the theorem relies on a number of lemmas, most of which are specific to
3-manifolds. First recall that a PL-immersion is a local PL-embedding. The next result is proved by
Whitehead in 1961.

Lemma 3.3. Every PL n-manifold (n ≤ 3) with no compact, unbounded components admits PL
immersions in Rn.

Indeed, we will only apply Lemma 3.3 to Tn \ ∗ for n ≤ 3 so one can also just quote results from
Section 1 which gives explicit smooth immersions of the n-torus for all n hence PL-immersions. The
proof of Lemma 3.3 is fairly combinatorial and relies on properties of simplicial complexes, so is very
different in flavour compared to the explicit immersions of the tori in Section 1.

A 3-manifold is 1-connected at infinity if every compact subset is contained in another with
1-connected complement.
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Lemma 3.4. Let M be a PL 3-manifold which is 1-connected at infinity and has compact boundary.
Let K be a compact subset of the interior of M , then M contains a compact PL-submanifold A with
∂A = ∂M t S2 ⊂M such that K is contained in the interior of A.

Proof sketch. Without loss of generality we assume thatM \K is simply-connected. Let N be a regular
neighbourhood of K which is contained in finitely many simplices and W = M \ intN connected.
Label the components of ∂N = ∂W by Q1, . . . , Qr. Each component of N \K contains just one Qi, for
suppose Q1 and Q2 are in the same component, we can join then by two arcs, one in N and one in W ,
and this gives a non-trivial loop in M \K. We label the component containing Qi by Ci. We would like
to do some modifications such that all induced maps αi : π1(Qi)→ π1(Ci) and βi : π1(Qi)→ π1(W )
become injective. Once we have done this, we can apply Van-kampen and conclude that all Qi’s are
simply connected hence spheres. Once we’ve done this, we can tubing them together and add the
tubes to N to make it into one single sphere and the theorem is proved.

To do this, let gi denotes the genus of Qi and define non-negative integers c1 = ∑
gi and c2 =∑Max(gi−1, 0). Suppose α1(β1) is not injective, then Dehn’s lemma(see below, lemma3.9) provides an

embedded disk in C1(respectivelyW ) meetingQ1 at the boundary circle which is an non-trival element of
π1(Q1). ThickenD2 up to a 3-cell meeting Q1 at S1×I, then we replace N by N−D2×intI(respectively
by N ∪D2 × intI. Now ∂N = Q′1 ∪ · · · ∪Qr with Q′1 = Q1 − (S1 × I) ∪ (D2 × ∂I).

There are two cases: if S1 is a separating curve, then c2 decreases by 1; if S1 is not separating, then
c1 decreases by 1. In any case, we can continue this procedure until all αi and βi’s are injective. �

We remark that the result clearly also holds in the smooth case.

Definition 3.5. A properly embedded connected surface S in a 3 manifold is called incompressible if
it is not S2 and has trivial normal bundle, and for each 2-disk D in M with D ∩ S = ∂D, there exists
a 2-disk D′ in S with ∂D = ∂D′. The disk D is sometimes called a compressing disk.

Notice that some authors also exclude D2 such that surgery on an incompressible surface only splits
off a copy of S2. But we will allow D2 for our purpose.

Definition 3.6. A PL 3-manifold M is called sufficiently large if it contains an incompressible surface.

A useful criteria of determining incompressible surface is the following: given a surface S other than
S2 with trivial normal bundle, if the induced map π1(S)→ π1(M) on fundamental groups is injective,
then S is incompressible. This is because every nullhomotopic circle in a surface bounds a disk. In
fact, the converse is also true: suppose the induced map is not injective, let f be a null-homotopy of a
non-trivial loop in S. We can deform f such that it is tranverse to S. The preimage f−1(S) consists of
some circles which we can assume all non-trivial by redefine f if necessary. Then the restriction to the
disk bounded by the inner most circle gives a null-homotopy of a non-trivial circle in S. Now Dehn’s
lemma(Lemma 3.9) gives a disk D in M with D ∩ S = ∂D and ∂D non-trivial in S. So S cannot be
incompressible.

If we further require irreducibility then the manifold is called Haken. It is easy to see that Bk × Tn
is sufficiently large for k = 0, 1, 2 (for k = 0, 1, take the obvious embedded torus; for k = 2, take a
properly embedded non-separating disk, for example, any standard disk bounded by a meridian in the
solid torus).

Lemma 3.7. Let M and N be orientable, compact, irreducible PL 3-manifolds with N sufficiently
large and let φ : M → N be a proper PL homotopy equivalence such that φ|∂M is a PL homeomorphism,
then φ is homotopic relative boundary to a PL homeomorphism.

