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Abstract. We investigate the realisability of the Casson-Sullivan invariant for homeomor-

phisms of smooth 4-manifolds, which is the obstruction to a homeomorphism being stably

pseudo-isotopic to a diffeomorphism, valued in the third cohomology of the source manifold with
Z/2-coefficients. We prove that for all orientable pairs of homeomorphic, smooth 4-manifolds

this invariant can be realised fully after stabilising with a single S2 × S2. As an application,

we obtain that topologically isotopic surfaces in a smooth, simply-connected 4-manifold become
smoothly isotopic after sufficient external stabilisations. We further demonstrate cases where

this invariant can be realised fully without stabilisation for self-homeomorphisms, which includes
for manifolds with finite cyclic fundamental group. This method allows us to produce many

examples of homeomorphisms which are not stably pseudo-isotopic to any diffeomorphism but

are homotopic to the identity. Finally, we reinterpret these results in terms of finding examples
of smooth structures on 4-manifolds which are diffeomorphic but not stably pseudo-isotopic.

1. Introduction

1.1. Results. The Casson-Sullivan invariant of a homeomorphism f : X → X ′ of a compact,
smooth 4-manifold X, written cs(f) ∈ H3(X, ∂X;Z/2), is an obstruction to f being isotopic to a
diffeomorphism. It is defined as the Kirby-Siebenmann invariant of the mapping cylinder of f . In
Section 2.4 we will establish the properties of this invariant, but we give a few briefly here before
stating the results. We have that cs(f) = 0 if f is pseudo-isotopic to a diffeomorphism of X (i.e.
if f is pseudo-smoothable) and further that cs(f) = cs(g) if f is pseudo-isotopic to g (Propo-
sition 2.19). In fact, cs defines a crossed homomorphism π̃0 Homeo(X, ∂X) → H3(X, ∂X;Z/2),
where π̃0 Homeo(X, ∂X) denotes the pseudo-mapping class group of X (Proposition 2.20).

We now state the results of the paper. We start with the fact that, for orientable manifolds,
the Casson-Sullivan invariant is fully realisable stably.

Theorem 1.1. Let X and X ′ be compact, connected, smooth, orientable 4-manifolds such that
X ∼= X0#(S2 × S2) and X ′ ∼= X ′

0#(S2 × S2) where X0 ≈ X ′
0, and let η ∈ H3(X, ∂X;Z/2). Then

there exists a homeomorphism f : X → X ′ with cs(f) = η.

Theorem 1.1 will follow immediately from the more technical Theorem 3.2. As an application
of Theorem 3.2 we obtain the following result concerning stable isotopy of surfaces in 4-manifolds.

Theorem 1.2. Let X be a connected, compact, simply-connected, smooth 4-manifold and let
Σ1,Σ2 ⊂ X be a pair of smoothly, properly embedded, orientable surfaces which are topologically
isotopic relative to their boundaries. Then there exists n ≥ 0 such that Σ1 and Σ2 are smoothly
isotopic relative to their boundaries in X#(#nS2 × S2), where the connect-sums are taken away
from Σ1 ∪ Σ2.

Results similar to Theorem 1.2 have been referred to previously (see the introductions in
[AKMR15, AKM+19, HKM23]), but to the best knowledge of the author, a proof of a result
like this has never appeared in the literature. In the above references, it seems to be implicit that
the complement of the surfaces be simply-connected, but we will need no such condition.

We make some remarks on these two theorems. First, two remarks on Theorem 1.1.

Remark 1.3. Theorem 1.1, combined with Proposition 2.23 (due to Freedman-Quinn), recovers
Gompf’s result [Gom84] that homeomorphic compact, connected, smooth, orientable 4-manifolds
are stably diffeomorphic. The same reasoning also shows that Theorem 1.1 cannot be extended
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to the non-orientable case, as there exist compact, connected, smooth, non-orientable 4-manifolds
which are homeomorphic but are not stably diffeomorphic (see [Kre84]). If one considers only
self-homeomorphisms of non-orientable smooth manifolds, then a result like Theorem 1.1 may still
hold.

Remark 1.4. For such a general class of 4-manifolds, we cannot remove the stabilisation assumption
in Theorem 1.1. For example, the Casson-Sullivan invariant is not realisable for X = S1×S3 = X ′

(see Lemma 3.5).

And a remark on Theorem 1.2.

Remark 1.5. If the surface exteriors have trivial or cyclic fundamental groups, we can pair Theo-
rem 1.2 with results concerning when homologous surfaces of the same genus whose exteriors have
isomorphic fundamental groups are (stably) topologically isotopic (see [LW90, HK93, Sun15]).
This gives, in some cases, that smoothly embedded homologous surfaces with the same bound-
aries and of the same genus and whose exteriors have isomorphic fundamental groups are stably
smoothly isotopic. See Corollary 5.6 for the precise statement. This (in some sense) generalises the
result in [AKM+19], although the result there is stronger in the sense that only one stabilisation
is required.

The methods we use to prove Theorem 1.1 lead us the following interesting example, which
demonstrates that the smoothability of a self-homeomorphism of a smooth manifold depends on
the isotopy class of the smooth structure (see Section 6).

Corollary 1.6. Let X = (S1×S3)#(S1×S3)#(S2×S2) with the standard smooth structure and
let g : X → X be the diffeomorphism which swaps the two S1 × S3 connect-summands and is the
identity on the S2×S2 connect-summand. Then there exists a smooth structure S ′ on X, which is
diffeomorphic to the standard smooth structure, but is such that g is not stably pseudo-smoothable
with respect to S ′. In particular, g is not smoothable with respect to S ′ (g is not isotopic to a
diffeomorphism).

We now restrict to considering self-homeomorphisms. The next result concerns a class of 4-
manifolds where it is possible to remove the stabilisation assumption in Theorem 1.1. This theorem
will be stated in terms of a certain “realisability condition”, which is defined fully in Definition 4.11.
Instead of giving an informal definition of this condition, we will state some classes of 4-manifolds
for which it applies.

The Casson-Sullivan realisability condition is satisfied for 4-manifolds whose fundamental groups
are in the following classes.

(i) Finite cyclic groups Z/n.
(ii) Groups of the form Z/(2n)× Z/2.
(iii) Groups of the form (Z/2)n.
(iv) Dihedral groups Dn.

The above list is not exhaustive (for more information see Section 4.4). It should also be noted
that the condition holds for all manifolds with odd order fundamental groups, however, this class
is not interesting as in these cases H3(X, ∂X;Z/2) = 0 and hence the Casson-Sullivan invariant
is trivially realisable.

Theorem 1.7. Let X be a compact, connected, smooth, orientable 4-manifold with π1(X) a good
group such that X satisfies the Casson-Sullivan realisability condition (Definition 4.11). Then for
every class η ∈ H3(X, ∂X;Z/2) there exists a homeomorphism f : X → X with cs(f) = η.

Remark 1.8. By ‘good’ in Theorem 1.7 we mean in the sense of Freedman-Quinn (see [FQ90,
Chapter 2.9] or [BKK+21, §19] for a definition). It is known that the set of good groups includes
elementary amenable groups, as well as groups of sub-exponential growth. In particular, all finite
groups are good, so the groups listed above as satisfying the Casson-Sullivan realisability condition
are also good. However, it should be noted that we do not show that the realisability condition
implies that the group is good.
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As a corollary to the proof of this theorem we obtain the following.

Theorem 1.9. Let X be a compact, connected, smooth, orientable 4-manifold with π1(X) a good
group such that X satisfies the Casson-Sullivan realisability condition (Definition 4.11). Then
there exists a family of homeomorphisms {fη : X → X | 0 ̸= η ∈ H3(X, ∂X;Z/2)} all distinct
up to pseudo-isotopy (relative to the boundary) such that each element fη is not stably pseudo-
smoothable but each fη is homotopic to the identity map.

Remark 1.10. We quickly demonstrate that the class of manifolds for which Theorem 1.9 applies
non-trivially is non-empty. Recall that for any finitely generated group G there exists a closed,
connected, smooth, oriented 4-manifold X with π1(X) ∼= G. For n ≥ 2 let X be such a 4-manifold
for G = Z/n (which is in case (i) above). For n even we have that H3(X;Z/2) ∼= Z/2 and hence
Theorem 1.9 applies non-trivially to X.

We will also discuss the consequences of Theorem 1.1 and Theorem 1.7 in terms of non-isotopic
but diffeomorphic smooth structures on 4-manifolds. All of the concepts will be defined in Sec-
tion 6. We have the following theorems.

Theorem 1.11. Let X be a 4-manifold such that X ∼= X ′#(S2×S2) for some compact, connected,
smooth, orientable 4-manifold X ′ and let S denote the smooth structure on X. Then for every
non-zero η ∈ H3(X, ∂X;Z/2) there exists a smooth structure Sη on X which is not stably pseudo-
isotopic (relative to the boundary) to S but XS is diffeomorphic to XSη

. Furthermore, the
elements of this family of smooth structures {Sη} are pairwise distinct up to stable pseudo-isotopy.

Theorem 1.12. Let X be a compact, connected, smooth, orientable 4-manifold with π1(X) a good
group which satisfies the Casson-Sullivan realisation condition (Definition 4.11). Let S denote
the smooth structure on X. Then for every non-zero η ∈ H3(X, ∂X;Z/2) there exists a smooth
structure Sη on X which is not stably pseudo-isotopic to S but XS is diffeomorphic to XSη

.
Furthermore, the elements of this family of smooth structures {Sη} are pairwise distinct up to
stable pseudo-isotopy.

1.2. Background.

1.2.1. Non-smoothable homeomorphisms. Non-smoothable homeomorphisms have been studied
extensively for simply-connected 4-manifolds. The first examples were due to Friedman-Morgan
[FM88] on Dolgachev surfaces, detected using Donaldson invariants. Since then, many examples
have been found, all detected using gauge-theoretic invariants. For a brief survey of these results,
see [GL23, Section 1.3].

Outside of the simply-connected case, much less was known. Cappell-Shaneson-Lee [CS71,
Lee70] and Scharlemann-Akbulut [Sch76, Akb99] produced examples of homotopy equivalences
f : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2) which are not homotopic to diffeomorphisms. It
was shown by Wang [Wan93, Chapter 6.2] that the Cappell-Shaneson-Lee construction could be
improved to finding a non-smoothable homeomorphism f : (S1×S3)#(S2×S2) → (S1×S3)#(S2×
S2) (the reader should note that Wang states that this implies the existence of an exotic smooth
structure on (S1×S3)#(S2×S2), when it actually gives a non-isotopic but diffeomorphic smooth
structure; see Section 6 for more information). In Section 3 we will show that this homeomorphism
has non-trivial Casson-Sullivan invariant.

1.2.2. History of the Casson-Sullivan invariant. The Manifold Hauptvermutung is the following
conjecture: ‘every homeomorphism f : M → N between two PL manifolds is homotopic to a
PL-homeomorphism’. There is also the related conjecture, called the Isotopy Manifold Hauptver-
mutung: ‘every homeomorphism f : M → N between two PL manifolds is isotopic to a PL-
homeomorphism’. The work of Casson and Sullivan [Cas96, Sul96] showed that the Isotopy
Manifold Hauptvermutung is true for simply-connected n-manifolds of dimension n ≥ 5 pro-
vided that H3(N ;Z/2) = 0, by considering a certain obstruction class ω ∈ H3(N ;Z/2). In fact,
they also showed that the (homotopy) Manifold Hauptvermutung is true for simply-connected n-
manifolds of dimension n ≥ 5 provided that H4(N ;Z) contains no 2-torsion. Later work of Kirby-
Siebenmann [KS77], crucially using the classification of PL homotopy tori by Hsiang-Shaneson and
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Wall [HS71, Wal70], showed that the Manifold Hauptvermutung is false in general in all dimensions
n ≥ 5, and, in particular, showed that the Casson-Sullivan class is precisely the obstruction to the
Isotopy Manifold Hauptvermutung. This also gave a very slick definition of the Casson-Sullivan
invariant of a homeomorphism as the Kirby-Siebenmann invariant of the mapping cylinder of the
given homeomorphism.

The Casson-Sullivan invariant can similarly be defined for 4-manifolds, where, since there is
no difference between the PL and smooth categories (for our purposes), we can consider it as an
obstruction to smoothing homeomorphisms. Freedman-Quinn [FQ90] showed that the Casson-
Sullivan invariant is the unique obstruction to stably pseudo-smoothing a homeomorphism (see
Proposition 2.23).

1.3. Outline. The contents of this paper are organised as follows. In Section 2 we define the
Casson-Sullivan invariant and establish its fundamental properties, including proving a certain
“connect-sum along a circle” formula for it (Theorem 2.31). In Section 3 we prove the technical
stable realisation result Theorem 3.2, which will immediately imply Theorem 1.1. We then prove
Corollary 1.6 in Section 3.3. In Section 4 we prove the unstable realisation result, Theorem 1.7,
and discuss the consequence, Theorem 1.9. We will also discuss some partial realisation results
in Section 4.5. Section 5 concerns stable smooth isotopy of surfaces, and is where we will prove
Theorem 1.2, as an application of Theorem 3.2. In Section 6 we discuss how to interpret these
results in terms of finding non-isotopic but diffeomorphic smooth structures on 4-manifolds.

1.4. Acknowledgements. I would like to thank Mark Powell for suggesting this project, and for
his generous assistance throughout the process of writing this paper. I would also like to thank
Stefan Friedl, Matthias Kreck, Alexander Kupers, Csaba Nagy, Patrick Orson, Arunima Ray,
Peter Teichner and Simona Veselá for various helpful conversations and comments. I am grateful
to the Max Planck Institute for Mathematics in Bonn, where I was staying during a portion of my
writing of this paper, and also to the University of Glasgow, whom I was financially supported by.

1.5. Notation. Some notation before we begin. ForX and Y (smooth) manifolds we writeX ∼= Y
when X is diffeomorphic to Y , X ≈ Y when X is homeomorphic to Y , and X ≃ Y when X is
homotopy equivalent to Y . We will denote the connect-sum operation on manifolds by #, and the
k-fold connect-sum of a manifold X as #kX. For a submanifold Σ ⊂ X we will denote its open
tubular neighbourhood by νΣ, and its closed tubular neighbourhood by νΣ.

2. The Casson-Sullivan invariant

In this section we define the Casson-Sullivan invariant and prove some of its fundamental
properties. The Casson-Sullivan invariant is named for Andrew Casson and Dennis Sullivan, and
the canonical reference is the collection of papers edited by Andrew Ranicki [RCS+96].

We begin in Section 2.1 by stating the relevant theory about microbundles and classifying
spaces which we will need to define the invariant in Section 2.2. We then establish the Casson-
Sullivan invariant’s fundamental properties in Section 2.4, before finishing this section by proving
a “connect-sum along a circle” formula for the invariant in Section 2.5.

2.1. Microbundles and classifying spaces. Let TOP(k) = {g : Rk ≈−→ Rk|f(0) = 0} and
let O(k) be the group of orthogonal k-dimensional matrices. Then there are obvious inclusions
TOP(k) ↪→ TOP(k + 1) and O(k) ↪→ O(k + 1), and we denote the corresponding direct limits
as TOP and O, respectively. We will use the notation CAT to stand in for TOP and O. The
classifying spaces BTOP and BO then classify stable Rn fibre bundles and stable vector bundles,
respectively. The universal stable vector bundle has an underlying stable topological Rn fibre
bundle and its classifying map will be denoted as ξ : BO → BTOP. Similarly, let BDIFF and
BTOP denote the classifying spaces of stable DIFF-microbundles and stable TOP-microbundles,
respectively (see [KS77, Essay IV, §10]), and let ξ′ denote the classifying map of the universal
DIFF-microbundle’s underlying TOP-microbundle.
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Lemma 2.1. Let CAT stand in for TOP or O. Let uCAT : BCAT → BCAT denote the classifying
map of the universal stable CAT-bundle’s underlying stable CAT-microbundle. Then uCAT is a
homotopy equivalence.

Proof. The Kister-Mazur theorem [Kis64, KL66, SGH73] gives that isomorphism classes of stable
CAT bundles over a CW-complex X are in one-to-one correspondence with isomorphism classes of
stable CAT-microbundles overX. This means that there is a natural bijection κCAT : [X,BCAT] ↔
[X,BCAT] defined as the composition of the natural bijections

[X,BCAT] → CAT(X) → MicCAT(X) → [X,BCAT]

where CAT(X) denotes the set of isomorphism classes of stable CAT-bundles overX (i.e. stable Rn

fibre bundles if CAT = TOP and stable vector bundles if CAT = DIFF) and MicCAT(X) denotes
the set of isomorphism classes of stable CAT-microbundles over X. In fact, by the definition we
can conclude that κCAT = (uCAT)∗. Then naturality gives the following commutative diagram.

[BCAT,BCAT] [BCAT,BCAT]

[BCAT,BCAT] [BCAT,BCAT]

(uCAT)∗

(uCAT)∗

(uCAT)∗ (uCAT)∗

By a simple diagram chase one can see that there exists an element f ∈ [BCAT,BCAT] such that
(uCAT)

∗(f) = IdBCAT and such that (uCAT)∗(f) = IdBCAT
. Hence f is the homotopy inverse of

uCAT, completing the proof. □

Now replace BO and BDIFF by homotopy equivalent spaces (which we still denote in the same
manner) such that ξ and ξ′ become fibrations. We have the following square which is a homotopy
pullback

BO BDIFF

BTOP BTOP

uDIFF

ξ ξ′

uTOP

and it follows that the fibres of ξ and ξ′ are homotopy equivalent. We will denote this space
as TOP/O. Boardman-Vogt [BV68] showed that we can ‘deloop’ this fibre to obtain a space
B(TOP/O) and that we can extend ξ to the right to obtain the fibration sequence

TOP/O → BO ξ−→ BTOP
p−→ B(TOP/O).

