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PREFACE

Surgery theory is the standard method for the classification of high-dimen-

sional manifolds, where high means > 5. The theory is not intrinsically difficult,

but the wide variety of algebraic and geometric techniques required makes heavy

demands on beginners. Where to start?

This book aims to be an entry point to surgery theory for a reader who already

has some background in topology. Familiarity with a book such as Bredon [10]

or Hatcher [31] is helpful but not essential. The prerequisites from algebraic and

geometric topology are presented, along with the purely algebraic ingredients.

Enough machinery is developed to prove the main result of surgery theory : the

surgery exact sequence computing the structure set of a differentiable manifold

M of dimension > 5 in terms of the topological K-theory of vector bundles over

M and the algebraic L-theory of quadratic forms over the fundamental group

ring Z[π1(M)]. The surgery exact sequence is stated in Chapter 1, and finally

proved in Chapter 13. Along the way, there are basic treatments of Morse theory,

embeddings and immersions, handlebodies, homotopy, homology, cohomology,

Steenrod squares, Poincaré duality, vector bundles, cobordism, transversality,

Whitehead torsion, the h- and s-Cobordism Theorems, algebraic and geometric

intersections of submanifolds, the Whitney trick, Poincaré complexes, spherical

fibrations, quadratic forms and formations, exotic spheres, as well as the surgery

obstruction groups L∗(Z[π]).

This text introduces surgery, concentrating on the basic mechanics and work-

ing out some fundamental concrete examples. It is definitely not an encyclope-

dia of surgery theory and its applications. Many results and applications are not

covered, including such important items as Novikov’s theorem on the topological

invariance of the rational Pontrjagin classes, surgery on piecewise linear and topo-

logical manifolds, the algebraic calculations of the L-groups for finite groups, the

geometric calculations of the L-groups for infinite groups, the Novikov and Borel

conjectures, surgery on submanifolds, splitting theorems, controlled topology,

knots and links, group actions, stratified sets, the connections between surgery

and index theory, . . . . In other words, there is a vast research literature on

surgery theory, to which this book is only an introduction.

The books of Browder [14], Novikov [65] and Wall [92] are by pioneers of

surgery theory, and are recommended to any serious student of the subject.

However, note that [14] only deals with the simply-connected case, that only a

relatively small part of [65] deals with surgery, and that the monumental [92] is
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notoriously difficult for beginners, probably even with the commentary I had the

privilege to add to the second edition. The papers collected in Ferry, Ranicki and

Rosenberg [24], Cappell, Ranicki and Rosenberg [17] and Farrell and Lück [23]

give a flavour of current research and include many surveys of topics in surgery

theory, including the history. In addition, the books of Kosinski [42], Madsen

and Milgram [45], Ranicki [70], [71], [74] and Weinberger [94] provide accounts of

various aspects of surgery theory.

On the afternoon of my first day as a graduate student in Cambridge, in

October, 1970 my official supervisor Frank Adams suggested that I work on

surgery theory. This is still surprising to me, since he was a heavy duty homotopy

theorist. In the morning he had indeed proposed three topics in homotopy theory,

but I was distinctly unenthusiastic. Then at tea-time he said that I might look

at the recent work of Novikov [64] on surgery theory and hamiltonian physics,

draining the physics out to see what mathematics was left over. Novikov himself

had not been permitted by the Soviet authorities to attend the Nice ICM in

September, but Frank had attended the lecture delivered on Novikov’s behalf

by Mishchenko. The mathematics and the circumstances of the lecture definitely

sparked my interest. However, as he was not himself a surgeon, Frank suggested

that I actually work with Andrew Casson. Andrew explained that he did not

have a Ph.D. himself and was therefore not formally qualified to be a supervisor

of a Ph.D. student, though he would be willing to answer questions. He went on

to say that in any case this was the wrong time to start work on high-dimensional

surgery theory! There had just been major breakthroughs in the field, and what

was left to do was going to be hard. This brought out a stubborn streak in me,

and I have been working on high-dimensional surgery theory ever since.