The proof of this lemma is non-trival and involves the properties of incompressible surfaces in
3-manifolds and also properties of Haken manifolds, namely they have a hierarchy. Therefore, we
will not go into the proof but just note that it can be generalised to the smooth case without much
difficulty.
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(a) Triple point (b) Double curve

Figure 27. Two possible singularities

Lemma 3.8 (Alexander’s isotopy: PL-version). (1) If h0 and h1 are two PL-homeomorphisms of
Bn that agree on the boundary Sn−1, then there exists a PL-isotopy ht between them that fixes
Sn−1.

(2) Every PL-homeomorphism of Sn−1 extends to a PL-homeomorphism of Bn.

Proof sketch. The second statement follows directly by coning. For the first one, notice that Bn ×
[−1, 1] ∼= v∗(Sn−1× [−1, 1]∪Bn×{−1, 1}) where ∗ denotes the join operation. Let H : Sn−1× [−1, 1]∪
Bn×{−1, 1} → Sn−1×[−1, 1]∪Bn×{−1, 1} by H|Sn−1×[−1, 1]∪Bn×{−1} and H|Bn×{1} = h1h

−1
0 .

Then apply coning. �

As a remark, in fact, this statement do hold in the smooth case for n = 3 but it’s non-trivial. Indeed,
we have Diff(Sn) ' O(n + 1) × Diff(Dn, ∂) and Smale and Cerf proved that actually Diff(D3, ∂) '
Diff(S2) ' O(3). This is called the Smale conjecture. See Hatcher’s survey [Hat12].

Lemma 3.9 (Generalised Dehn’s lemma). Let M be a connected orientable 3-manifold and f : S →M
be a map from a sphere with n punctures with boundary circles (C1, . . . , Cn) to M such that S is
PL-embedded near its boundary. Then a non-vacuous subset of T = {C1, . . . , Cn}, say (C1, . . . , Cr),
r ≤ n constitute the boundary of an embedded surface S′ agrees with S near T .

Proof. (Sketch) We will only indicate a few ideas but not go into all details. First we claim without
proof that under good conditions, f(S) can be isotoped to be ‘canonical’, i.e., only have the following
types of singularities: double curves and triple points. See Figure 27. For a proof, see lemma 3.2 of
[Pap57].

For simplicity, we only show the case n = 1. First not that we can assume that M is compact and
deformation retracts to f(S). If not, take a subcomplex of M containing f(S) and by subdivision if
necessary and taking the union of the derived complexes containing all vertices in the boundary of
f(S), we can find a compact submanifold deformation retracts to f(S).

Next, we show that the lemma is true if V has no 2-sheeted cover. By assumption, H1(V ) is finite,
otherwise we will have an induced surjective homomorphism from π1(v) to Z2 with an index 2 kernel.
It follows from the universal coefficient theorem and Poincare duality that ∂V is a union of spheres so
we are done.

Now suppose V has a 2-sheeted cover p : V1 → V and let τ be the non-trivial deck transformation.
Then p−1(C) = C1 ∪ τ(C1) where C1 is a curve in V1. It turns out that if C1 satisfies the lemma for
V1, then C satisfies the lemma for V . To see this, let D1 be an embedded disk in V1 with boundary C1
and let D = P (D1). We claim(without proof) that in this case D can be assumed to be canonical.
Then since our cover is 2-sheeted, D can’t have triple either so the only singularity we need to consider
is double curve and one can avoid this but cutting along the double curves and analyse locally(again,
details are in [Pap57]).

Now, let d((f(S)) denote the number of double curves and induct on d by taking double covers
repeatedly, we have the result.

The proof of the general case is similar but more complicated and involves a calculation of the Euler
characteristic and we omit here.([SW58]). �
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Note that when r = 1 this reduces to the usual Dehn’s lemma. Also, we remark that the proof
works equally well in the smooth case.

Recall that a 3-manifold is called prime if it can not be written as a connected sum of two manifolds
with neither of them is S3. The next result is standard:
Lemma 3.10 (Prime decomposition theorem). Every PL compact, orientable 3-manifold is a unique
finite connected sum of prime 3-manifolds up to insertion or deletion of S3’s.
Lemma 3.11. For (Bk ×Tn)Σ (k = 0, 1, 2) where Σ is some PL structure coincides with the standard
structure on Bk ×Bn, there exists a PL structure Σ′ with Σ′ = Σ on Bk ×Bn such that (Bk × Tn)Σ′

is irreducible.
Proof. By the prime decomposition theorem, (Bk×Tn)Σ is a connected sum of PL irreducible manifolds.
But every PL 2-sphere in Bk × Tn bounds a topological 3-ball (to see this, lift to the universal cover)
so all but one prime factors are topological 3-spheres. Therefore, (Bk × Tn)Σ = A ∪ Q where Q
is a topological 3-ball with A ∩ Q = ∂Q ∼= S2. Extend the identity map of A by coning gives a
homeomorphism of Bk × Tn and induces a PL structure Σ′ with (Bk × Tn)Σ′ irreducible and Σ′ = Σ
on A. We will show that Bk ×Bn can be assumed to be contained in A.