By the above exposition, we can dispense with considering BTOP and BDIFF and we will consider
the classifying map of a TOP-microbundle to be a map to BTOP and the classifying map of a
DIFF-microbundle to be a map to BO. This is helpful as much is known about the homotopy
types of BO, BTOP and TOP/O, whereas it is useful to work solely with CAT-microbundles,
rather than passing between microbundles and vector bundles depending on the category.

2.2. Definition of the Casson-Sullivan invariant. Let X be an n-dimensional topological
manifold with (potentially empty) boundary ∂X. Further assume that we already have a smooth
structure on the boundary ∂X. The manifold X admits a stable topological tangent microbundle
tX : X → BTOP. The first obstruction for X to be smoothable is to be able to lift tX to a stable
DIFF-microbundle τX : X → BO which extends the lift τ∂X which is already defined on ∂X, which
we have since we already supposed the existence of a smooth structure on the boundary. We have
the following diagram

BO

∂X X BTOP

B(TOP/O)

ξ

τ∂X

τX

tX
p
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It is known [KS77, Essay IV, §10.12] that there is a 6-connected map TOP/O → K(Z/2, 3),
and this means we can consider the composite as p ◦ tX as a map X → K(Z/2, 4) since X is
4-dimensional. The lift τ∂X corresponds to a null-homotopy ht(τ∂X) of p ◦ (tX|∂X) and, since the
inclusion ∂X → X is a cofibration, this homotopy extends to a homotopy

h̃t(τ∂X) : X × I → B(TOP/O)

such that h̃0(τ∂X) = p ◦ tX and such that h̃1(τ∂X) defines an element

h̃1(τ∂X) ∈ [(X, ∂X), (K(Z/2, 4), ∗)] ∼= H4(X, ∂X;Z/2).

Definition 2.2. Let (X, ∂X) be as above. We define the Kirby-Siebenmann invariant

ks(X, ∂X) := h̃1(τ∂X) ∈ H4(X, ∂X;Z/2).

Theorem 2.3 ([KS77, Essay IV, §10], [FQ90, Corollary 8.3D]). The stable tangent microbundle
of Xn for 4 ≤ n ≤ 7, written as tX : X → BTOP, lifts to a stable tangent bundle τX extending
the already specified lift on ∂X if and only if ks(X) = 0 ∈ H4(X, ∂X;Z/2).

Remark 2.4. In the high-dimensional case (n ≥ 5) this is the first in a sequence of obstructions
(and for n = 5, 6, 7 it is the only one), and the vanishing of all of these obstructions implies the
existence of a smooth structure on X extending the given one on ∂X. However, for n = 4 we do
not have the corresponding geometric outcome if ks(X) = 0. For example, the manifold E8#E8

has vanishing Kirby-Siebenmann invariant but does not admit a smooth structure. Instead, one
gets that ks(X) = 0 implies that there exists some k ≥ 0 such that X#k(S2×S2) admits a smooth
structure [FQ90, Section 8.6].

Remark 2.5. The Kirby-Siebenmann invariant is usually defined as the obstruction to lifting
the stable TOP-microbundle to a stable PL-microbundle, where PL denotes the piecewise linear
category. However, in the dimensions that we will examine there is no difference between the
DIFF and PL categories, so we will ignore this. Indeed, there is a 6-connected map from TOP/O
to TOP /PL, and TOP /PL is homotopy equivalent to K(Z/2, 3). We will say no more about the
PL category in this paper.

Definition 2.6. Let X be a 4-manifold with (potentially empty) boundary ∂X. We say that X
is formally smoothable if there exists a lift of the stable tangent microbundle tX : X → BTOP to
a stable DIFF-microbundle τX : X → BO extending the already specified lift on ∂X. We call any
such lift a formal smooth structure. Equivalently (by Theorem 2.3), X is formally smoothable if
the Kirby-Siebenmann invariant ks(X) = 0 ∈ H4(X, ∂X;Z/2). We say that X is formally smooth
if it is equipped with a choice of lift τX .

Remark 2.7. A smooth structure on a topological manifold determines a canonical formal smooth
structure after choosing a Riemannian metric on the manifold. This is proved by first showing
that after choosing a Riemannian metric we have a canonical bundle isomorphism between a
smooth manifold’s tangent bundle and its normal bundle in the diagonal embedding (see [MS74,
Lemma 11.5]), and then observing that the normal bundle of the diagonal embedding’s underlying
topological microbundle has a canonical microbundle isomorphism to the tangent microbundle of
the manifold. Since the space of Riemannian metrics on a smooth manifold is contractible, this
means that a smooth structure on a topological manifold determines an essentially unique formal
smooth structure.

We wish to define the Casson-Sullivan invariant as the Kirby-Siebenmann invariant of the map-
ping cylinder of a homeomorphism, but there is a subtlety that must be addressed first. Let
f : X → X ′ be a homeomorphism of (formally) smooth manifolds. Let tX , tX′ denote the classi-
fying maps of the TOP-microbundles of X and X ′ and let τX and τX′ denote their corresponding
lifts to BO given by their (formal) smooth structures. The pullback f∗(τX′) = τX′ ◦ f is not a lift
of tX immediately (rather, it is a lift of tX′ ◦ f), but there is a homotopy which is unique up to
homotopy to make it a lift of tX .

Lemma 2.8. There is a homotopy h(f)t : X × I → BTOP such that h(f)0 = tX′ ◦ f and h(f)1 =
tX , which is unique up to homotopy.
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Proof. The homeomorphism f induces a canonical microbundle isomorphism between the mi-
crobundles tX and the pullback bundle f∗(tX). Use this isomorphism to form the mapping cylin-
der of microbundles on X × I and denote this by X(f). By Kirby-Siebenmann [KS77, Essay IV,
Proposition 8.1], TOP-microbundles over X × I which restrict to tX and f∗(tX) on either end are
in one-to-one correspondence with homotopy classes of maps X × I → BTOP restricting to the
classifying maps tX and tX′ ◦ f . Since X is such a TOP-microbundle, we get a well-defined up to
(relative) homotopy map h′(f) : X × I → BTOP such that h′(f)0 = tX and h′(f)1 = tX′ ◦ f , i.e.
a homotopy between these classifying maps that is well-defined up to (relative) homotopy. Taking
the reverse homotopy gives the desired homotopy from tX′ ◦ f to tX .

To get uniqueness of this homotopy up to homotopy, one can again use Kirby-Siebenman [KS77,
Essay IV, Proposition 8.1] on (X × I)× I, and then use the same argument as above. □

Since the map ξ : BO → BTOP is a fibration, we can lift the homotopy h(f)t from Lemma 2.8

to a homotopy h̃(f)t such that h̃(f)0 = τX′ ◦f = f∗(τX′) and such that h̃(f)1 is a lift of tX . Since
this homotopy is unique up to homotopy, we will cease to mention this and instead whenever we
write f∗(τX′) it should be taken to mean that we have homotoped this such that it is a lift of tX
(in the unique way). In fact, one can extend the argument in the proof of Lemma 2.8 to see that
all higher homotopies are unique up to homotopy, etc., and hence there is an essentially unique
classifying map for the tangent microbundle. We will not need this stronger statement.

Remark 2.9. Lemma 2.8 gives us immediately that the Kirby-Siebenmann invariant is natural with
respect to homeomorphisms. More precisely, it implies that for a homeomorphism of topological
manifolds f : X → X ′ we have that ks(X) = f∗ ks(X ′), since the homotopy classes of maps repre-
senting these cohomology classes are clearly homotopic by Lemma 2.8. By an analogous argument,
the Kirby-Siebenmann invariant is also natural with respect to inclusion of open submanifolds.

We now define the Casson-Sullivan invariant.

Definition 2.10. Let X and X ′ be n-dimensional (formally) smooth manifolds with (potentially
empty) boundaries ∂X ∼= ∂X ′ and let f : X → X ′ be a homeomorphism restricting to a fixed
diffeomorphism on the boundary. Let Mf be the mapping cylinder

Mf :=
(X × I) ⊔X ′

({x} × {1}) ∼ f(x)

and note that τX ∪∂ f
∗(τX)′ defines a lift of tMf

on ∂Mf .

By Poincaré duality we have H3(X, ∂X;Z/2) ∼= Hn−3(X;Z/2), and by the homotopy equiva-
lence given by the inclusion X ↪→ Mf , we have that Hn−3(X;Z/2) ∼= Hn−3(Mf ;Z/2). Poincaré
duality inverse then gives an isomorphism Hn−3(Mf ;Z/2) ∼= H4(Mf , ∂Mf ;Z/2). Composing all
of these isomorphisms gives an isomorphism

ϖ : H3(X, ∂X;Z/2)
∼=−→ H4(Mf , ∂Mf ;Z/2). (2.1)

We then define the Casson-Sullivan invariant cs(f) as

cs(f) := ϖ−1(ks(Mf , ∂Mf )) ∈ H3(X, ∂X;Z/2).

Remark 2.11. It will often be useful for us to think of cs(f) instead as the element

ϖ(cs(f)) ∈ H4(Mf , ∂Mf ;Z/2).

In the rest of this paper, we will reserve the symbol ϖ to always mean the isomorphism given in
Equation (2.1) so that is clear when we are going between these two elements.

Remark 2.12. We now explicitly describe the homotopy class of the map corresponding to the
Casson-Sullivan invariant in the following way which will be useful for proofs. Take the map p◦τX×I

and then use the null-homotopies defined by τX and f∗τ ′X (glued over the null-homotopy for ∂X×I)
to construct a relative map (X × I, ∂(X × I)) → (B(TOP/O), ∗), which is relatively homotopic
to ϖ cs(f) by construction. We will refer to this relative class as the homotopy class of p ◦ τX×I

extended by the null-homotopies τX and f∗τX .
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In this paper we will consider only homeomorphisms of 4-manifolds. In this case it is clear
by Poincaré duality that the Casson-Sullivan invariant vanishes for all homeomorphisms if X is
simply-connected.

2.3. Dependence of the Casson-Sullivan invariant on smooth structures. This subsection
is devoted to describing the extent to which the Casson-Sullivan invariant depends on the choice of
a (formal) smooth structure. We will begin by giving a different definition for the Casson-Sullivan
invariant which more naturally exhibits it as an element of H3(X, ∂X;Z/2).

Let f : X → X ′ be a homeomorphism and let X be a smoothable 4-manifold with boundary
∂X. For any choice of lifts τX , τX′ of the topological tangent bundles tX , tX′ we have the following
(very non-commutative) diagram, augmented from Section 2.2.

TOP/O

BO

∂X X BTOP

B(TOP/O)

ι

ξ

τ∂X

δ(f,τX ,τX′ )

τX

f∗(τX′ )

tX p

We will now work to define δ(f, τX , τX′) in the diagram, but roughly one should think of it as the
‘difference’ between the lifts τX and f∗(τX′). First, note that we have an action of [X, ∂X; TOP/O]
on homotopy classes of lifts of the stable tangent microbundle to BO, defined using the H-space
structure on BO which we will denote by the symbol ⊕.

Lemma 2.13. Let (X, ∂X) be a topological 4-manifold with boundary and stable tangent mi-
crobundle tX . There is a well-defined action of [X, ∂X; TOP/O] on lifts of the stable tangent
microbundle to BO defined by

δ · τX := τX ⊕ ιδ

and furthermore this action is free and transitive.

Proof. Let τX : X → BO be a lift of tX and let [X, ∂X;BO, ∗]tX denote homotopy classes of lifts
of tX (i.e. lifts of tX up to homotopy through lifts of tX). By [Bau77, Theorem 1.3.8], and the
surrounding discussion, there is a bijection

[X, ∂X; TOP/O] → [X, ∂X;BO, ∗]tX
given by δ 7→ τX ⊕ ιδ. This induces an action via the H-space structure on TOP/O and it being
free and transitive follows by the above map being a bijection. □

We can now define δ(f, τX , τX′). By Lemma 2.13 the lifts τX and f∗(τX′) determine a unique
element which we denote as δ(f, τX , τX′) in [X, ∂X; TOP/O] such that δ(f, τX , τX′)·τX = f∗(τX′).

Proposition 2.14. Let X be a formally smoothable topological 4-manifold and f : X → X ′ a
homeomorphism. Let τX and τ̃X be two lifts of the stable tangent microbundle of X, let τX′ and
τ̃X′ be two lifts of the stable tangent microbundle of X ′, let a ∈ [X, ∂X; TOP/O] be the unique
element given by Lemma 2.13 such that a · τX = τ̃X and similarly let b be such that b · τX′ = τ̃X′ .
Then

a+ δ(f, τ̃X , τ̃X′) = f∗(b) + δ(f, τX , τX′).

Hence it follows that if X = X ′, τX = τ ′X , τ̃X = τ̃X′ , and f acts trivially on H3(X, ∂X;Z/2) then
δ(f) is defined and does not depend on the choice of lift of the stable tangent microbundle of X.
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Proof. We have that

(a+ δ(f, τ̃X , τ̃X′)) · τX = δ(f, τ̃X , τ̃X′) · (a · τX) = δ(f, τ̃X , τ̃X′) · τ̃X = f∗τ̃X′ ,

where the first equality is given by using the action, the second from the definition of a, and the
third from the definition of δ(f, τ̃X , τ̃X′). We also have that

(f∗(b) + δ(f, τX , τX′)) · τX = f∗(b) · (δ(f, τX , τX′) · τX) = f∗(b) · f∗τX′ = f∗(b · τX′) = f∗τ̃X′ ,

where the first equality is again given by using the action, the second from the definition of
δ(f, τX , τX′) · τX), the third by the fact that the H-space structure is compatible with taking
pre-composition by the homeomorphism f , and the final equality comes from the definition of b.
Since the action of [X,TOP/O] is free by Lemma 2.13, this completes the proof. □

It remains to be seen that this definition for δ(f) matches up with the definition of the Casson-
Sullivan invariant, given as the Kirby-Siebenmann invariant of the mapping cylinder.

Proposition 2.15. Let X and X ′ be formally smooth topological 4-manifolds with formal smooth
structures τX and τX′ , respectively. Furthermore, let f : X → X ′ be a homeomorphism. Then
δ(f, τX , τX′) = cs(f).

Proof. By Remark 2.12 we can consider the Casson-Sullivan invariant as a relative homotopy class
cs(f) ∈ [(ΣX+, {pt}),B(TOP/O)], where Σ denotes the reduced suspension and X+ denotes X
with a disjoint basepoint added. By the loopspace-suspension adjoint (and that B(TOP /O) is
the delooping of TOP /O), this gives an element cs(f) ∈ [(X+, {pt}),TOP/O]. By construction,
this element sends τX to f∗τX′ under the action of Lemma 2.13, completing the proof. □

If we put together the previous two propositions, we immediately receive the following corollary.

Corollary 2.16. Let X and X ′ be topological manifolds each with two (formal) smooth structures
S 1

X and S 2
X , and S 1

X′ and S 2
X′ , respectively. Denote the corresponding lifts of the stable tangent

microbundle by τX and τ̃X , and τX′ and τ̃X′ , respectively. Let f : X → X ′ be a homeomorphism,
and let cs(f,S 1

X ,S
1
X′) and cs(f,S 2

X ,S
2
X′) denote the Casson-Sullivan invariants of f with respect

to the corresponding (formal) smooth structures. Let a ∈ [X, ∂X; TOP/O] be the unique element
given by Lemma 2.13 such that a · τX = τ̃X , and similarly let b be the unique element such that
b · τX′ = τ̃X′ . Then we have that

a+ cs(f,S 1
X ,S

1
X′) = f∗(b) + cs(f,S 2

X ,S
2
X′).

Proof. The proof is immediate from Proposition 2.14 and Proposition 2.15. □

If we only consider self-homeomorphisms, then τX = τX′ , τ̃X = τ̃X′ and a = b, giving the
formula

a+ cs(f,S 1
X) = f∗(a) + cs(f,S 2

X).

This means, for f a self-homeomorphism, we can define cs(f) not only for smooth 4-manifolds,
but also for smoothable manifolds in the case where all self-homeomorphisms must act trivially
on H3(−;Z/2). For example, this occurs if the fundamental group is cyclic. In fact, in these
cases one could also define cs(f) for non-smoothable manifolds by first removing a point, and then
using the fact that all topological 4-manifolds admit a smooth structure away from a point [FQ90,
Section 8.2]. We will not pursue this in the rest of the paper, and instead simplify matters by only
considering our manifolds to be smooth.

2.4. Properties. We now establish properties of the Casson-Sullivan invariant. We begin by
showing that it is a pseudo-isotopy invariant.

Definition 2.17. Let X and X ′ be a pair of topological manifolds and let f, g : X → X ′ be a
pair of homeomorphisms. If X has boundary then f and g restrict to a fixed homeomorphism
f0 : ∂X → ∂X ′. We say that f is pseudo-isotopic to g if there exists a homeomorphism, called a
pseudo-isotopy

F : X × I → X ′ × I

such that
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(i) F |∂X×I = f0 × Id,
(ii) F |X×{0} = f : X × {0} → X × {0},
(iii) F |X×{1} = g : X × {1} → X × {1}.
We say that f and g are isotopic if they are pseudo-isotopic via a level-preserving pseudo-isotopy.