It is worth remarking here that surgery theory started in 1963 with the classi-

fication by Kervaire and Milnor [38] of the exotic spheres, which are the differen-

tiable manifolds which are homeomorphic but not diffeomorphic to the standard

sphere. Students are still advised to read this classic paper, exactly as I was

advised to do by Andrew Casson in 1970.

This book grew out of a joint lecture course with Jim Milgram at Göttingen

in 1987. I am grateful to the Leverhulme Trust for the more recent (2001/2002)

Fellowship during which I completed the book. I am grateful to Markus Banagl,

Jeremy Brookman (who deserves special thanks for designing many of the dia-

grams), Diarmuid Crowley, Jonathan Kelner, Dirk Schuetz, Des Sheiham, Joerg

Sixt, Chris Stark, Ida Thompson and Shmuel Weinberger for various suggestions.

Any comments on the book subsequent to publication will be posted on the

website

http://www.maths.ed.ac.uk/̃ aar/books

2nd June, 2002



1

THE SURGERY CLASSIFICATION OF MANIFOLDS

Chapter 1 is an introduction to the surgery method of classifying manifolds.

Manifolds are understood to be differentiable, compact and closed, unless oth-

erwise specified.

A classification of manifolds up to diffeomorphism requires the construction

of a complete set of algebraic invariants such that :

(i) the invariants of a manifold are computable,

(ii) two manifolds are diffeomorphic if and only if they have the same invariants,

(iii) there is given a list of non-diffeomorphic manifolds realizing every possible

set of invariants.

One could also seek a homotopy classification of manifolds, asking for a complete

set of invariants for distinguishing the homotopy types of manifolds. Diffeomor-

phic manifolds are homotopy equivalent.

The most important invariant of a manifold Mm is its dimension, the number

m > 0 such that M is locally diffeomorphic to the Euclidean space Rm. If

m 6= n then Rm is not diffeomorphic to Rn, so that an m-dimensional manifold

Mm cannot be diffeomorphic to an n-dimensional manifold Nn. The homology

and cohomology of an orientable m-dimensional manifold M are related by the

Poincaré duality isomorphisms

H∗(M) ∼= Hm−∗(M) .

Any m-dimensional manifold M has Z2-coefficient Poincaré duality

H∗(M ;Z2) ∼= Hm−∗(M ;Z2) ,

with

Hm(M ;Z2) = Z2 , Hn(M ;Z2) = 0 for n > m .

The dimension of a manifold M is thus characterised homologically as the largest

integer m > 0 with Hm(M ;Z2) 6= 0. Homology is homotopy invariant, so that

the dimension is also a homotopy invariant : if m 6= n an m-dimensional manifold

Mm cannot be homotopy equivalent to an n-dimensional manifold Nn.
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There is a complete diffeomorphism classification of m-dimensional mani-

folds only in the dimensions m = 0, 1, 2, where it coincides with the homotopy

classification. For m > 3 there exist m-dimensional manifolds which are homo-

topy equivalent but not diffeomorphic, so that the diffeomorphism and homotopy

classifications must necessarily differ. For m = 3 complete classifications are the-

oretically possible, but have not been achieved in practice – the Poincaré con-

jecture that every 3-dimensional manifold homotopy equivalent to S3 is actually

diffeomorphic to S3 remains unsolved!

For m > 4 group-theoretic decision problems prevent a complete classifica-

tion of m-dimensional manifolds, by the following argument. Every manifold M

can be triangulated by a finite simplicial complex, so that the fundamental group

π1(M) is finitely presented. Homotopy equivalent manifolds have isomorphic fun-

damental groups. Every finitely presented group arises as the fundamental group

π1(M) of an m-dimensional manifold M . It is not possible to have a complete

set of invariants for distinguishing the isomorphism class of a group from a finite

presentation. Group-theoretic considerations thus make the following questions

unanswerable in general :

(a) Is M homotopy equivalent to M ′ ?

(b) Is M diffeomorphic to M ′ ?

since already the question

(c) Is π1(M) isomorphic to π1(M ′) ?

is unanswerable in general.