For k = 0, (T3 \B3)Σ is 1-connected at infinity so apply Lemma 3.4 to T3 \B3 gives a PL 2-sphere
bounding a PL 3-ball containing B3 in T3. Now choose the prime decomposition such that D is
contained in A.

For k = 1, 2, the generalised Dehn’s lemma provides k surfaces of type (0, n) in (Bk × (2Bn \Bn))Σ
with boundary (∂Bk × ∂1.5Bn)Σ. The union of the surface(s) and (∂Bk × 1.5Bn)Σ is a PL 2-sphere in
(Bk × 2Bn)Σ bounding a PL 3-ball D containing (Bk ×Bn)Σ. Now choose a prime decomposition of
(Bk × Tn)Σ \D and reattach D to the corresponding summand, we get a desired decomposition. �

We are now ready to prove the handle straightening theorem.
Proof of Theorem 3.2. Let Tn \ ∗ be a punctured torus. Let Σ = h−1(standard structure on Bk ×Rn).
For k = 3, h : (B3)Σ → R3 is PL and by coning the identity map of ∂B3 we get a PL homeomorphism
g : (B3)σ → B3 that is identity near the boundary. Here we used the fact that h is PL near ∂B3 so
(B3)Σ is standard near ∂B3. By Lemma 3.8, we get an isotopy gt from the identity to g. Then one
checks that hgt−1 is the desired ambient isotopy.

For k = 0, 1, 2, we constructed a torus trick diagram as follows:
(1) Take an immersion φ1 of Tn \ ∗ in R3. Let α : Bk × (Tn \ ∗)→ Bk × Rn be the product of φ1

and identity. By choosing our immersion carefully, we can assume that the bottom triangle of
Figure 28 commutes. Define Σ1 = α−1(Σ). By construction, Σ1 coincides with the standard
structure on Bk ×Bn.

(2) Extend Σ1 to ∂Bk×Tn by letting it be the standard structure near an open collar N(∂Bk×Tn).
Now (Bk× (Tn \∗)∪N(∂Bk×Tn))Σ1 is 1-connected at infinity, so by Lemma 3.4, it contains a
compact PL submanifold K with boundary (∂Bk×Tn)Σ1 and a 2-sphere S such that Bk×2Bn

is contained in its interior. By lifting to universal covers and apply the Schoenflies theorem,
S bounds a topological 3-ball in Bk × Tn. Extend the identity map of K by coning over S
gives a homeomorphism of Bk × Tn which induces a PL structure Σ2 on Bk × Tn. Note that
since K is compact, coning must fill up all of Bk × Tn. By Lemma 3.11, we may assume
that (Bk × Tn)Σ2 is irreducible. By applying simplicial approximation to the identity map
(Bk × Tn)Σ2 → Bk × Tn and apply Lemma 3.7, the identity map is homotopic relative to
boundary to a PL homeomorphism g as in Figure 28.

(3) Pull Σ2 back to a PL structure Σ3 on Bk × Rn via the universal covering map. By arranging
the inclusion Bk × 2Bn appropriately we can make sure every thing still commutes. Lift g to a
Pl homeomorphism g̃ which is identity on the boundary. By lemma 10.5 in the lecture notes, g̃
has bounded distance from identity.

(4) Let γ : Bk ×Rn → Bk ×Rn be a PL embedding that maps onto (Bk × 2Bn) \ {0} × ∂2Bn and
restricts to identity on Bk ×Bn.(This is very similar to what Hatcher did for surfaces). Let
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(Bk × Rn)Σ4 Bk × Rn

(Bk × Rn)Σ3 Bk × Rn

(Bk × Tn)Σ2 Bk × Tn

(Bk × Tn − ∗)Σ1

(Bk × 2Bn) + Σ (Bk × Rn)Σ R3

G

e

γ

g̃

g

α

h

Figure 28. Torus trick diagram

G = γg̃γ−1 defined on (Bk× 2Bn) \ {0}×∂2Bn and extend it by identity to a homeomorphism
of Bk ×Bn that is identity on the boundary.(Similar to the proof of theorem 19.1 of lecture
notes). Extend G further by identity gives a homeomorphism of Bk × Rn. Define Σ4 =
G−1(Standard structure). By construction, Σ4 = Σ3 on Bk ×Bn.