Now let X and X ′ be smooth manifolds and f : X → X ′ be a homeomorphism such that f
restricts to a fixed diffeomorphism f0 : ∂X → ∂X ′. We say that f is smoothable if f is isotopic to
a diffeomorphism. We say that f is pseudo-smoothable if f is pseudo-isotopic to a diffeomorphism.

Remark 2.18. The above definition gives that a homeomorphism is smoothable if it is isotopic rela-
tive to the boundary to a diffeomorphism. One could ask whether a homeomorphism is smoothable
in the weaker sense if it is (pseudo-)isotopic to a diffeomorphism through a (pseudo-)isotopy that
does not fix the boundary. In the case of isotopies of 4-manifolds these are equivalent (see [GL23,
Lemma 5.3]). In the case of pseudo-isotopies these are not the same, which is a consequence of
Theorem 1.7 that will not be explored in this paper.

By definition isotopy implies pseudo-isotopy, so if we can obstruct a homeomorphism from being
pseudo-smoothable, it cannot be smoothable either.

Proposition 2.19. Let X and X ′ be smooth manifolds and let f, g : X → X ′ be a pair of home-
omorphisms.

(1) If f is pseudo-smoothable then cs(f) = 0.
(2) If f is pseudo-isotopic to g then cs(f) = cs(g).

Proof. We begin with the proof of (1). Let SX and SX′ denote the smooth structures on X
and X ′, respectively. Note that W (f) is homeomorphic to X× I but with the additional specified
smooth structures on the boundary, so cs(f) = 0 if we can find a smooth structure on X×I which
restricts to the given smooth structures SX and f∗(SX′) on the two boundary pieces (glued along
the product smooth structure S∂X×I). Let F be the hypothesised pseudo-isotopy between f and

the diffeomorphism and denote this diffeomorphism by f̃ . Use the pseudo-isotopy F to pull back
the product structure SX′ × I to F ∗(SX × I) on X × I. We then have that F ∗(SX × I)|X×{0} =

(f̃)∗(SX′) = SX since f̃ is a diffeomorphism and F ∗(SX × I)|X×{1} = f∗(SX′) and together
these mean that cs(f) = 0.

Now we prove (2). As in Remark 2.12, ϖ cs(f) is the homotopy class of p◦τX×I extended by the
null-homotopies given by SX and f∗(SX′). Similarly, ϖ cs(g) is the homotopy class of p ◦ τX×I

extended by the null-homotopies given by SX and g∗(SX′). Let F be the pseudo-isotopy from g
to f . Then F ∗(SX′ × I) describes a null-homotopy of p ◦ τX×I extended by the null-homotopies
given by f∗(SX′) and g∗(SX′), i.e. a homotopy between the null-homotopies given by f∗(SX)
and g∗(SX). This gives us a homotopy relative to the boundary between the relative homotopy
classes defining ϖ cs(f) and ϖ cs(g), and hence cs(f) = cs(g). □

We can say more in the case of self-homeomorphisms. Let π̃0 Homeo(X, ∂X) denote the pseudo-
mapping class group of X relative to ∂X, i.e. the quotient of Homeo(X, ∂X) by those homeomor-
phisms which are pseudo-isotopic to the identity (see Definition 6.2 and Remark 6.3). Then we
have the following result.

Proposition 2.20. Let X be a smooth 4-manifold. Then the map

cs : π̃0 Homeo(X, ∂X) → H3(X, ∂X;Z/2)

sending a representative of a pseudo-isotopy class of self-homeomorphisms to its Casson-Sullivan
invariant is a crossed homomorphism. In other words, if f, g : X → X are representatives of
pseudo-isotopy classes of self-homeomorphisms then

cs(g ◦ f) = cs(f) + f∗ cs(g).

Proof. We first note that the well-definedness of the above map follows directly from Proposi-
tion 2.19. It suffices to show that for two self-homeomorphisms f, g : X → X, we have that
cs(g ◦ f) = cs(f) + f∗ cs(g).
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We begin by giving a method for describing the group operation on [X × I, ∂;K(Z/2, 4)]. The
normal way to define this is by using the highly-connected map B(TOP/O) → ΩK(Z/2, 5) and
then using composition of loops to define the group operation (see [Hat02, Section 4.3]). However,
we also have that [X × I, ∂;K(Z/2, 4), ∗] = [ΣX+, {pt};K(Z/2, 4), ∗], where X+ := X ⊔ {pt} and
ΣX+ denotes the reduced suspension of X+. Hence, [X × I, ∂;K(Z/2, 4)] has a natural operation
by ‘stacking’ cylinders given by the natural group operation coming from the reduced suspension.
By the suspension-loopspace adjoint relation,

[ΣX+, {pt};K(Z/2, 4), ∗] = [X+, {pt}; ΩK(Z/2, 4), ∗] = [X+, {pt}; ΩΩK(Z/2, 5), ∗]
and the group operation given by ‘stacking’ corresponds to the group operation given by the
outermost loopspace on the right. The standard group operation comes from the inner loopspace
structure, but these two are equivalent.

Let SX denote the smooth structure on X. Consider the homotopy class of maps corresponding
to ϖ(cs(f) + f∗ cs(g)) = ϖ cs(f) + (f × Id)∗ϖ cs(g). (Here we used that ϖ from Definition 2.10.
We again use the terminology in Remark 2.12. This corresponds to stacking the homotopy class
of p ◦ τX×I extended by the null-homotopies given by SX and f∗(SX) with the homotopy class
of p ◦ τX×I extended by the null-homotopies given by f∗(SX) and (g ◦ f)∗(SX). But this is
relatively homotopic to the homotopy class of p ◦ τX×I extended by the null-homotopies given by
SX and (g ◦ f)∗(SX). The relative homotopy is given by the null-homotopy corresponding to
(f × Id)∗(SX × I). This completes the proof. □

Remark 2.21. If X is such that all self-homeomorphisms must act trivially on H3(X, ∂X;Z/2), for
example if π1(X) is cyclic, then Proposition 2.20 actually gives that the Casson-Sullivan invariant
defines a group homomorphism from the pseudo-mapping class group. In such cases, one can
combine this result with Corollary 2.16 to obtain that the Casson-Sullivan invariant defines a
group homomorphism even if we start with a smoothable X, i.e. without picking a smooth
structure.

Let X and X ′ be 4-dimensional smooth manifolds and let f : X → X ′ be an orientation-
preserving homeomorphism restricting to a fixed diffeomorphism on ∂X. Then, up to isotopy, we
may assume by isotopy extension [EK71], uniqueness of normal bundles [FQ90, Chapter 9.3], and
the calculation of the mapping class group of S3 [Cer68], that f restricts to the identity map on
some disc. Hence we get a well-defined homeomorphism

f# : X#(S2 × S2) → X ′#(S2 × S2)

by extending f onto the S2 × S2 summand via the identity map.

Proposition 2.22. The standard degree one map that collapses the S2 × S2 connect-summand
ℓ : X#(S2 × S2) → X induces an isomorphism

ℓ∗ : H3(X, ∂X;Z/2) → H3(X#(S2 × S2), ∂X;Z/2)
such that ℓ∗(cs(f)) = cs(f#).

Proof. Let SX denote the smooth structure on X and let SX#S2×S2 denote the induced smooth
structure on X#(S2 × S2). Consider the following diagram.

∂((X#(S2 × S2))× I) ∂(X × I) BO

(X#(S2 × S2))× I X × I BTOP

B(TOP/O)

ℓ∪ℓ τX∪τX◦f

ξ

ℓ×Id

t(X#(S2×S2))×I

τ(X#(S2×S2))×I
τX×I

tX×I

p

Since f# restricts to the identity map on the S2×S2 summand and the tangent bundle of S2×S2

is stably trivial, the stable tangent microbundle t(X#(S2×S2))×I is homotopic to the stable tangent
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microbundle tX×I precomposed with the map ℓ×Id. This means thatϖ cs(f#), the homotopy class
of p◦t(X#(S2×S2))×I extended by the null-homotopies given by SX#(S2×S2) and f

∗
#(SX′#(S2×S2))

is relatively homotopic to the homotopy class of p◦tX×I ◦(ℓ×Id) extended by the null-homotopies
given by precomposing the null-homotopies corresponding to SX and f∗SX′ with the map ℓ.
Since (ℓ× Id) ∗ (ϖ cs(f)) = ϖ(ℓ∗ cs(f)), it follows that ℓ∗(cs(f)) = cs(f#). □

Proposition 2.23. Let X and X ′ be a pair of smooth 4-manifolds and let f : X → X ′ be a
homeomorphism restricting to a fixed diffeomorphism on ∂X. If cs(f) = 0 then there exists a
non-negative integer k such that f# : X#(#kS2 ×S2) → X ′#(#kS2 ×S2) is pseudo-isotopic to a
diffeomorphism.

This result is stated and proved in [FQ90, Section 8.6]. However, the proof is somewhat
disparate in the book and many of the details are not given. For this reason, we give the full
proof below.

Proof of Proposition 2.23. Let W := W (f) be the mapping cylinder of f . Since cs(f) = 0, then
by definition we can smooth the topological stable normal bundle of W relative to the given
smoothings of the stable tangent bundles of the boundary. By Kirby-Siebenmann [KS77, Essay
IV, Theorem 10.1], we can realise this by a smooth structure on W extending the given structures
on the boundary. Note that here we have crucially used that the dimension of W is at least five
and at most seven. This allows us to view W as a (relative) smooth h-cobordism (W,X,X ′).
Note that W is topologically a product (by definition) but that it is not necessarily a product
smoothly, and that W already restricts to a smooth product on ∂X. We aim to turn W into a
smooth product cobordism via stabilisations.

We may assume in the standard way that W has only 2- and 3-handles in its relative handle
decomposition (for a reference, see [BKK+21, §20.1]). SinceW is topologically a product we know
that the 2- and 3-handles algebraically cancel. Let W be the collection of immersed Whitney discs
in X×{1/2} for the pairs of cancelling intersections of the descending manifolds for the 3-handles
and the ascending manifolds for the 2-handles. If these discs were embedded disjointly then we
could use Whitney moves on the discs to force the 2- and 3-handles to geometrically cancel and
hence W could be made into a smooth product cobordism. Let p ∈ D1 ∩ D2 be an intersection
point for two Whitney discs D1, D2 ∈ W (potentially D1 = D2) and let α be an arc in W from
X × {0} to X × {1} which intersects D1 and D2 exactly once at p and is disjoint from all other
discs in W. Let q = (q1, q2) be a point in S2 × S2. Then we form a new cobordism

W ′ :=
(
W \ να

)
∪∂να=(∂νq)×I

(
(S2 × S2 \ νq)× I

)
.

Let W ′ be the set of Whitney discs for the pairs of cancelling intersections of the 2- and 3- handles
of W ′. Note that W ′ is the same as W except we can replace D1 and D2 with D′

1 and D′
2,

respectively, defined as

D′
1 :=

(
D1 ∩ (W \ να)

)
∪
(
(S2 × {q2}) ∩ (S2 × S2 \ νq)

)
,

D′
2 :=

(
D2 ∩ (W \ να)

)
∪
(
({q1} × S2) ∩ (S2 × S2 \ νq)

)
.

The number of intersections between D′
1 and D′

2 is one fewer than the number of intersections
between D1 and D2; we have effectively removed an intersection point. This is known as the
Norman trick. Repeating this procedure for all intersections between Whitney discs, eventually
we produce a smooth cobordism W ′′ which is topologically a product W ′′ ≈ X#(#kS2 × S2)× I
for some non-negative integer k. The set of Whitney discs for the pairs of cancelling intersections
of the 2- and 3-handles W ′′ consists now of disjointly embedded Whitney discs, and hence (as
noted above) we may assume that W ′′ is smoothly a product cobordism.

Let X# := X#(#kS2 × S2), X ′
# := X ′#(#kS2 × S2) and let S , S ′ denote the smooth

structures on X# and X ′
#, respectively. NowW ′′ is the mapping cylinder of f#, i.e. W

′′ ∼= X#×I,
with the smooth structure SW ′′ where SW ′′ |X#×{0} = S and SW ′′ |X#×{1} = f∗#(S

′). In the

previous paragraph, we concluded that W ′′ was diffeomorphic to a product. In other words, we
have a homeomorphism

F : X# × I → X# × I
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such that F ∗(S ′ × I) = S ′′
W . In the language of Section 6 this means we have produced a

pseudo-isotopy between the smooth structures S and f∗#(S
′) and, by the same argument as in

the third paragraph of the proof of Proposition 6.5, this means that f# is pseudo-isotopic to a
diffeomorphism. □

To summarise, Proposition 2.22 and Proposition 2.23 together tell us that the Casson-Sullivan
invariant is the stable obstruction to pseudo-smoothing homeomorphisms of 4-manifolds, much as
the Kirby-Siebenmann invariant is the stable obstruction to smoothing 4-manifolds.

2.4.1. Non-compact 4-manifolds. Non-compact 4-manifolds have the property that they are easier
to smooth than their compact counterparts, in the sense that non-compact 4-manifolds always
admit smooth structures (and hence compact 4-manifolds can always be smoothed away from
a point) [FQ90, Chapter 8.2]. In light of this, one might wonder whether a stronger result than
Proposition 2.23 holds if we assume our manifold is non-compact. We briefly explain what happens
in this case. We begin with some definitions (c.f. Section 6).

Definition 2.24. Let M be a topological manifold. We say that smooth structures S and S ′

on M are concordant if there exists a smooth structure T on M × I such that T |M×{0} = S and
T |M×{1} = S ′.

We say that S and S ′ are sliced concordant if they are concordant, as above, such that the
projection M × I → I is a submersion with respect to the smooth structure T on M × I.

Proposition 2.25. Let X be a topological 4-manifold with S and S ′ smooth structures on X,
and let f : X → X be a homeomorphism restricting to a fixed diffeomorphism on ∂X with respect
to the smooth structures S |∂X and S ′|∂X . If cs(f) = 0, then S and f∗(S ′) are concordant. If
X is non-compact and cs(f) = 0, then S and f∗(S ′) are sliced concordant.

This proposition essentially follows (in the non-compact case) from the following theorem.

Theorem 2.26 ([Sie71, Theorem 4.4],[FQ90, Theorem 8.7B]). There is a one-to-one correspon-
dence between sliced concordance classes of smooth structures on a non-compact 4-manifold with
homotopy classes of liftings of the stable tangent microbundle to BO.

Remark 2.27. Note that although in [FQ90] they state the above theorem for concordance classes
rather than sliced concordance classes, the references they refer to for the proof give it for sliced
concordance classes.

Proof of Proposition 2.25. The fact that S and f∗(S ′) are concordant is clear in the context of
the proof of Proposition 2.23. In fact, this is exactly what the the first paragraph of the proof
establishes. If cs(f) = 0, then by Lemma 2.13 and Proposition 2.15 the lifts of the stable tangent
microbundle corresponding to S and f∗(S ) are homotopic, so by Theorem 2.26 these smooth
structures are sliced concordant. □

Remark 2.28. Note that an important part of the proof of Theorem 2.26 is that the map

TOP(4)/O(4) → TOP /O

is 5-connected [FQ90, Theorem 9.7A], and this theorem rests on the result of Quinn [Qui86] that
π4(TOP(4)/O(4)) = 0, the proof of which was found to contain a gap. The proof, however, was
recently corrected in [GGH+23].

A concordance, sliced or otherwise, between the smooth structures S and f∗S ′ does not
obviously give any nice statement about the properties of f itself. Hence, the author does not
know of an interpretation of Proposition 2.25 in terms of the smoothability of the homeomorphism
(c.f. Section 6).

2.5. A connect sum formula over a circle for the Casson-Sullivan invariant. This subsec-
tion is devoted to proving a connect sum along a circle formula for the Casson-Sullivan invariant.
We shall start by giving the necessary definitions.
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Definition 2.29. Let X1 and X2 be a pair of smooth 4-manifolds and let γi ⊂ Xi be a pair of
framed, embedded circles. Then we define the connect sum over γ1, γ2 to be the smooth manifold

X1#γ1=γ2
X2 := (X1 \ νγ1) ∪φ (X2 \ νγ2)

where the gluing is performed using the orientation reversing map φ : S1 × S2 → S1 × S2 which
sends (x, y) → (x, a(y)) for a : S2 → S2 the antipodal map. For a precise description of how this
gives a well-defined smooth manifold, see [Kos93, §IV.4].

Let X1, X2, X
′
1 and X

′
2 be two pairs of smooth, orientable, compact 4-manifolds and let γi ⊂ Xi

and γ′i ⊂ Xi be two pairs of embedded circles for i = 1, 2. Since our manifolds are orientable, these
circles admit framings which we will use implicitly (the choice of framings will not be important).
Furthermore, let fi : Xi → X ′

i be a pair of homeomorphisms such that (fi)∗[γi] = [γ′i] ∈ π1(Xi).
Then, up to isotopy, we may assume by isotopy extension ([EK71]), uniqueness of normal bundles
([FQ90, Chapter 9.3]), and the calculation of the mapping class group of S1 ×S2 [Glu62] that the
fi are either the identity map on a tubular neighbourhood of the curve γi or they are the Glück
twist map

T : S1 ×D3 →S1 ×D3 (2.2)

(t, x) 7→(t,Φt(x))

where Φt denotes the (positive) rotation map of D3 around the (oriented) straight line from the
south pole to the north pole by an angle of t (we have used the identification S1 ∼= [0, 2π]/0 ∼ 2π).
If the homeomorphisms fi are both of the same type as above (i.e. both are identity maps or both
are twist maps on tubular neighbourhoods of γi) we may then define the connect-sum of these
homeomorphisms over the curves γi to be

f# : X1#γ1=γ2X2 → X ′
1#γ′

1=γ′
2
X ′

2

as fi on (Xi \ νγi).