The surgery method of classifying manifolds seeks to answer a different ques-

tion :

Given a homotopy equivalence of m-dimensional manifolds f : M → M ′ is f

homotopic to a diffeomorphism?

Every homotopy equivalence of 2-dimensional manifolds (= surfaces) is ho-

motopic to a diffeomorphism, by the 19th century classification of surfaces which

is recalled in Chapter 3.

A homotopy equivalence of 3-dimensional manifolds is not in general homo-

topic to a diffeomorphism. The first examples of such homotopy equivalences

appeared in the classification of the 3-dimensional lens spaces in the 1930’s : the

Reidemeister torsion of a lens space is a diffeomorphism invariant which is not

homotopy invariant. Algebraic K-theory invariants such as Reidemeister and
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Whitehead torsion are significant in the classification of manifolds with finite

fundamental group, and in deciding if ‘h-cobordant’ manifolds are diffeomorphic

(via the s-Cobordism Theorem, stated in 1.11 below), but they are too special to

decide if an arbitrary homotopy equivalence of manifolds is homotopic to a dif-

feomorphism. Chapter 8 deals with the main applications of Whitehead torsion

to the topology of manifolds.

In 1956, Milnor [49] constructed an exotic sphere, a differentiable manifold

Σ7 with a homotopy equivalence (in fact a homeomorphism) Σ7 → S7 which is

not homotopic to a diffeomorphism. The subsequent classification by Kervaire

and Milnor [38] for m > 5 of pairs

( m-dimensional manifold Σm , homotopy equivalence Σm → Sm )

was the first triumph of surgery theory. It remains the best introduction to

surgery, particularly as it deals with simply-connected manifolds M (i.e. those

with π1(M) = {1}) and so avoids the fundamental group. The surgery classifi-

cation of homotopy spheres is outlined in Section 13.3.

Definition 1.1 An (m+ 1)-dimensional cobordism (W ;M,M ′) is an (m+

1)-dimensional manifold Wm+1 with boundary the disjoint union of closed m-

dimensional manifolds M , M ′

∂W = M ∪M ′
2

The cobordism classes of manifolds are groups, with addition by disjoint

union. The computation of the cobordism groups was a major achievement of

topology in the 1950’s – Chapter 6 is an introduction to cobordism theory. The

cobordism classification of manifolds is very crude : for example, the 0- and 2-

dimensional cobordism groups have order two, and the 1- and 3-dimensional

cobordism groups are trivial. Surgery theory applies the methods of cobordism

theory to the rather more delicate classification of the homotopy types of mani-

folds.

What is surgery?
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Definition 1.2 A surgery on an m-dimensional manifold Mm is the procedure

of constructing a new m-dimensional manifold

M ′m = cl.(M\Sn ×Dm−n) ∪Sn×Sm−n−1 Dn+1 × Sm−n−1

by cutting out Sn×Dm−n ⊂M and replacing it by Dn+1×Sm−n−1. The surgery

removes Sn ×Dm−n ⊂M and kills the homotopy class Sn →M in πn(M).2

Terminology: given a subset Y ⊆ X of a space X write cl.(Y ) for the closure of

Y in X, the intersection of all the closed subsets Z ⊆ X with Y ⊆ Z.

At first sight, it might seem surprising that surgery can be used to answer such

a delicate question as whether a homotopy equivalence of manifolds is homotopic

to a diffeomorphism, since an individual surgery has such a drastic effect on the

homotopy type of a manifold :

Example 1.3 (i) View the m-sphere Sm as

Sm = ∂(Dn+1 ×Dm−n) = Sn ×Dm−n ∪Dn+1 × Sm−n−1 .

The surgery on Sm removing Sn ×Dm−n ⊂ Sm converts the m-sphere Sm into

the product of spheres

Dn+1 × Sm−n−1 ∪Dn+1 × Sm−n−1 = Sn+1 × Sm−n−1 .