Now define an isotopy

Gt =
{
Alexander isotopy from the identity to G on Bk × 2Bn

Id Otherwise

One checks that hG−1
0 = h, hG−1

1 is PL on Bk ×Bn and hG−1
t = h on (Bk ×Rn \Bk × 2Bn)∪ ∂Bk ×

Rn(recall that g̃ is identity on the boundary. Thus hG−1
t is the desired isotopy. �

Note that if we replace the simplicial approximation theorem by a version of the smooth approxi-
mation theorem and apply all the smooth versions of our lemmas, we can prove a handle smoothing
theorem as we did in part 2 for surfaces.

3.2 Triangulation of 3-manifolds

Theorem 3.12. (1) Every topological 3-manifold M admits a PL-structure hence a triangulation.
(2) If Σ1 and Σ2 are two PL-structures on M , there exists an ambient isotopy of M from identity

to a PL-homeomorphism between MΣ1 and MΣ2.
We will need a general fact from point-set topology.Recall that a topological space is called normal

if every two disjoint closed sets of have disjoint open neighborhoods. Note that topological manifolds
are normal(for example, one can check this by noticing that they are metrizable).
Lemma 3.13 (Shrinking lemma). Let X be a normal space and U = {Ui} be a locally finite open
cover, then there exists another open cover W = {Wi} such that the closure of Wi is contained in Ui
for all i.

By the classification of surfaces(instead, one can also quote the results from Section 2), every
topological 3-manifold with boundary admits a PL structure on a collar of its boundary. Moreover, if
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Σ1 and Σ2 are two PL-structures on M , then every homeomorphism f : MΣ1 →MΣ2 is isotopic to one
that is PL on a collar of ∂M(for example, by applying the isotopy extension theorem)

Proof of Theorem 3.12. We prove existence first. The idea is to build up a PL structure inductively
by patching up the local PL structures in each chart. Let U = {Ui} be a locally finite(hence countable,
since we assume that M is second countable hence Lindelöf, which gives us countability) cover. By the
paragraph before this proof, the subset U0 of boundary charts can be assumed to be PL compatible.
Relabel the elements of U0 as . . . U−2, U−1, U0 and the rest charts by U1, U2, . . . .

We proceed by induction. Suppose a PL structure has been constructed on Vr = ⋃i=r
i=−∞ Ui and

let V = Ur+1 ∩ Vr with the PL structure inherited from Ur+1. Ur+1 intersects finitely many charts
{Ui}i∈I where I is some indexing set. Apply Lemma 3.13, we can replace Ui by an open subset of Ui
whose closure is contained in Ui for all i ∈ I and get a refined cover W = {Wi}. By triangulating V
we get a handle decomposition of Vr. Let K be the union of all closed 3-simplices with non-empty
intersection with ⋃

i∈I∩{−∞,...,r+1}Wi. Apply Theorem 3.2 to handles corresponding to K in the order
of 0,1,2 and 3-handles, we get a homeomorphism h of V that is PL on K and identity out side a
compact neighbourhood N(K) of K. Then ⋃i=r+1

i=−∞Wi has a well-defined PL-structure inherited from
Vr on

⋃i=r
i=−∞Wi, from Ur+1 on Vr+1 \N(K), and from h on Wr+1 ∩ V .

For uniqueness, first isotope the identity map to a homeomorphism that is PL on some collar c of
∂M . Triangulate M \ ∂M and subdivide such that every simplex is contained in some Σ2-chart of M .
This gives a handle decomposition such that each handle lies in a Σ2-chart. Apply Theorem 3.2 to all
0-handles with non-empty intersection with M \ c and we get an ambient isotopy that is identity on a
smaller collar. Now do the same thing successively for higher dimensional handles and this gives the
desired isotopy. �

As we explained along the way, we could have done the whole proof in the smooth case: Lemma 3.7,
Lemma 3.8, Lemma 3.9, Lemma 3.10 hold in the smooth category. Furthermore, Lemma 2.5 can be
easily generalised to dimension 3 with a similar proof, so our proof of Theorem 3.12 can be easily
modified to a smooth version. However, Lemma 3.8 is a relatively deep result in the smooth case so
this approach is not necessarily an easy one. Instead, one can construct directly a smooth structure for
a PL 3-manifold by defining a version of tangent space for PL manifolds called wieldings. In summary,
we now have an understanding of the sentence: for dimension lower or equal than 3, PL, smooth and
topological categories are equivalent. Note that in dimension 4, this version of the handle straightening
theorem must not true because of the known exotic phenomenons.

Remark 3.14. In dimensions ≤ 7, every PL-structure can be upgraded to a smooth structure, and for
dimension ≤ 6 this associated smooth structure is unique up to isotopy, [Mil11, Thm. 2].

Further reading
− Andrew Ranicki’s slides: ’High dimensional manifold topology, then and now’ (2005)
− Lurie’s lecture notes on Whitehead’s theorem that smooth manifolds admit PL triangulations
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