Lemma 2.30. We have the following isomorphism of groups.

H3(X1#γ1=γ2
X2, ∂;Z/2) ∼=

H3(X1, ∂X1;Z/2)⊕H3(X2, ∂X2;Z/2)
PD−1[γ1] ∼ PD−1[γ2]

Proof. Let X# := X1#γ1=γ2X2. By considering the long exact sequence for the triple

(X#, ∂X# ⊔ ∂νγ1, ∂X#)

and the Mayer-Vietoris sequence for the decomposition

(X#, ∂X# ⊔ ∂νγ1) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂(X1 \ νγ1) ∪ ∂(X2 \ νγ2)) ,
we obtain the following commutative diagram (with Z/2-coefficients suppressed).

H2(∂νγ1) H2(∂νγ1)⊕H2(∂νγ1)

0 H3(X#, ∂X# ⊔ ∂νγ1) H3(X1 \ νγ1, ∂)⊕H3(X2 \ νγ2, ∂)) 0

H3(X#, ∂)

H3(∂νγ1) H3(∂νγ1)⊕H3(∂νγ1)

0 H4(X#, ∂X# ⊔ ∂νγ1) H4(X1, ∂X1)⊕H4(X2, ∂X2) 0

∆

∼=

0

∆

∼=∼=
∼=

Here the vertical maps on the left are from the previously stated long exact sequence of the triple,
the horizontal isomorphism comes from the previously stated Mayer-Vietoris sequence, and ∆
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denotes the diagonal map. That the map marked as the zero map is such follows from seeing that
the vertical maps in the lower square are injective.

Poincaré duality maps and the map induced by the inclusion Xi \ νγi ⊂ Xi give isomorphisms

H3(Xi \ νγ1, ∂) ∼= H1(Xi) ∼= H1(Xi \ νγi) ∼= H3(Xi, ∂)

for i = 1, 2. Using this, we get an exact sequence

Z/2 ∼= H2(∂νγ1)
H3(X1, ∂X1)

⊕
H3(X2, ∂X2)

H3(X#, ∂X#) 0

and so to prove the lemma it suffices to understand the first map. From the definition one can see
that this is the map which sends the generator of H2(∂νγ1) ∼= Z/2 to the element

(PD−1[γ1],PD
−1[γ2]) ∈ H3(X1, ∂X1)⊕H3(X2, ∂X2).

□

From Lemma 2.30 we have a map

Q : H3(X1, ∂X1)⊕H3(X2, ∂X2) → H3(X1#γ1=γ2X2, ∂(X1#γ1=γ2X2)) (2.3)

given by taking the quotient.
The rest of this subsection will be devoted to proving the following theorem.

Theorem 2.31. Let X1, X2, X
′
1 and X ′

2 be two pairs of compact, connected, smooth, orientable
4-manifolds and let γi ⊂ Xi and γ′i ⊂ X ′

i be two pairs of embedded circles, with fi : Xi → X ′
i

a pair of homeomorphisms such that (fi)∗[γi] = [γ′i] ∈ π1(X
′
i), and such that the connect-sum

homeomorphism

f# := f1#γ1=γ2
f2 : X1#γ1=γ2

X2 → X ′
1#γ′

1=γ′
2
X ′

2

is defined. Let Q be the map in Equation (2.3). Then

cs(f#) = Q(cs(f1), cs(f2)).

The proof of this theorem relies on a sequence of diagram chasing, using the relevant Mayer-
Vietoris exact sequences and long exact sequences of the triple. Although we have already used
these, the setup here will be more complicated and so we recall them. The long exact sequence
for the triple of CW -complexes W ⊃ B ⊃ A in cohomology (with Z/2-coefficients suppressed) is

· · · → Hk(W,B) → Hk(W,A) → Hk(B,A) → Hk+1(W,B) → · · · (2.4)

and the fully relative Mayer-Vietoris sequence for the pair of CW -complexes (W,Y ) = (A∪B,C∪
D) (with Z/2-coefficients suppressed) is

· · · → Hk(W,Y ) →
Hk(A,C)

⊕
Hk(B,D)

→ Hk(A ∩B,C ∩D) → Hk+1(W,Y ) → · · · (2.5)

See [Hat02, p.200/204] for these standard exact sequences.
First we give the notation for the setup.

Setup 2.32. Let X1, X2, X
′
1 and X ′

2 be two pairs of compact, connected, smooth, orientable 4-
manifolds, let γi ⊂ Xi be a pair of embedded circles, and let fi : Xi → X ′

i be a pair of homeomor-
phisms such that (fi)∗[γi] = [γ′i] ∈ π1(Xi) and such that the fi restrict to fixed diffeomorphisms
(fi)0 : ∂Xi → ∂X ′

i. Denote by X# and X ′
# the connect-sum X1#γ1=γ2

X2 and X ′
1#γ1=γ2

X ′
2,

respectively, and by f# : X# → X ′
# the connect-sum homeomorphism (which we assume to be

defined). We then set up the following notation:

(i) Let W :=Mf# =
(X#×I)∪∂X

′
#

(x,1)∼f#(x) .

(ii) Let E := ∂(νγ1)× I ⊂W .
(iii) Let F := ∂W = (X# × {0}) ∪ (∂X# × I) ∪ (X# × {1}) ⊂W .
(iv) Let A := (X1 \ ∂(νγ1))× I ⊂W and let B := (X2 \ ∂(νγ2))× I ⊂W .
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(v) Let FA := F ∩A and let FB := F ∩B.
(vi) Let C := FA ∪ E ⊂ A and let D := FB ∪ E ⊂ B.
(vii) Let Y := C ∪D.

Note that W = A ∪B and A ∩B = C ∩D = E. See Figure 1.

Figure 1. A dimension-reduced picture of Setup 2.32 where the pictured tori
denote the connect-sum S1 × S2. Note that the labels for C and D have been
omitted.

Combining the sequences (2.4) and (2.5) for the triples (W,Y, F ), (A,C, FA), (B,D,FB) and
the pairs (W,Y ) = (A ∪ B,C ∪ D), (W,F ) = (A ∪ B,FA ∪ FB), (Y, F ) = (C ∪ D,FA ∪ FB) we
obtain the following commutative diagram which we will use extensively. In what follows, for all
of our cohomology groups we are using Z/2-coefficients but we will suppress these in the diagrams.

H3(Y, F ) H3(C,FA)⊕H3(D,FB)

H3(A ∩B,C ∩D) H4(W,Y ) H4(A,C)⊕H4(B,D) H4(A ∩B,C ∩D)

H3(A ∩B,FA ∩ FB) H4(W,F ) H4(A,FA)⊕H4(B,FB) H4(A ∩B,FA ∩ FB)

H4(Y, F ) H4(C,FA)⊕H4(D,FB)

It will be useful to simplify this diagram. First, note that the leftmost and rightmost groups
on the second line vanish because A ∩B = C ∩D (further observe that this means the remaining
non-trivial horizontal map on the second line must be an isomorphism). The topmost groups and
the leftmost group on the third line are all isomorphic to H3(E, ∂E) ∼= Z/2. We can replace all
of the remaining outer groups with zeroes since these maps must be zero maps (one can explicitly
see this by continuing the sequences and using commutativity along with Poincaré duality). To
illustrate this, we will show that the bottom vertical maps are zero. Showing that the map to
H4(A ∩B,FA ∩ FB) is zero is analogous. We start by continuing the sequences at the bottom of
the diagram to obtain the following diagram.
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H4(W,F ) H4(A,FA)⊕H4(B,FB)

H3(C ∩D,FA ∩ FB) H4(Y, F ) H4(C,FA)⊕H4(D,FB)

0 H5(W,Y ) H5(A,C)⊕H5(B,D) 0

a b

f c

d e

∼=

We want to show that the maps a and b are both the zero maps. It suffices to show that d and
e are injections. By Poincaré duality, e is dual to direct sum of inclusion induced maps

H0(E)⊕H0(E) → H0(A)⊕H0(B)

which is clearly an isomorphism since both A, B and E are connected. Hence e is injective. Now
we claim that f is the zero map, since the previous map in the Mayer-Vietoris sequence is the
diagonal map and hence is injective. This means that c is injective, and so by commutativity d
must be injective also, and hence a and b are both the zero maps. The preceding simplification
yields the following diagram.

Z/2 Z/2 ⊕ Z/2

0 H4(W,Y ) H4(A,C)⊕H4(B,D) 0

Z/2 H4(W,F ) H4(A,FA)⊕H4(B,FB) 0

0 0

r

∆

iBiA

q

∼=

jBjA
(2.6)

We note that the topmost horizontal map is the diagonal map ∆: x 7→ (x, x).

Proof of Theorem 2.31. We will use the notation from Setup 2.32 throughout. Consider the pair
(W,Y ) = (A ∪ B,C ∪ D). First, we will consider a special case, namely when X2 = S1 × S3,
γ2 = S1 × {pt} and f2 = IdX2 . We will then prove the general case of the theorem via our
consideration of the special case.

Let X2 = S1 × S3 = X ′
2, let γ2 = S1 × {pt} and let f2 = IdX2

. Then X2 \ (νγ2) ∼= S1 ×D3,
so hence X#

∼= X1 and f# = f1. The map iB is then Poincaré dual to the inclusion induced map
H1(S

1 × S2 × I) → H1(S
1 ×D3 × I) and hence is injective. It follows by commutativity that r is

injective. Consider any element x ∈ H4(W,F ). From the diagram and injectivity of r, we can see
that there are two possible lifts of x in H4(W,Y ) that differ by r(z) where Z/2 = Z/2⟨z⟩. We will
define a preferred lift t(x) by specifying that the element t(x) = (t1(x), 0) ∈ H4(A,C)⊕H4(B,D),
which uniquely determines t. Now consider ϖ cs(f1) ∈ H4(W,F ). By naturality of the Kirby-
Siebenmann invariant (Remark 2.9), q maps ks(W,Y ) = (ks(A,C), ks(B,D)) ∈ H4(W,Y ) to
ϖ cs(f1), and, by the definition of f2, we have that ks(B,D) = 0. This means that t(ϖ cs(f1)) =
ks(W,Y ).

Now consider general X1, X2, X
′
1, X

′
2, f1, f2. What we have described above is a map

a : H3(X1, ∂X1) → H4(A,C)

which sends ϖ cs(f1) to an element α := a(ϖ cs(f1)) for any homeomorphism f1 : X1 → X1.
Similarly, by considering the reverse special case where X1 = S1 × S3 = X ′

1, f1 = IdX1
and

where f2 is any homeomorphism f2 : X2 → X ′
2, we obtain a map b : H3(X2, ∂X2) → H4(B,D)

and consequently an element β := b(ϖ cs(f2)) ∈ H4(B,D). This produces an element

(α, β) ∈ H4(A,C)⊕H4(B,D) ∼= H4(W,Y )
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and then we map this down using q to an element q(α, β). We have that q(α, β) = ϖ cs(f#), as by
construction (α, β) = (ks(A,C), ks(B,D)) and by naturality of the Kirby-Siebenmann invariant,
this must map to ks(W,F ) = ϖ cs(f#) via q, since q is inclusion induced.

So we have constructed a map

P : H3(X1, ∂X1)⊕H3(X2, ∂X2) → H3(X1#γ1=γ2
X2, ∂(X1#γ1=γ2

X2))

which sends (cs(f1), cs(f2)) 7→ cs(f#).
It remains to show that this map is equal to the map Q (see 2.3). We show this now. First,

analogously to in Setup 2.32, consider the long exact sequences for the triples

(i) (X#, ∂X# ⊔ ∂νγ1, ∂X#),
(ii) (Xi \ νγi, ∂(Xi \ νγi), ∂Xi),

and the relative Mayer-Vietoris sequences for the pairs

(i) (X#, ∂X#) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂X1 ∪ ∂X2)
(ii) (X#, ∂X# ⊔ ∂νγ1) = ((X1 \ νγ1) ∪ (X2 \ νγ2), ∂(X1 \ νγ1) ∪ ∂(X2 \ νγ2)).

These sequences give the following commutative diagram analogous to (2.6) (note that we have
simplified the notation by writing ∂ on its own to refer to the boundary of a manifold when it is
clear by context which manifold is being referred to).

Z/2 Z/2 ⊕ Z/2

0 H3(X#, ∂X# ⊔ ∂νγ1) H3(X1 \ νγ1, ∂)⊕H3(X2 \ νγ2, ∂)) 0

Z/2 H3(X#, ∂) H3(X1 \ νγ1, ∂X1)⊕H3(X2 \ νγ2, ∂X2) 0

0 0

∆

∼=

(2.7)
One can see that this diagram (2.7) is isomorphic to (2.6) using the isomorphism given in

Definition 2.10 (or the analogous isomorphisms). Since those isomorphisms come from Poincaré
duality and inclusion maps, the two parallel diagrams must commute. This allows us to reinterpret
the construction of our map P on the level of the 4-manifolds themselves, rather than the mapping
cylinders, which then allows us to relate this map to Q.

Consider the following diagram which, aside from the lowermost map and group, splits as a
direct sum of exact sequences.

H3(X1, ∂X1 ⊔ ∂νγ1)
⊕

H3(X2, ∂X2 ⊔ ∂νγ2)
H3(X1, ∂)⊕H3(X2, ∂)

H1(X1)
⊕

H1(X2)

H3(X1 \ νγ1, ∂)⊕H3(νγ1, ∂)
⊕

H3(X2 \ νγ2, ∂)⊕H3(νγ2, ∂)

H1(X1 \ νγ1)⊕H1(νγ1)
⊕

H1(X2 \ νγ2)⊕H1(νγ2)

H3(X1 \ νγ1, ∂)⊕H3(X2 \ νγ2, ∂)

H3(X#, ∂)

∼= t t′

PD
∼=

∼=
((PD,PD),(PD,PD))

(pr1,pr1) (PD−1 ◦ pr1,PD−1 ◦ pr1)

(2.8)
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The two vertical maps are direct sums of the respective Mayer-Vietoris sequences. The top-left
horizontal map comes from the direct sum of the respective long exact sequences of triples. Ignoring
the notated lifts t and t′ for now, we show that this diagram commutes. The commuting of the
lower triangle is trivial. We now show that the top rectangle commutes. Since the rectangle is a
direct sum of a two diagrams, it suffices to show that one of the diagram summands commutes.
We write this below, where we will drop the indices (i.e. X1 = X, etc.).

H3(X, ∂) H1(X)

H3(X, ∂X ⊔ ∂νγ)

H3(X \ νγ, ∂)⊕H3(νγ, ∂) H1(X \ νγ)⊕H1(νγ)

PD
∼=

∼=
(PD,PD)

∼=

Let x ∈ H3(X, ∂X ⊔∂νγ) and let y denote its image in H3(X, ∂). By the vertical isomorphism,
we see that x maps to an element (PD−1 α1,PD

−1 α2) ∈ H3(X \ν, ∂)⊕H3(νγ, ∂), where α1 is the
homology class of some curve in X and α2 is trivial or is the homology class of γ. Mapping this
pair to the right and then up gives the class α1+α2, which is the homology class of some curve in
X. We now need to show that y is Poincaré dual to α1 + α2. Since we are using Z/2-coefficients,
we will view these cohomology groups as the hom-duals of the respective homology groups. The
element y is defined such that it evaluates on the relative cycle s in X first by considering s as a
further relative cycle s′ ∈ H3(X, ∂X ⊔ ∂νγ) and then evaluating using x. By the isomorphism in
the corresponding Mayer-Vietoris sequence in homology, any such cycle splits as a pair (s1, s2) of
relative cycles in H3(X \ νγ, ∂) and H3(νγ, ∂), respectively. Hence, evaluating x(s′) is the same
as evaluating α1(s1)+α2(s2), and so y is Poincaré dual to α1+α2. This completes the proof that
the diagram commutes.

Consider again diagram 2.8 and let (x1, x2) ∈ H3(X1, ∂)⊕H3(X2, ∂). This pair is mapped by
P by sending it down the left of the diagram, first by using the preferred lift t, and then using
the given maps. The lift t is such that t(x1, x2) is of the form ((t(x1), 0), (t(x2), 0)). Reversely,
the pair (x1, x2) is mapped by Q by sending it down the right of the diagram, first by using the
preferred lift t′, where t′(x1, x2) is of the form ((t′(x1), 0), (t

′(x2), 0)), which is naturally given by
first taking Poincaré duality and then the inverse of the map induced by the inclusion map (and
then including into the direct sum). Then t′(x1, x2) is mapped down again twice to H3(X#, ∂).

To finish the proof, we need to know that the middle triangle formed by the two lifts, t and t′

commutes. The fact that the diagram commutes shows that ((PD,PD), (PD,PD))(t(x1, x2)) is a
lift of (PD,PD)(x1, x2), and the definition of the lifts t and t′ shows that it is the same lift as
determined by t(x1, x2), and hence the triangle commutes. □

2.6. A connect-sum formula for the Casson-Sullivan invariant. Before finishing this sec-
tion we will note the following. Similarly to Theorem 2.31, we also have a formula for the Casson-
Sullivan invariant under the actual connect-sum operation. Since all of the arguments are the same
or simpler than for connect-summing over a circle, we will not give many details. Let X1, X2, X

′
1

and X ′
2 be two pairs of compact, connected topological 4-manifolds and let fi : Xi → X ′

i be a pair
of homeomorphisms. In exactly the same way as for connect-summing over a circle (in fact it is
simpler since we do not have to worry about embeddings of circles), we can form a connect-sum
homeomorphism f# : X1#X2 → X ′

1#X
′
2. If we let qi : X1#X2 → Xi denote the collapse maps

onto the ith connect-summand, then we have the following formula.

Theorem 2.33. Let X1, X2, X
′
1 and X ′

2 be two pairs of compact, connected, smooth, orientable 4-
manifolds with fi : Xi → X ′

i a pair of homeomorphisms such that the connect-sum homeomorphism

f# := f1#f2 : X1#X2 → X ′
1#X

′
2

is defined. Let qi be the pair of collapse maps defined above. Then

cs(f#) = q∗1 cs(f1) + q∗2 cs(f2).
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We will not give the proof here, as it is exactly the same method as for proving Theorem 2.31
but with simpler arguments. In particular, having the degree one collapse is very useful (such
collapse maps do not always exist for connect-sums over circles). This result will only be used for
proving Corollary 1.6 in Section 3.3.

3. Stable realisation of the Casson-Sullivan invariant

In this section we will prove Theorem 1.1 which shows that the Casson-Sullivan invariant can
always be realised stably. The idea is to use Theorem 2.31 along with the following proposition,
which relies on the work of Cappell-Shaneson and Lee [CS71, Lee70].

Proposition 3.1. There exists a homeomorphism

σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

such that cs(σ) is the generator of H3(S1×S3;Z/2), the dual to the generator of H1(S
1×S3;Z/2)

which is represented by θ = S1 × {pt}. Furthermore, σ|νθ = Idνθ.

We postpone the proof of this proposition until Section 3.2. Now we use Theorem 2.31 and
Proposition 3.1 to prove the following theorem, from which Theorem 1.1 will immediately follow.

Theorem 3.2. Let f0 : X0 → X ′
0 be a homeomorphism of compact, connected, smooth, orientable

4-manifolds and define η0 := cs(f0). Let η ∈ H3(X0, ∂X0;Z/2), and let γ ⊂ X be a (framed)
embedded curve dual to η − η0 ∈ H3(X0, ∂X0;Z/2). Then we have the following cases.

(i) If f0|νγ is the identity map, then the connect-sum homeomorphism

f0#γ=θσ : X0#(S2 × S2) → X ′
0#(S2 × S2)

is defined and cs(f#γ=θσ) = η.
(ii) If f0|νγ is the Glück twist map, then the connect-sum homeomorphism

f0#γ=θ(σ ◦ t) : X0#(S2 × S2) → X ′
0#(S2 × S2),

where t denotes the Glück twist map extended onto the (S2 × S2)-summand, is defined and
cs(f0#γ=θσ) = η.

Proof (assuming Proposition 3.1). That we only have to consider the two cases above comes from
the exposition at the beginning of Section 2.5. In both cases the connect-sum homeomorphism (as
above) is defined by the last part of Proposition 3.1, and because there are natural diffeomorphisms

X0#γ=θ((S
1 × S3)#(S2 × S2)) ∼= X0#(S2 × S2)

and

X ′
0#(f0)∗(γ)=θ((S

1 × S3)#(S2 × S2)) ∼= X ′
0#(S2 × S2).

Let Q be the map in the statement of Theorem 2.31 for the above decomposition. In case (i), by
Theorem 2.31 and Proposition 3.1 we have

cs(f0#γ=θσ) = Q(cs(f0), (cs(σ))) = η0 + (η − η0) = η.

Similarly, in case (ii), by Proposition 2.20, Theorem 2.31 and Proposition 3.1 we have

cs(f0#γ=θ(σ ◦ t)) = Q(cs(f0), cs(σ ◦ t))
= Q(cs(f0), cs(σ) + cs(t))

= Q(cs(f0), cs(σ))

= η0 + (η − η0) = η.

In the above formulae we have used the isomorphism

H3(X0, ∂X0;Z/2) ∼= H3(X0#(S2 × S2), ∂X0;Z/2)

induced by the map collapsing the S2 × S2 summand. □
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Proof of Theorem 1.1. Using the isomorphism H3(X0, ∂X0;Z/2) ∼= H3(X, ∂X;Z/2) induced by
collapsing the S2 × S2 summand, we can consider the given class η ∈ H3(X, ∂X;Z/2) as an
element η ∈ H3(X0, ∂X0;Z/2). By assumption there exists a homeomorphism f0 : X0 → X ′

0, and
applying Theorem 3.2 to the class η immediately gives the result. □

3.1. Surgery. Now we fundamentally make use of the following theorem, due to Ronnie Lee.
This subsection will contain Wall’s surgery obstruction groups, the L-groups, but we will postpone
recalling their definition (see Definition 4.5) until Section 4 where the surgery exact sequence will
be recalled. The only fact we need here is that L5(Z[Z]) ∼= Z [Wal70, Theorem 13A.8].

Theorem 3.3 ([Lee70]). The generator of L5(Z[Z]) can be realised by a 2× 2 matrix.

The proof of the above theorem has only been available in a handwritten note, which is not
easily accessible.1 For a modernised exposition of this proof, see [Gal24] (available on the author’s
website).

Using this, we receive the following corollary.

Corollary 3.4. There exists a homeomorphism

σ : (S1 × S3)#(S2 × S2) → (S1 × S3)#(S2 × S2)

realising the generator of L5(Z[Z]). More precisely, let N be the standard cobordism between S1×S3

and (S1 × S3)#(S2 × S2). Then the surgery problem

W = (N ∪σ −N) → (S1 × S3)× I

has surgery obstruction the generator of L5(Z[Z]). Furthermore, σ|νθ = Idνθ, where θ = S1 ×
{pt} ⊂ S1 × S3.

Proof. By Theorem 3.3 we have a matrixM with entries in Z[Z] which represents the generator of
L5(Z[Z]). By [SW00, Theorem 2] there exists two pseudo-isotopy classes of self-homeomorphisms
of (S1 × S3)#(S2 × S2) which induce the map M on H2((S

1 × S3)#(S2 × S2);Z[Z]), one which
preserves the spin structures on S1×S3 and one which swaps them. Let σ be a representative self-
homeomorphism that fixes the spin structures. Since σ fixes the spin structures, σ can be isotoped
such that σ|νθ = Idνθ. It follows from [CS71, Theorem 3.1] that W has surgery obstruction the
generator of L5(Z[Z]). □

3.2. Proof of Proposition 3.1. Throughout this subsection, let σ : (S1 × S3)#(S2 × S2) →
(S1 × S3)#(S2 × S2) and W be as in Corollary 3.4. The aim is to prove Proposition 3.1 by
showing that that this σ has cs(σ) the generator of H3((S1 × S3)#(S2 × S2);Z/2). This will be
done by performing operations on W given in Corollary 3.4 and keeping track of what happens
to the relative Kirby-Siebenmann invariant of the cobordism along the way. We begin with some
lemmas.

In what follows, we will also need the following lemma.

Lemma 3.5. Every homeomorphism f : S1 × S3 → S1 × S3 is pseudo-smoothable and hence has
cs(f) = 0.

Proof. Stong-Wang classified homeomorphisms of 4-manifolds M with π1(M) ∼= Z up to pseudo-
isotopy [SW00, Theorem 2]. This directly gives us that there are four homeomorphisms on S1 ×
S3 up to pseudo-isotopy represented by (1) the identity map; (2) conjugation on the S1-factor
composed with the reflection map on the S3-factor; (3) the corresponding Glück twist map S1 ×
S3 → S1 × S3 (Equation (2.2)); and (4) the composition of the two previously stated non-trivial
maps. All of these maps are clearly smooth, hence every self-homeomorphism of S1 × S3 is
pseudo-smoothable. □

1Note the difference in notation between this paper and the handwritten note for the L-groups i.e. what we

write as Ln(Z[π]) is instead written as Ln(π).
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Lemma 3.6. Under the standard identification

H4(W,∂W ;Z/2) ∼= H4(Mσ, ∂Mσ;Z/2)
ϖ−1

−−−→ H3((S1 × S3)#(S2 × S2);Z/2)
(see Definition 2.10) we have that ks(W,∂W ) = ϖ cs(σ) where Mσ denotes the mapping cylinder.

Proof. Note that N is smoothable relative to the standard smooth structure on the boundary. It
is clear that we have a homeomorphism relative to the boundary

W ≈ N ∪(S1×S3)#(S2×S2)

(
((S1 × S3)#(S2 × S2))× I

)
∪σ −N.

i.e. inserting a product (S1 × S3#S2 × S2)× I to the right end of N does not change the relative
homeomorphism type of W . We now see that the identification

H4(W,∂W ;Z/2)
∼=−→ H4(Mσ, ∂Mσ;Z/2)

gives ks(W,∂W ) = ks(Mσ) = ϖ cs(σ) where Mσ is the mapping cylinder of σ (note that here we
write “=” as there is only one isomorphism between groups isomorphic to Z/2.). □

Lemma 3.7 ([FQ90, Proof of 11.6A]). Let S1 ×E8 → S1 × S4 be the surgery problem which has
surgery obstruction the inverse of the generator of L5(Z[Z]), let γ ⊂ W be an embedded curve
representing the generator of H1(W ), and let γ′ be the embedded curve S1×{pt} ⊂ S1×E8. Then
the connect-sum surgery problem

W#γ=γ′(S1 × E8) → (S1 × S3)× I

has vanishing surgery obstruction.

Remark 3.8. Note that the generator of L5(Z[Z]) being representable by a surgery problem S1 ×
E8 → S1 × S4 (as in Lemma 3.7) follows from Shaneson splitting [Sha69, Theorem 5.1].

We can now prove the proposition.

Proof of Proposition 3.1. Start with the cobordism W and modify the surgery obstruction to be
trivial using Lemma 3.7. Since the result has vanishing surgery obstruction, we can surger it
relative to the boundary to an s-cobordism W ′. Since π1(W

′) ∼= π1(S
1 × S3) ∼= Z is good we can

use the s-cobordism theorem [FQ90, Theorem 7.1A], which gives that W ′ is homeomorphic to the
mapping cylinder Mf for some homeomorphism f : S1 ×S3 → S1 ×S3. By Lemma 3.5, cs(f) = 0
and hence ks(W ′, ∂W ′) = 0.

We now need to keep track of how we modified the Kirby-Siebenmann invariant throughout
this process. The main tool for doing so will be the long exact sequence of the triple (see Equa-
tion (2.4)) with Z/2-coefficients suppressed throughout. When we used Lemma 3.7 to kill the
surgery obstruction, the connect-sum over a circle was induced by a relative cobordism C between
W ⊔(E8×S1) andW#γ=γ′(S1×E8). LetW# :=W#γ=γ′(S1×E8). This relative cobordism C is
formed by attaching a single 1-handle (at one point on γ and at one point on γ′) and then a single
2-handle which attaches by going along γ, then the 1-handle, then γ′, and then back along the
1-handle. From the long exact sequence of the triple (C,W ⊔ S1 ×E8, ∂W ) we have the sequence

H4(C,W ⊔ S1 × E8) → H4(C, ∂W ) → H4(W ⊔ S1 × E8, ∂W ) → H5(C,W ⊔ S1 × E8).

The outer groups H4(C,W ⊔ S1 × E8) and H5(C,W ⊔ S1 × E8) must both vanish since the
cobordism C was made by only attaching 1- and 2-handles. Hence we get an isomorphism

H4(C, ∂W )
∼=−→ H4(W ⊔ S1 × E8, ∂W ) ∼= H4(W,∂W )⊕H4(S1 × E8) ∼= Z/2⊕ Z/2. (3.1)

By considering the long exact sequence of the triple (C,W#, ∂W#) we have the following commu-
tative diagram

H4(C,W#) H4(C, ∂W#) H4(W#, ∂W#)

Z/2 Z/2⊕ Z/2 Z/2.

∼= ∼= ∼=
17→(1,1) (a,b)7→a+b

The leftmost vertical isomorphism again comes from the relative handle decomposition of C,
and the rightmost vertical isomorphism is clear by the definition of W#. The middle vertical
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isomorphism comes from Equation (3.1) and the fact that H∗(C, ∂W#) ∼= H∗(C, ∂W ). The
leftmost horizontal map can be seen to be the diagonal map since the generator of H4(C,W#) is
Poincaré-Lefschetz dual to the annulus with boundaries homologous to the generators of H1(W )
and H1(S

1 × E8). The rightmost horizontal map is then given by exactness. Using this and
naturality of the Kirby-Siebenmann invariant, we can deduce that

ks(W#, ∂W#) = ks(W,∂W ) + ks(S1 × E8),

where we can naturally identify the groups as there is only one isomorphism between groups
isomorphic to Z/2.

Using a similar argument, one can see that the surgeries used to surger W# to the s-cobordism
W ′ do not alter the Kirby-Siebenmann invariant (the relative handle decomposition for the rel-
ative cobordism given by the trace of any given surgery consists of only a single handle, so the
computation is greatly simplified). Hence, since by naturality ks(S1 × E8) = 1,

ks(W ′, ∂W ′) = ks(W#, ∂W#) = ks(W,∂W ) + ks(S1 × E8) = ks(W,∂W ) + 1

As we already concluded that ks(W ′, ∂W ′) = 1 ∈ Z/2, this implies that ks(W,∂W ) = 1, and
hence, by Lemma 3.6, cs(σ) is the generator of H3((S1 × S3)#(S2 × S2);Z/2), as claimed. □

3.3. An interesting example. We can use the objects and tools that we have developed so far
to illustrate an interesting example involving the Casson-Sullivan invariant that demonstrates its
dependence on smooth structures, as is expected by Section 2.3. This will also prove Corollary 1.6.

Example 3.9. Let X = (S1 × S3)#(S1 × S3)#(S2 × S2). Let f := IdS1×S3 #σ : X → X
be a homeomorphism where σ denotes the homeomorphism constructed by Corollary 3.4, and
let g : X → X be the homeomorphism which swaps the S1×S3 summands and leaves the S2×S2

summand fixed.
Let S denote the standard smooth structure on X and (in an abuse of notation) also denote

the induced formal smooth structure (see Remark 2.7). Then g : XS → XS is (isotopic to) a
diffeomorphism, and hence cs(g) = 0 with respect to the smooth structure S . However, let
f∗(S ) be the smooth structure on X induced by f . Using Proposition 2.14 we can compute the
Casson-Sullivan invariant of g with respect to the smooth structure f∗(S ). As in Proposition 2.14,
let a ∈ [X,TOP/O] be the unique element such that a · S = f∗(S ). We then have that

cs(g) = δ(g, f∗(S ))

= a+ g∗(a) + δ(g,S )

= a+ g∗(a)

= δ(f,S ) + g∗(δ(f,S ))

= cs(f) + g∗(cs(f)),

which is equal to the element (1, 1) ∈ Z/2 ⊕ Z/2 ∼= H3(X;Z/2) by Theorem 2.33 and Proposi-
tion 3.1. So g is no longer smoothable with respect to the smooth structure f∗(S ).

Corollary 1.6 follows immediately from this example.

Proof of Corollary 1.6. Take S ′ := f∗(S ). Let XS denote X with the standard smooth struc-
ture, and let XS ′ denote X with the smooth structure S ′. By definition, f : XS → XS ′ is a
diffeomorphism, so the two smooth structures are diffeomorphic (see Definition 6.1). By the calcu-
lation in Example 3.9, g is not stably pseudo-smoothable with respect to the smooth structure S ′,
since its Casson-Sullivan invariant is non-trivial. □

4. Unstable realisation of the Casson-Sullivan invariant

We now aim to realise the Casson-Sullivan invariant unstably in some cases. In Section 4.1
we will introduce the background necessary to give the proof. In Section 4.2 and Section 4.3 we
will prove Theorem 1.7 and Theorem 1.9. In Section 4.4 we will describe when Theorem 1.7 and
Theorem 1.9 apply, and in Section 4.5 we will describe some techniques for partial realisation of
the Casson-Sullivan invariant.
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4.1. The surgery exact sequence. For a reference, see [Ran02, Chapter 13] in high-dimensions
and for the 4-dimensional surgery exact sequence see [FQ90, Chapter 11] or [BKK+21, Chapter
22]. We will use the surgery sequence in both the smooth and topological categories, so to simplify
the notation we will use CAT to stand in for both DIFF and TOP.

The surgery exact sequence consists of three types of objects, which we now recall: the structure
set, the normal invariants, and the L-groups.

Definition 4.1. Let (M,∂M) be a connected CAT n-manifold with (potentially empty) boundary.
Then the CAT-structure set of M , denoted as SCAT(M,∂M) is the set of all equivalence classes of

pairs (N,φ) where N is a CAT-n-manifold and φ a homotopy equivalence φ : N
≃−→ M such that

the restriction φ|∂N : ∂N → ∂M is a CAT-isomorphism. The equivalence relation is that (N,φ) ∼
(N ′, φ′) if there exists a (relative) CAT-h-cobordism (W ;N,N ′) with a homotopy equivalence

Φ: W →M × [0, 1]

such that Φ|N = φ : N →M × {0} and Φ|N ′ = φ′ : →M × {1} and such that

Φ|∂N×[0,1] = (φ|∂N × Id[0,1]) : ∂N × [0, 1] → ∂M × [0, 1].

Similarly, there is a simple CAT-structure set, denoted Ss
CAT, which is defined analogously

to the regular structure set but with all homotopy equivalences replaced with simple homotopy
equivalences (and hence all h-cobordisms replaced with s-cobordisms). Sometimes will we write
Sh
CAT to specify that we mean the regular structure set.

We now define the normal invariants.

Proposition 4.2. Let G(k) be the monoid of homotopy equivalences Sk−1 → Sk−1, let G denote
the direct limit of the inclusions G(k) ↪→ G(k + 1). Then there are fibration sequences

G/O → BO → BG → B(G/O)

and

G/TOP → BTOP → BG → B(G/TOP).

Proof. See [Ran02, Chapter 9] and [FQ90, Chapter 11]. Note that again G/O and G/TOP are de-
fined as the homotopy fibres of O → G and TOP → G, respectively, and that B(G/O), B(G/TOP)
and the rightmost fibrations exist by Boardman-Vogt [BV68]. □

Definition 4.3. Let (M,∂M) be a connected n-manifold with (potentially empty) boundary ∂M
which already has a CAT-structure. Then the normal invariants of M , denoted as NCAT(M,∂M)
is the set of homotopy classes of maps [(M,∂M), G/O] if CAT = DIFF or [(M,∂M), G/TOP] if
CAT = TOP.

Remark 4.4. The above definition is one way of defining the normal invariants for a given manifold.
An equivalent formulation is that a CAT normal invariant for a CAT-manifold (M,∂M) is a CAT-
manifold (N, ∂N) together with a so-called degree one normal map f : N →M which restricts to
a CAT-isomorphism on ∂N . For more information, see [Ran02, Chapter 9].

We now define Wall’s surgery obstruction groups.

Definition 4.5. Let n ∈ Z and π a finitely-presented group. Then the quadratic L-group Ln(Z[π])
is defined differently depending on the residue of n modulo 4.

Even case (if n ≡ 0, 2 (mod 4)): Ln(Z[π]) is defined as the set of stable equivalence classes of
(−1)n/2-quadratic forms over stably free Z[π]-modules.

Odd case (if n ≡ 1, 3 (mod 4)): Ln(Z[π]) is defined as the set of stable equivalence classes of
(−1)(n−1)/2-quadratic formations over stably free Z[π]-modules.

For a reference on (quadratic) forms and formations see [Ran81, §1.6]. There are also simple
L-groups, denoted by Ls

n(Z[π]). We will not give the definition here, but for a reference see [Lüc23,
§9.10].
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Remark 4.6. The notation used here for the L-groups matches up with the notation used for
K-theory. In principle one could consider L-groups of arbitrary rings with involution, but for
our purposes we will only consider the L-theory of group rings with the standard involution and
trivial orientation character. One should be careful when reading other sources, as Ln(Z[π]) is
often written instead as Ln(π).

We can now state the surgery exact sequence, due to Browder, Novikov, Sullivan and Wall (and
Freedman-Quinn in dimension 4).

Theorem 4.7 ([Wal70, Theorem 10.8], [FQ90, Theorem 11.3A]). Let M be a compact, connected,
oriented n-dimensional CAT-manifold. Then for CAT = DIFF and n ≥ 5 we have the following
exact sequence of pointed sets, which continues to the left in the obvious manner:

· · · Ln+2(Z[π]) SDIFF(M × I, ∂) [(M × I, ∂), G/O] Ln+1(Z[π])

SDIFF(M,∂) [(M,∂), G/O] Ln(Z[π]).

And for CAT = TOP and n ≥ 5 (and n = 4 provided that π is a good group; see Remark 1.8) we
have the following analogous exact sequence of abelian groups:

· · · Ln+2(Z[π]) STOP(M × I, ∂) [(M × I, ∂), G/TOP] Ln+1(Z[π])

STOP(M,∂) [(M,∂), G/TOP] Ln(Z[π]).

Furthermore, there are simple versions of both of these exact sequences where the L-groups are
replaced by the simple L-groups and the structure sets are replaced by the simple structure sets.

4.2. Forming mapping cylinders from the surgery exact sequence. Now we specialise to
the case of interest. Let X be a compact, connected, smooth 4-manifold with boundary ∂X. The
obstruction to lifting an element of NTOP to NDIFF is given by the map ξ∗ induced by the fibration

G/O → G/TOP
ξ−→ B(TOP/O).

We will consider the following augmented part of the TOP and DIFF surgery exact sequences
for X:

[(X × I, ∂), G/O]

Ss
TOP(X × I, ∂) [(X × I, ∂), G/TOP] Ls

5(Z[π])

[(X × I, ∂),B(TOP/O)]

ξ∗

θ

The idea is to construct a mapping cylinder for a homeomorphism with non-trivial Casson-
Sullivan invariant from this sequence. The way we will do this is by finding an element N ∈
NTOP(X× I, ∂) which has vanishing surgery obstruction θ(N), but has ξ∗(N) ̸= 0. First, we need
to understand the map ξ∗ more, which we do via the following two lemmas.

Lemma 4.8. We have an isomorphism

[(X × I, ∂), G/TOP] ∼= H2(X × I, ∂;Z/2)⊕H4(X × I, ∂;Z).

Proof. This follows from the work of Sullivan [Sul96], which can be found in [Ran02]. Instead
though, we will refer to [MM79] for its exposition on this topic. In particular, it follows from
[MM79, Remark 4.36] that

(G/TOP[2])7 ≃ K(Z(2), 4)×K(Z/2, 2)
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where G/TOP[2] denotes the 2-localisation of G/TOP and (G/TOP)7 denotes its 7th Postnikov
stage. From this, one can use [MM79, 4.35] to see that

(G/TOP)7 ≃ K(Z, 4)×K(Z/2, 2)

and, together with the fact that X × I is a 5-dimensional CW-complex, a standard obstruction
theoretic argument completes the proof of the lemma. □

Lemma 4.9. We have the following commutative diagram.

[(X × I, ∂), G/TOP] H2(X × I, ∂;Z/2)⊕H4(X × I, ∂;Z)

[(X × I, ∂),B(TOP/O)] H4(X × I, ∂;Z/2)

∼=

ξ∗ m

∼=

where m is the map sending (x, y) 7→ (red2(y)).

Proof. First, note that the bottom horizontal isomorphism is given by there being a 7-connected
map from B(TOP/O) → K(Z/2, 4) (see Section 2.2), and the top horizontal isomorphism is given
by Lemma 4.8.

Morita [Mor72, Proposition 3] gives us that m is the map sending (x, y) 7→ Sq2(x) + red2(y).
Now it suffices to show that Sq2(x) = 0. We have the following commutative diagram (by the
naturality of Steenrod squares):

H̃2(X × I, ∂;Z/2) H̃4(X × I, ∂;Z/2)

H̃1(X;Z/2) H̃3(X;Z/2)

Sq2

Sq2

∼= ∼=

and the lower horizontal map must vanish since Sqi : Hj(−;Z/2) → Hj+i(−;Z/2) is the zero map
for i < j. □

Now we construct the mapping cylinder.

Proposition 4.10. Let X be a compact, connected, smooth 4-manifold with good fundamental
group. Let N ∈ NTOP(X × I, ∂) be an element of the normal invariants which has θ(N) = 0.
Then N can be lifted to an element of the structure set which is homeomorphic to a mapping
cylinder Mf = (X × I) ∪f X for some homeomorphism f .

Proof. Assume that we have an element N ∈ NTOP(X × I, ∂). By Remark 4.4 this means we
can consider N to be a manifold (N, ∂N) together with ∂N homeomorphic to ∂(X × I), and
hence ∂N has an induced smooth structure given by X. Further we assume that θ(N) = 0. This
means that we can lift N to an element (also denoted by N) in the structure set Ss

TOP(X × I, ∂).
The homeomorphism ∂N ≈ ∂(X × I) ∼= X × {0} ∪ ∂X × I ∪ X × {1} induces a decomposition
∂N = ∂+N ∪ ∂0N ∪ ∂−N . If we define D := ∂(∂+N), then we may assume that ∂0N ∼= D × I.
By the relative s-cobordism theorem [FQ90, Theorem 7.1A] (which applies since X has good
fundamental group by assumption) there exists a homeomorphism relative to ∂+N ∪ (D × I)

(N, ∂+N)
≈−→ (∂+N × I, ∂+N × {0})

such that this homeomorphism restricts to the identity on ∂+N ∪ (D × I) . Let f̃ denote the
restriction of this homeomorphism to ∂−N → ∂+N × {1}. Since N ∈ Ss

TOP(X × I, ∂), we also
have a (simple) homotopy equivalence, restricting to a homeomorphism on the boundary

(N ; ∂+N, ∂0N, ∂−N)
≃−→ (X × I;X × {0}, ∂X × I,X × {1})
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Putting this together, we have the commutative diagram

∂−N ∂+N

X X

f̃

≈ ≈
f

where f is defined such that the diagram commutes.
It follows that our constructed element N ∈ Ss

TOP(X × I, ∂) is homeomorphic to the mapping
cylinderMf := (X×I)∪fX, restricting to a diffeomorphism on the boundary by construction. □

4.3. Proofs of Theorem 1.7 and Theorem 1.9. We now define the technical “realisability
condition” which was mentioned in the introduction.

Definition 4.11. Let X be a closed, connected, smooth, orientable 4-manifold with π1(X) ∼= π
where π is a good group. We say that X satisfies the Casson-Sullivan realisability condition if the
surgery obstruction map (after reidentifying the normal invariants using Lemma 4.8)

θ : H2(X × I, ∂;Z/2)⊕H4(X × I, ∂;Z) → L5(Z[π])

is such that for every y ∈ H4(X × I, ∂;Z) there exists an x ∈ H2(X × I, ∂;Z/2) such that
θ(x, y) = 0.

We begin with a simple but essential observation.

Lemma 4.12. Let N be an element as in Proposition 4.10 and let Mf be the associated mapping
cylinder. Then cs(f) = ϖ−1ξ∗(N).

Proof. Note that ξ∗(N) is the obstruction to lifting N to an element of the smooth structure
set Ss

DIFF(X × I, ∂) and hence ξ∗(N) = ks(Mf ). The lemma follows by the definition of the
Casson-Sullivan invariant (Definition 2.10). □

Now it only remains to prove the main theorem, but most of the work has already been done.

Proof of Theorem 1.7. Let X be as in the statement of the theorem and let η ∈ H3(X;Z/2).
Recall the diagram from Lemma 4.9. We claim that for any z ∈ H4(X × I, ∂;Z/2) there exists

a y ∈ H4(X × I, ∂;Z) such that m(0, y) = red2(y) = z. By the universal coefficients theorem, we
have the following diagram

0 Ext1(H3(X × I, ∂),Z) H4(X × I, ∂;Z) Hom(H4(X × I, ∂),Z) 0

0 Ext1(H3(X × I, ∂),Z/2) H4(X × I, ∂;Z/2) Hom(H4(X × I, ∂),Z/2) 0

red2 red2 red2

where the rows are short exact sequences and the vertical maps are given by reduction of coeffi-
cients. Both the leftmost and rightmost vertical maps are surjective, and hence, by the five-lemma,
the middle vertical map is surjective. This completes the proof of the claim.

So, given any η ∈ H3(X, ∂X;Z/2), we can find an element y ∈ H4(X × I, ∂;Z) such that

ϖ−1m(0, y) = η.

By the realisability condition, there exists an x ∈ H2(X × I, ∂;Z/2) such that θ(x, y) = 0.
Define Nη such that Nη maps to (x, y) under the isomorphism given in Lemma 4.8. By Lemma 4.9,
it follows that ξ∗(Nη) = ϖη. Hence, by Proposition 4.10 and Lemma 4.12, we have that there
exists a homeomorphism f : X → X with cs(f) = η. □

We finish this section by proving Theorem 1.9, which follows easily from the construction of
the non-pseudo-smoothable homeomorphisms produced by Theorem 1.7.

Proof of Theorem 1.9. Let X be as in the statement of the theorem. Then, as in the above
proof of Theorem 1.7, for every non-zero η ∈ H3(X;Z/2) there exists a mapping cylinder Mf =
(X × I)∪f X such that cs(f) = η ̸= 0. Hence f is not stably pseudo-isotopic to a diffeomorphism
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by Proposition 2.19 and Proposition 2.22. However, now also note that Mf ∈ Ss
TOP(X× I, ∂) and

hence we have a homotopy equivalence

((X × I) ∪f X;X × {0}, X × {1}) ≃ (X × I;X × {0}, X × {1})

which by construction restricts to the identity IdX onX×{0} and f onX×{1}. By post-composing
this homotopy equivalence with the projection toX, this produces a homotopy between f and IdX .

□

4.4. Applications. In light of the previous subsection, it is natural to ask for which 4-manifolds
do the results Theorem 1.7 and Theorem 1.9 apply. This subsection is devoted to giving such
examples. In all that follows, let X be a closed, connected, smooth, orientable 4-manifold with
π1(X) ∼= π.

Let Γ be a finite cyclic group. Then it follows from Bak [Bak76] that Ls
5(Z[Γ]) = 0. Hence,

for π ∼= Γ we have that the surgery obstruction vanishes trivially and hence Theorem 1.7 and
Theorem 1.9 apply. We can say more, however.

Proposition 4.13. Let X be a compact, connected, smooth, orientable 4-manifold with π1(X) ∼= Γ
with Γ a finite group such that SK1(Z[Γ]) = 0 or such that SK1(Z[ρ]) = 0 where ρ denotes the
Sylow 2-subgroup of Γ. Then Theorem 1.7 and Theorem 1.9 both apply to X.

Remark 4.14. For a group ring Z[Γ] we define SK1(Z[Γ]) to be a certain subgroup of the algebraic
K-theory group K1(Z[Γ]). If Γ is abelian, then this subgroup is defined as the kernel of the
determinant map det : K1(Z[Γ]) → Z[Γ]×. For non-abelian Γ, see [Oli88, §1].

Proposition 4.13 follows from a result of Hambleton-Milgram-Taylor-Williams, which we now
restate the relevant part of (adapted to our situation).

Theorem 4.15 ([HMTW88, Theorem A]). Let M be a 5-dimensional manifold with boundary
∂M such that π1(M) ∼= π is finite and im(SK1(Z[ρ]) → SK1(Z[π])) = 0, where ρ is the Sylow
2-subgroup of π. Then the surgery obstruction map

θ : [(M,∂M), G/TOP] → Ls
5(Z[π])

is given by

x 7→ κs3(c∗(Arf3(x))).

In the above theorem, κs3 denotes the map (constructed in [HMTW88, §1])

κs3 : H3(Bπ;Z/2) → Ls
5(Z[π]),

where c : M → Bπ is defined as the classifying map for the universal cover of M , and Arf denotes
the Arf invariant.

Before we prove Proposition 4.13, we state a few groups Γ for which SK1(Γ) vanishes. This
is the work of many mathematicians, and we direct the reader to [Oli88, p.3-4] and the citations
within for references.

(i) Γ = Z/2n
(ii) Γ = Z/2n × Z/2
(iii) Γ = (Z/2)n.
(iv) Γ = D2n, the dihedral group of order 4n.

So Proposition 4.13 applies to any of the above groups. It also follows that Theorem 1.7 and
Theorem 1.9 also apply to any Γ that has any of the above groups as its Sylow 2-subgroup. For
example, let ρ be isomorphic to one of the above groups and let O be an odd-order group. Then
Γ := ρ×O has ρ as its Sylow 2-subgroup and hence Proposition 4.13 also applies to Γ.

Proof of Proposition 4.13. Let X satisfy the hypotheses of Proposition 4.13 and let b ∈ H4(X ×
I;Z). We need to show that there exists an a ∈ H2(X × I;Z/2) such that θ(a, b) = 0. We claim
that we can simply take a = 0 regardless of b.
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Note that X × I is a 5-dimensional manifold with boundary and clearly im(SK1(Z[ρ]) →
SK1(Z[Γ])) = 0, hence Theorem 4.15 applies to X × I. Theorem 4.15 then tells us that the
surgery obstruction map θ factors as

[(X × I, ∂), G/TOP] → H2(X × I, ∂;Z/2) ∼= H3(X;Z/2) → H3(Bπ;Z/2)
κs
3−→ Ls

5(Z[π]),

where the first map is the projection, using Lemma 4.8. Hence, θ(a, b) does not depend on b, and
so for all b ∈ H4(X × I, ∂;Z/2) we have that θ(0, b) = θ(0, 0) = 0. □

4.5. Partial unstable realisation of the Casson-Sullivan invariant. The purpose of this
subsection is to find examples where we can partially realise the Casson-Sullivan invariant using
the method described in Section 4.2. The way we will do this is by considering the assembly
maps for the surgery obstruction map θ and comparing them using spectral sequences to surgery
obstruction maps that we have full realisation for. In all that follows, let X be a closed, connected,
smooth, orientable 4-manifold with π1(X) ∼= π.

First we give the relevant notation. Let ε ∈ {−∞} ∪ {. . . ,−1, 0, 1, 2} be the decoration, and
recall that ε = 2 refers to ε = s and ε = 1 refers to ε = h. For more information about decorations,
see [Lüc23]. Let Lε

•(R) denote the quadratic L-theory spectrum of a ring R with decoration ε (this
is a spectrum that has homotopy groups πk(Lε

•(R)) = Lε
k(R)) and let L• := L•(Z) (note that, as

suggested by the notation, this is independent of our choice of decoration). We will use L•⟨1⟩ to
denote the 1-connective cover of L• (a spectrum which has πk(L•⟨1⟩) = 0 for all k < 1 and has
πk(L•⟨1⟩) = πk(L•) for k ≥ 1). Then these spectra determine a generalised (co)homology theory
and we have the following factorisation of the surgery obstruction map θε (note that the notation
used will be explained below).

NTOP(X × I, ∂) Lε
5(Z[π])

H0(X × I, ∂;Lε
•⟨1⟩) Hπ

5 (∗ALL;Lε
•)

H5(X × I;Lε
•⟨1⟩) Hπ

5 (∗T RIV ;Lε
•)

H5(Bπ;Lε
•⟨1⟩) H5(Bπ;Lε

•)

θε

∼=a

∼=b

∼= g

c

σε

d

∼= e

The isomorphism a arises via the definition of cohomology with coefficients in a spectrum. Since
we have that (L•⟨1⟩)0 ≃ G/TOP we have that

H0(X × I, ∂;L•) ∼= [X × I, ∂;G/TOP] ∼= NTOP(X × I, ∂).

The isomorphism b is given by Sullivan-Ranicki duality. To define the map c, we factor it as the

composition of maps given in the diagram below where X̃ × I denotes the universal cover of X×I.

H5(X × I;Lε
•⟨1⟩) Hπ

5 (X̃ × I;Lε
•⟨1⟩) H5(Eπ ×π (X̃ × I);Lε

•⟨1⟩)

H5(Bπ;Lε
•⟨1⟩) H5(Eπ ×π {pt};Lε

•⟨1⟩)

c

∼= ∼=

c′

∼=

To define the map d, recall that we have a map Lε
•⟨1⟩ → Lε

• by the definition of a 1-connective cover.
Then d is the induced map on homology via this map. The definition of the isomorphism e follows
from the definition of the π-equivariant homology of the Orb(π)-space ∗T RIV with coefficients in
a spectrum. For this details on this, see [DL98, Ex 5.5]. The isomorphism g is again given by the
definition of the π-equivariant homology. The map σε is what we will call the ε-assembly map.
Since we need to use the s-cobordism theorem to construct our mapping cylinders, we will need to
consider the case ε = s, for which this assembly map is certainly not an isomorphism in general.
Composing all of these maps together we get a factorisation of θs.
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Figure 2. The E3-page of the spectral sequence for computing H∗(BG;L•⟨1⟩)
with the relevant terms and differentials shown for computing H5(BG;L•⟨1⟩).
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Now we want to use this formalism to try to understand θs for some groups for which we cannot
use Proposition 4.13. Let Γ be a finite cyclic group such that we have a non-trivial homomorphism
h : Γ → π. In what follows we will condense the ‘assembly map’ by setting σ := g ◦ σs ◦ e.

Consider the following diagram.

NTOP(X × I, ∂) Ls
5(Z[π]) Ls

5(Z[Γ]) = 0

H5(X × I;Ls
•⟨1⟩) H5(Bπ;Ls

•) H5(BΓ;Ls
•)

θs

∼=a σ

h∗

σ

By naturality of the assembly maps, if a normal invariant is hit by the map h∗ after being mapped
down to H5(Bπ;Ls

•), then its surgery obstruction must be zero. It follows that if the map h∗ is
surjective then θs is the zero map. To try to understand this map h∗ better we will use the Atiyah-
Hirzebruch spectral sequence (AHSS). Recall that the AHSS is a homology spectral sequence that
computes the generalised homology of a space in terms of the regular homology of that space with
coefficients in the generalised homologies of a point. In our particular case it computes, for a
space K,

E2
p,q = Hp(K;πq(L•⟨1⟩)) =⇒ E∞

p,q = Hp+q(K;L•⟨1⟩).
Recall that πq(L•⟨1⟩) = Lq(Z) for q > 0 and is zero otherwise. We first wish to compute
H5(BG;L•⟨1⟩) for the cases G = π and G = Γ. We show the relevant terms below of the
E3-page, along with the relevant third-page differentials, in Figure 2.

The conclusions we can draw from this spectral sequence are contained in the following lemma.

Lemma 4.16. Let Γ be a finite cyclic group of order 2n, let π ∼= Z × Γ and let dG denote the
differential d4,33 denoted above. Then we have the following commutative diagram where the rows
are exact.

0 coker dΓ H5(BΓ;L•⟨1⟩) H3(BΓ;Z/2) 0

0 coker dπ H5(Bπ;L•⟨1⟩) H3(Bπ;Z/2) 0
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and H3(BΓ;Z/2) ∼= Z/2, coker dΓ ∼= Z/2n or Z/n, H3(Bπ;Z/2) ∼= Z/2 ⊕ Z/2, and coker dπ ∼=
Z⊕ Z/2n or Z⊕ Z/n.

Proof. First note that for any group G the differential d3,23 vanishes since it is map from a torsion
group to a torsion-free group. Then recall that a model for BΓ is given by the infinite lens space
L(2n), and that a model for Bπ is given by the space S1 ×L(2n). We have that dΓ : Z/2 → Z/2n
is either the zero map or is injective. Similarly, we get that dπ : Z/2⊕ Z/2 → Z⊕ Z/2n is either
the zero map or the map (a, b) 7→ (0, nb) (the other possibilities may be ruled out by further
comparing with the spectral sequence for G = Z and using naturality). From this we can conclude
that the isomorphism types of the cokernels are as described in the lemma.

Finally, the diagonal p + q = 5 computes the associated graded for H5(BG;L•⟨1⟩) and hence
we have the short exact sequences which form the rows of the stated commutative diagram. The
vertical maps are then induced by the obvious inclusion map Γ → π and the diagram commutes
by naturality of spectral sequences. This completes the proof. □

We have that H4(X × I, ∂;Z/2) ∼= H3(X;Z/2) ∼= Z/2⊕ Z/2 and the aim is now to realise the
element (0, 1) as the Casson-Sullivan invariant of a homeomorphism f : X → X. Following the
realisation procedure laid out in Section 4.2 and Section 4.3, by Proposition 4.10 and Lemma 4.12
it suffices to show that there exists an element y ∈ NTOP(X × I, ∂) ∼= [(X × I, ∂), G/TOP] such
that the map m from Lemma 4.9 sends y to (0, 1) ∈ H4(X × I, ∂;Z/2) and such that θ(y) = 0.

Lemma 4.17. Let Γ be a finite cyclic group of order 2n, π = Z × Γ and let ι : Γ → π be the
obvious inclusion map. The leftmost vertical map in the commutative diagram from Lemma 4.16
is then ι∗ and is given by

ι∗ :

{
Z/2n
Z/n

→

{
Z⊕ Z/2n
Z⊕ Z/n

a 7→(0, a).

Proof. We see this from the following commutative diagram, where we have identifiedH1(BG;Z) ∼=
ab(G) for any group G, where ab(G) denotes the abelianisation of G.

Γ ab(Γ) coker dΓ

π ab(π) coker dπ

ι

∼=

ι∗

∼=

Since ι(a) = (0, a), the commutativity of the above diagram gives the result regardless of the
isomorphism types of the cokernels given in Lemma 4.16. □

Proposition 4.18. Let X be a closed, connected, smooth, orientable 4-manifold with π1(X) ∼=
π = Z × Γ. Then H3(X;Z/2) ∼= Z/2 ⊕ Z/2 and there exists a self-homeomorphism f : X → X
such that cs(f) = (0, 1) ∈ H3(X;Z/2).

Proof. First, note that we can similarly use the AHSS to compute H5(X × I;L•⟨1⟩). Of course,
we already know the answer since H5(X × I;L•⟨1⟩) ∼= H1(X;Z) ⊕ H3(X;Z/2) by Lemma 4.8,
but this means that we can fit this data into a larger commutative diagram with the one from
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Lemma 4.16, which we do now below.

coker dΓ H5(BΓ;L•⟨1⟩) H3(BΓ;Z/2)

Ls
5(Z[Γ])

coker dπ H5(Bπ;L•⟨1⟩) H3(Bπ;Z/2)

Ls
5(Z[π])

H1(X;Z) H5(X × I;L•⟨1⟩) H3(X;Z/2)

ι∗

θs

ι∗ ι∗

θs

a

Note that we have omitted the zeroes from the ends of the rows, but the rows are still split
exact sequences. Let x ∈ H5(X × I;L•⟨1⟩) be the element corresponding to

((0, 1), 0) ∈ H4(X × I, ∂;Z)⊕H2(X × I, ∂;Z/2)

via the isomorphism from Lemma 4.8. If we can show that the surgery obstruction θs(x) = 0,
then by Proposition 4.10 we can construct a homeomorphism f : X → X which has cs(f) =
m((0, 1), 0) = (0, 1).

Using the fact that x is hit by an element fromH1(X;Z) and the description of the leftmost map
denoted by ι∗ from Lemma 4.17, a simple diagram chase tells us that a(x) is in the image of ι∗.
Hence by naturality of assembly maps, and the fact that Ls

5(Z[Γ]) = 0, we have that θ(x) = 0,
completing the proof. □

Proposition 4.18 tells us that we can also find examples of homeomorphisms that are not
stably (pseudo-)smoothable but are homotopic to the identity for 4-manifolds with fundamental
group Z × Z/2n. Note also that the above arguments would have worked just as well with Z
replaced with Zn, so we can also find non-smoothable homeomorphisms in those cases as well.

5. An application to stable isotopy of surfaces

This section is devoted to proving Theorem 1.2. We begin with a definition.

Definition 5.1. LetX be a connected, compact, orientable smooth 4-manifold and let Σ1,Σ2 ⊂ X
be a pair of smoothly embedded surfaces, such that ∂Σ1 = ∂Σ2 = L ⊂ ∂X a fixed link in ∂X
(which may be disconnected). We say that Σ1 and Σ2 are topologically isotopic {smoothly isotopic}
if there exists a homeomorphism {diffeomorphism} of pairs F : (X,Σ1) → (X,Σ2) such that F is
isotopic {smoothly isotopic} to the identity. We say that Σ1 and Σ2 are externally stably smoothly
isotopic if there exists n ≥ 0 such that Σ1 and Σ2 become smoothly isotopic in X#(#nS2 × S2),
where we perform the connect-sums in the complement of Σ1 ∪ Σ2.

The idea of proving Theorem 1.2 is as follows: first, we find a stable diffeomorphism between the
exteriors of the surfaces. Then, we show that we can modify this diffeomorphism to find one such
that when we glue back in the tubular neighbourhoods of the surfaces, we have a diffeomorphism
which is the identity on H2(X;Z). Then we use the following result of Saeki and Orson-Powell
which says when a diffeomorphism of a simply-connected 4-manifold is stably isotopic to the
identity.

Theorem 5.2 ([Sae06, OP23]). Let X be a connected, compact, simply-connected smooth 4-
manifold with (potentially disconnected) boundary ∂X and let f : X → X be a diffeomorphism
(restricting to the identity on ∂X) such that the variation (see [OP23, Definition 2.11]) induced
by f is trivial, and such that the induced map on relative spin structures (see [OP23, Definition
2.5]) is trivial. Then f is stably smoothly isotopic to the identity.
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The above theorem crucially relies on the theorem of Quinn [Qui86] that smooth pseudo-isotopy
implies stable smooth isotopy (see also [Gab22, Section 2], and [GGH+23]).

Since in Theorem 1.2 we assume that our surfaces are topologically isotopic, this means that
we have a homeomorphism of the surface exteriors, and we will take this as our starting point.
The following lemma will handle most of the technical aspects of the proof of Theorem 1.2.

Lemma 5.3. Let X, Σ1 and Σ2 be as in the statement of Theorem 1.2 and let Ĝ : X → X be a

homeomorphism which sends Σ1 to Σ2. Then Ĝ is isotopic relative ∂X ∪Σ1 to a homeomorphism
which sends νΣ1 to νΣ2 by a diffeomorphism.

Proof. Let U := Ĝ(νΣ1). We begin by isotoping Ĝ|Σ1 to a diffeomorphism, which is always possible
since homeomorphisms of surfaces are isotopic to diffeomorphisms [Eps66] (see also [Hat14]). This

isotopy extends to Ĝ by extending it first to a tubular neighbourhood (perform the isotopy less and
less as you extend radially from Σ1) and then as the constant isotopy on the complement of the
tubular neighbourhood of Σ1 (of course, it was clear, by the isotopy extension theorem [EK71], that
this extended, but we can see the extension explicitly and easily in this case). Denote the result of

this isotopy still by Ĝ. By the uniqueness of topological tubular neighbourhoods [FQ90, Chapter

9.3], U and νΣ2 are isotopic by an isotopy that fixes Σ2, and hence we can isotope Ĝ relative to

∂X∪Σ1 such that Ĝ(νΣ1) = νΣ2 as bundles. We now smooth the map on the fibres of the normal
bundles relative to the 0-section Σ1, which we can do since any map Σ1 → O(2) can be isotoped
to a smooth map. The result of this isotopy now sends νΣ1 to νΣ2 via a diffeomorphism. □

Remark 5.4. It should be noted that one cannot always smooth homeomorphisms of 4-manifolds
near arbitrary codimension 2 submanifolds. In general, one can only smooth a homeomorphism
near a codimension 2 submanifold after a small topological isotopy (see [FQ90, Theorem 8.1A]).
Lemma 5.3 does not contradict this since we have a much stronger hypothesis (it is a self-
homemorphism of a smooth manifold and our homeomorphism already maps the submanifold
in question to another smooth submanifold).

Lemma 5.5. Let X, Σ1 and Σ2 be as in the statement of Theorem 1.2 and let G : X \ νΣ1 →
X \ νΣ2 be the homeomorphism of the surface exteriors and Ĝ : X → X the extension of G. Then
for some k ≥ 0 there exists a diffeomorphism

F : (X \ νΣ1)#(#kS2 × S2) → (X \ νΣ2)#(#kS2 × S2)

which restricts to the identity on ∂X. Furthermore, F extends to a diffeomorphism

F̂ : X#(#kS2 × S2) → X#(#kS2 × S2),

and the induced maps on second homology fit into the following commutative diagram.

H2(X \ νΣ1)⊕ Z2 ⊕ Z2k−2 H2(X \ νΣ2)⊕ Z2 ⊕ Z2k−2

H2((X \ νΣ1)#(#kS2 × S2)) H2((X \ νΣ2)#(#kS2 × S2))

H2(X#(#kS2 × S2)) H2(X#(#kS2 × S2))

H2(X)⊕ Z2 ⊕ Z2k−2 H2(X)⊕ Z2 ⊕ Z2k−2

∼=

(G∗,A,Id)

∼=

(i1)∗

F∗

(i2)∗

∼=

(F̂ )∗

∼=

(Id,A,Id)

(5.1)

where i1 and i2 denote the inclusions of the exteriors, and A : Z2 → Z2 is either the identity
map if cs(G) = 0, or is given by the map sending (x, y) 7→ (−y,−x) if cs(G) ̸= 0. Furthermore,

F̂ is topologically pseudo-isotopic to a map which differs from the stabilisation of Ĝ only on a
neighbourhood of a curve in X \ νΣ1 and a single S2 × S2 summand.
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Proof. We assume, by Lemma 5.3, that Ĝ : X → X already restricts to a diffeomorphism of the

tubular neighbourhoods Ĝ|νΣ1 : νΣ1 → νΣ2.
We begin by showing the existence of a stable diffeomorphism of the exteriors, and that the

top square in Equation (5.1) commutes. Assume that cs(G) ̸= 0, and let γ ⊂ X \ νΣ1 be a
framed embedded curve such that [γ] ∈ H1(X \ νΣ1;Z/2) is dual to cs(G). By Theorem 3.2, the
connect-sum homeomorphism (using the notation therein)

G′ := G#γ=θσ̂ : (X \ νΣ1)#(S2 × S2) → (X \ νΣ2)#(S2 × S2)

has cs(G′) = cs(G) + cs(G) = 0, where σ̂ = σ or σ ◦ t, depending on G.
By Proposition 2.23, G′ is stably pseudo-isotopic to a diffeomorphism

F : (X \ νΣ1)#(#kS2 × S2) → (X \ νΣ2)#(#kS2 × S2)

for some k ≥ 1. By the computation in [Lee70] (see [Gal24, Lemma 2.3]), σ̂ induces the map
sending (x, y) 7→ (−y,−x) on H2((S

1×S3)#(S2×S2)) and hence the top square in Equation (5.1)
commutes.

If cs(G) = 0 then we may immediately apply Proposition 2.23 and similarly obtain a diffeo-
morphism F , though potentially needing no stabilisations, and the top half of Equation (5.1)
commutes with A given by the identity map.

Now F extends to a diffeomorphism on X#(#kS2 × S2) since we already assumed that Ĝ
restricted to a diffeomorphism νΣ1 → νΣ2. More specifically, we can fill back in the tubular

neighbourhoods of the surfaces Σ1 and Σ2 to obtain a diffeomorphism F̂ which fits into the
following diagram.

(X \ νΣ1)#(#kS2 × S2) (X \ νΣ2)#(#kS2 × S2)

X#(#kS2 × S2) X#(#kS2 × S2)

F

i1 i2

F̂

This means that the middle square in Equation (5.1) must commute, and the commutativity of
the bottom square then follows immediately. The final statement is clear by the construction. □

Proof of Theorem 1.2. By Lemma 5.5, we have that for some k ≥ 0 there exists a diffeomorphism

F̂ : X#(#kS2 × S2) → X#(#kS2 × S2)

such that on second homology it induces the map

(Id, A, Id) : H2(X)⊕ Z2 ⊕ Z2k−2 → H2(X)⊕ Z2 ⊕ Z2k−2

where A is either the identity map or the map sending (x, y) 7→ (−y,−x). Since F̂ is an extension
of a diffeomorphism of the exteriors, it must send Σ1 to Σ2.

We want to apply Theorem 5.2, and so we need to show that the variation induced by F̂ , as
well as the induced map on relative spin structures, is trivial. By the last statement of Lemma 5.5,

the variation induced by F̂ can only differ by the variation induced by Ĝ by its action on relative
homology classes which cannot be represented by a relative surface disjoint from the neighbourhood
of a curve union a single (S2 × S2)-connect-summand. Such a class x ∈ H2(X#(#kS2 × S2), ∂)
can be represented as x = x′ + x′′, where x′ is represented by a relative surface disjoint from a
curve union a single (S2 × S2)-connect-summand, and x′′ is a (potentially trivial) homology class

on that (S2 × S2)-connect-summand. Since the variation induced by Ĝ is topologically isotopic

to the identity, its induced variation is trivial, and hence the action of the variation induced by F̂
on all relative classes disjoint from a curve union a single (S2 × S2)-connect-summand is trivial.

Putting these facts together, this means that the variation induced by F̂ can only differ from the
trivial variation if its induced map on homology is non-trivial.

If A is the identity map, then F̂ acts trivially on homology, and hence (by the above) its induced

variation is trivial. If A is not the identity map, then post-compose F̂ with the map

a := Id#a′#Id: X#(S2 × S2)#(#kS2 × S2) → X#(S2 × S2)#(#kS2 × S2),
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where a′ : S2×S2 → S2×S2 is the map defined as the antipodal map on both S2-factors, composed

with the diffeomorphism that swaps the two S2-factors, and obtain a diffeomorphism a ◦ F̂ . This
new diffeomorphism still sends Σ1 to Σ2, since a is supported away from Σ1, but now induces the
trivial map on homology. In either case, this means the map we have created now induces the
trivial variation.

That the induced map on relative spin structures by F̂ is trivial follows again from the last
statement in Lemma 5.5 and that every arc between two distinct boundary components of X can
be made disjoint from a curve union a single (S2 × S2)-summand.

Now apply Theorem 5.2 to obtain that F̂ is stably smoothly isotopic to the identity, and hence
Σ1 and Σ2 are stably smoothly isotopic. □

As was mentioned in Remark 1.5, Theorem 1.2 has the following consequence when paired with
certain results concerning when embedded surfaces are (stably) topologically isotopic.

Corollary 5.6. Let X be as in Theorem 1.2. Let Σ1, Σ2 be a pair of homologous, smoothly
embedded surfaces in X with the same genus and same boundaries, such that π1(X \ νΣ1) ∼=
π1(X \νΣ2). Then if any of the following conditions are satisfied, the surfaces are stably smoothly
isotopic relative to their boundaries (below b2(X) denotes the second Betti number of X and sig(X)
denotes the signature of X).

(i) Σ1 and Σ2 are both spheres and π1(X \ νΣ1) ∼= Z/d for some d ≥ 0.
(ii) π1(X \ νΣ1) is trivial.
(iii) π1(X \ νΣ1) ∼= Z and b2(X) ≥ |sig(X)|+ 6.
(iv) π1(X \ νΣ1) ∼= Z/d for some d ≥ 2 and b2(X) > |sig(X)| + 2 and the genus of Σ1 is not

the minimal genus needed to represent that homology class among surfaces with the same
fundamental group of the exterior.

Proof. If case (i) is satisfied then [HK93, Theorem 4.8] (or [LW90, Corollary 1.3] if d is odd and
X is closed) shows that the surfaces are stably topologically isotopic. Then Theorem 1.2 applied
to the stabilisation shows that the surfaces are stably smoothly isotopic. If any of the other cases
are satisfied, then [Sun15, Theorem 7.1, 7.2, 7.4] shows that the surfaces are topologically isotopic,
and then applying Theorem 1.2 shows that they are stably smoothly isotopic. □

6. Application to isotopy classification of smooth structures

This section is devoted to writing up the correspondence between non-isotopic but diffeomorphic
smooth structures and non-smoothable homeomorphisms. We will then interpret the results from
the rest of the paper to show that there exist many examples of non-isotopic but diffeomorphic
smooth structures on 4-manifolds that remain non-isotopic after arbitrarily many stabilisations
(in contrast to instances of this phenomenon detected via gauge theory).

6.1. Non-isotopic but diffeomorphic smooth structures. We start with the basic definitions.

Definition 6.1. Let S1,S2 be a pair of smooth structures on a topological manifoldX, restricting
to a fixed smooth structure S∂ on ∂X. We denote the resulting smooth manifolds from these
structures by XSi . A diffeomorphism f : XS1 → XS2 is a self-homeomorphism f of X, restricting
to the identity on ∂X, such that f∗(S2) = S1. We say that these two smooth structures are
isotopic {pseudo-isotopic} if there exists an isotopy ft : X → X {pseudo-isotopy F : X×I → X×I}
such that f0 = Id, f∗1 (S2) = S1 and (ft|∂X)∗(S∂) = S∂ {F |X×{0} = Id, (F |∂X×I)

∗(S∂ × I) =
S∂×I and (F |X×{1})

∗(S2) = S1}. Note that, in the case of isotopy, f∗t (S2) is then a 1-parameter
family of smooth structures which continuously deforms from S2 into S1.

Throughout we will assume that X already has a smooth structure on its boundary. For all of
our applications, X will be a 4-manifold, and hence its boundary admits a unique smooth structure
up to isotopy.

Definition 6.2. Let Homeo(X, ∂X) be the group of self-homeomorphisms of X restricting to
the identity map on the boundary and let Diff(XS ) be the group of self-diffeomorphisms of XS
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restricting to the identity near ∂X. We topologise these using the compact-open topology and the
C∞ topology, respectively.

Let π0 Homeo(X, ∂X) {π̃0 Homeo(X, ∂X)} denote the topological mapping class group of X
{topological pseudo-mapping class group of X} which is defined as the quotient of Homeo(X, ∂X)
via the equivalence relation: f ∼ g if f is isotopic {pseudo-isotopic} to g. We can analogously
define the smooth mapping class group {smooth pseudo-mapping class group}, which we will denote
by π0 Diff(XS , ∂X) {π̃0 Diff(XS , ∂X)}.

Remark 6.3. There is a separate definition for the pseudo-mapping-class group, where we instead

first define groups D̃iff(XS , ∂X) and H̃omeo(X, ∂X), called the block-diffeomorphism group and
block-homeomorphism group, respectively. These are defined as semi-simplicial complexes, such
that the pseudo-mapping-class groups π̃0 Homeo(X, ∂X) and π̃0 Diff(XS , ∂X) naturally occur as

π0H̃omeo(X, ∂X) and π0D̃iff(XS , ∂X), respectively. We will not develop this viewpoint further
in this paper.

There is then an inclusion Diff(XS , ∂X) ↪→ Homeo(X, ∂X) given by forgetting the smooth
structure. This induces the following map on the level of mapping class groups {pseudo-mapping
class groups}.

Φ: π0 Diff(XS , ∂X) → π0 Homeo(X, ∂X),

Φ̃ : π̃0 Diff(XS , ∂X) → π̃0 Homeo(X, ∂X).
(6.1)

We are particularly interested in the cokernel of this map which we will write as the quotient

cokerΦ =
π0 Homeo(X, ∂X)

π0 Diff(XS , ∂X)
, coker Φ̃ =

π̃0 Homeo(X, ∂X)

π̃0 Diff(XS , ∂X)

which corresponds to self-homeomorphisms of X which are not topologically isotopic {pseudo-
isotopic} to any self-diffeomorphism of XS . We have that this is a well-defined group, by the
following lemma.

Lemma 6.4. Let Φ {Φ̃} be the map from 6.2. Then the subgroup imΦ {im Φ̃} is a normal subgroup
in π0 Homeo(X, ∂X) {π̃0 Homeo(X, ∂X)}.

Proof. We show that the image of Diff(XS ) in Homeo(X, ∂X) is normal, and the lemma then
follows immediately. Let f : XS → XS be a diffeomorphism and let g : X → X be a home-
omorphism. Then we want to show that (g−1 ◦ f ◦ g)∗(S ) = S . It suffices to show that
f∗(g∗(S )) = g∗(S ), i.e. that f is also a diffeomorphism with respect to the smooth struc-
ture induced by g. This is true, since f being smooth with respect to g∗(S ) is equivalent to the
function ψ ◦ g ◦ f ◦ g−1 ◦φ−1 being a (classically) smooth map for any charts ψ,φ. By maximality
of smooth structures, ψ ◦ g and φ ◦ g are both charts for S , and f being a diffeomorphism with
respect to S finishes the proof. □

Proposition 6.5. Let XS be a smooth manifold, f : X → X be a self-homeomorphism and let

Φ: π0 Diff(XS , ∂X) → π0 Homeo(X, ∂X) {Φ̃ : π̃0 Diff(XS , ∂X) → π̃0 Homeo(X, ∂X)} be the map
from 6.2. Then the smooth structures f∗(S ) and S are isotopic {pseudo-isotopic} if and only

if [f ] ∈ imΦ{[f ] ∈ im Φ̃}.

Proof. We prove this only for Φ, with the proof being exactly the same for Φ̃.
The reverse implication is straightforward. Let f be a smoothable homeomorphism relative to

S , i.e. f is topologically isotopic to a diffeomorphism f ′ : XS → XS . Then the smooth structure
f∗(S ) is isotopic to (f ′)∗(S ), and we have (f ′)∗(S ) = S since f ′ is a diffeomorphism.

Now for the forwards implication. Let f be such that S and f∗(S ) are isotopic. Then by the
definition we have that there exists a diffeomorphism g : XS → Xf∗(S ) such that g is topologi-
cally isotopic to the identity. More specifically, there exists a continuous path of homeomorphisms
gt : X → X such that g0 = IdX and (g−1

1 )∗(f∗(S )) = S . Consider the composition homeomor-
phism ft := f ◦ gt : X → X and note that f0 = f and

f1 = f ◦ g : XS → XS
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is a diffeomorphism by construction. □

Corollary 6.6. Let XS be a smooth manifold and let S(XS , ∂X) {S̃(XS , ∂X)} denote the set
of isotopy {pseudo-isotopy} classes of smooth structures on X diffeomorphic to S restricting to
the given smooth structure on ∂X. Then there is a bijection as defined below

π0 Homeo(X, ∂X)

π0 Diff(XS , ∂X)
−→ S(XS , ∂X)

[f ] 7−→ f∗(S ),

π̃0 Homeo(X, ∂X)

π̃0 Diff(XS , ∂X)
−→ S̃(XS , ∂X)

[f ] 7−→ f∗(S ).

Proof. The fact that the map written in the statement is well-defined and only maps the trivial
element to S follows directly from Proposition 6.5. That the second condition is enough to ensure
that the map is injective follows from Lemma 6.4, That the map is surjective follows from the

definition of S(XS , ∂X) {S̃(XS , ∂X)}. □

Note that since the quotient is a group (by Lemma 6.4), this means that we get a group structure

on S(XS ) {S̃(XS )} by Corollary 6.6.

Remark 6.7. There is an alternative interpretation of this section given recently by Lin-Xie [LX23],
where we instead construct a space of a smooth structures, and now interpret our S(XS , ∂X) as
π0 of this space. We make this more precise. We have a fibration

BDiff(XS , ∂X) → BHomeo(X, ∂X)

induced by the inclusion and we denote the homotopy fibre of this map by F (XS ). From the long
exact sequence of the fibration and the fact that πi(BG) = πi−1(G) for any group G, we get the
exact sequence

π0 Diff(XS , ∂X) → π0 Homeo(X, ∂X) → π0(F (XS )) → 0.

Since it is clear that the first map in this sequence is Φ we have that π0(F (XS )) = cokerΦ. We
call F (XS ) the space of smooth structures on X diffeomorphic to S , and cokerΦ corresponds to
its path components. Using block diffeomorphisms and block homeomorphisms (see Remark 6.3),

we can similarly define a space F̃ (XS ) where π0(F̃ (XS )) corresponds to coker Φ̃. We will not
explore this interpretation further in this paper.

6.2. Stably non-isotopic but diffeomorphic smooth structures. Similarly, all of Section 6.1
can be considered stably. Let (S2 × S2)T be S2 × S2 with smooth structure T , the standard
smooth structure on S2 × S2 given as the product of the standard smooth structures on S2.
Further let XS be a smooth 4-manifold, and note that, up to isotopy, we may assume that S is
standard on some topologically embedded disc D ⊂ X. Hence we may define a smooth structure
(independent of choices) denoted by S#T on the topological connect-sum X#S2 × S2. This
motivates the following definitions.

Definition 6.8. Let XSi
for i = 1, 2 be two smooth manifolds with smooth structures Si,

respectively. Then a stable diffeomorphism from XS1
to XS2

is a diffeomorphism (in the sense of
Definition 6.1)

f : XS1#(#k(S2 × S2)T ) → XS2#(#k(S2 × S2)T )

for some non-negative integer k. In this case, we say that the smooth structures Si are stably
isotopic {stably pseudo-isotopic} if S#(#kT ) is isotopic {pseudo-isotopic} to S#(#kT ).

Analogously to the unstable case, we then have the stable mapping class groups.

Definition 6.9. Let πStab
0 Homeo(X, ∂X) {π̃Stab

0 Homeo(X, ∂X)} denote the stable topological
mapping class group of X {stable topological pseudo-mapping class group of X} which is defined
as the quotient of Homeo(X, ∂X) via the equivalence relation: f ∼ g if f is stably isotopic
{pseudo-isotopic} to g.
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Continuing the analogy with the unstable case, there is then the obvious inclusion map which
induces a map of the stable mapping class groups {pseudo-mapping class groups}

ΦStab : πStab
0 Diff(XS , ∂X) → πStab

0 Homeo(X, ∂X),

Φ̃Stab : π̃Stab
0 Diff(XS , ∂X) → π̃Stab

0 Homeo(X, ∂X).
(6.2)

Again we are interested in the cokernel of this map which we write as the quotient of the stable
mapping class groups {stable pseudo-mapping class groups} in the obvious manner:

cokerΦStab =
πStab
0 Homeo(X, ∂X)

πStab
0 Diff(XS , ∂X)

, coker Φ̃Stab =
π̃Stab
0 Homeo(X, ∂X)

π̃Stab
0 Diff(XS , ∂X)

.

This cokernel corresponds to stable isotopy {pseudo-isotopy} classes of self-homeomorphisms of
X which are not stably topologically isotopic {pseudo-isotopic} to any stable self-diffeomorphism
of XS . The proofs of Lemma 6.4, Proposition 6.5 and Corollary 6.6 follow through unchanged
for ΦStab, and hence we have the following corollary.

Corollary 6.10. Let XS be a smooth manifold and let SStab(XS , ∂X) {S̃Stab(XS , ∂X)} be the
set of stable isotopy classes of smooth structures on X {stable pseudo-isotopy classes of smooth
structures on X} stably diffeomorphic to S . Then there are bijections as defined below

πStab
0 Homeo(X, ∂X)

πStab
0 Diff(XS , ∂X)

−→ SStab(XS , ∂X)

[f ] 7−→ f∗(S ).

π̃Stab
0 Homeo(X, ∂X)

π̃Stab
0 Diff(XS , ∂X)

−→ S̃Stab(XS , ∂X)

[f ] 7−→ f∗(S ).

6.3. Proofs of Theorem 1.11 and Theorem 1.12. We now reinterpret the results from the rest
of the paper in terms of smooth structures. By Proposition 2.22, we know that the Casson-Sullivan
invariant is an obstruction to a homeomorphism f : XS → XS being stably pseudo-isotopic to a
diffeomorphism. Hence, if f : X → X has cs(f) ̸= 0, then f represents a non-trivial element in

coker Φ̃Stab and by Corollary 6.10 f gives rise to a non-trivial element in SStab(XS , ∂X). We now
give the formal proofs of the theorems.

Proof of Theorem 1.11. We first recap the hypothesis of the theorem. Let X be a 4-manifold such
that X = X ′#(S2 × S2) for some compact, connected, smooth, orientable 4-manifold X ′ and let
S denote the smooth structure on X induced from X ′.

Let η ∈ H3(X, ∂X;Z/2) be non-trivial. Then by Theorem 1.1 there exists a homeomorphism
f : X → X such that cs(f) = η. By Proposition 2.22 we have that f represents a non-trivial ele-

ment in coker Φ̃Stab and hence by Corollary 6.10 we see that Sη := f∗(S ) is a non-trivial element

in S̃Stab(XS , ∂X). Repeating this for all non-trivial η ∈ H3(X, ∂X;Z/2) generates the family of

smooth structures {Sη} and these all must be distinct in S̃Stab(XS , ∂X) since they correspond
(via Corollary 6.10) to homeomorphisms which all have different Casson-Sullivan invariants. □

The proof for Theorem 1.12 is analogous.

Proof of Theorem 1.12. Again we recap the hypothesis of the theorem. Let X be a closed, con-
nected, smooth, orientable 4-manifold with π1(X) ∼= π where π which satisfies the Casson-Sullivan
realisation condition (see Definition 4.11). Let X = XS for some smooth structure S .

Let η ∈ H3(X, ∂X;Z/2) be non-trivial. Then by Theorem 1.7 there exists a homeomorphism
f : X → X such that cs(f) = η. The proof is then exactly the same as the proof of Theorem 1.11.

□
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