(ii) For m = 1, n = 0 the surgery of (i) converts the circle S1 into the disjoint

union S0 × S1 = S1 ∪ S1 of two circles
(iii) For m = 2, n = 0 the surgery of (i) converts the 2-sphere S2 into the torus

S1 ×� S1
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(iv) For m = n the surgery of (i) converts the m-sphere Sm into the empty set

∅. 2

There is an intimate connection between surgery and cobordism. A surgery

on a manifold M determines a cobordism (W ;M,M ′) :

Definition 1.4 The trace of the surgery removing Sn × Dm−n ⊂ Mm is the

cobordism (W ;M,M ′) obtained by attaching Dn+1 ×Dm−n to M × I at

Sn ×Dm−n × {1} ⊂M × {1}� f0g M � IW = M � I [Dn+1 �Dm�n Dn+1 �Dm�nM 0
Here is a more symmetric picture of the trace (W ;M,M ′) :............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Dn+1 �Dm�nSn �Dm�n Dn+1 � Sm�n�1M W M 0M0 � IM0 � f0g M0 � f1g
The m-dimensional manifold with boundary

(M0, ∂M0) = (cl.(Mm\Sn ×Dm−n), Sn × Sm−n−1)

is obtained from M by cutting out the interior of Sn ×Dm−n ⊂M , with

M = M0 ∪∂M0
Sn ×Dm−n ,

M ′ = M0 ∪∂M0
Dn+1 × Sm−n−1 ,

W = (M0 × I) ∪ (Dn+1 ×Dm−n) ,

(M0 × I) ∩ (Dn+1 ×Dm−n) = Sn × Sm−n−1 × I .

Note that M is obtained from M ′ by the opposite surgery removing Dn+1 ×
Sm−n−1 ⊂M ′.
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In fact, two m-dimensional manifolds Mm, M ′m are cobordant if and only if

M ′ can be obtained from M by a finite sequence of surgeries.

Definition 1.5 A bordism of maps f : Mm → X, f ′ : M ′m → X from m-

dimensional manifolds to a space X is a cobordism (W ;M,M ′) together with a

map

(F ; f, f ′) : (W ;M,M ′)→ X × (I; {0}, {1}) .







..............................................................................................................................................................

.......................................................................................................................................................................... ............ ............f F f 0
M W M 0

X � f0g X � I X � f1g
2

Example 1.6 A homotopy h : f ' f ′ : Mm → X can be regarded as a bordism

(F ; f, f ′) : (W ;M,M ′) = M × (I; {0}, {1})→ X × (I; {0}, {1}) ,

with

F : M × I → X × I ; (x, t) 7→ (h(x, t), t) . 2

Diffeomorphic manifolds are cobordant. Homotopy equivalent closed man-

ifolds are cobordant, but in general only by a nonorientable cobordism. It is

possible to decide if two manifolds are cobordant, but it is not possible to de-

cide if cobordant manifolds are homotopy equivalent, or if homotopy equivalent

manifolds are diffeomorphic. Given that cobordism is considerably weaker than
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diffeomorphism and that cobordism drastically alters homotopy types, it may

appear surprising that cobordism is a sufficiently powerful tool to distinguish

manifolds within a homotopy type. However, surgery theory provides a system-

atic procedure for deciding if a map of m-dimensional manifolds f : M → M ′

satisfying certain bundle-theoretic conditions is bordant to a homotopy equiva-

lence, and if the bordism can be chosen to be a homotopy (as in 1.6), at least

in dimensions m > 5. This works because surgery makes it comparatively easy

to construct cobordisms with prescribed homotopy types. The applications of

cobordism theory to the surgery classification of high-dimensional manifolds de-

pend on the following fundamental result :

Whitney Embedding Theorem 1.7 ([97], [99], 1944)

If f : Nn →Mm is a map of manifolds such that

either 2n+ 1 6 m

or m = 2n > 6 and π1(M) = {1}

then f is homotopic to an embedding Nn ↪→Mm. 2

The proof of 1.7 will be outlined in Chapter 7.

Definition 1.8 (i) An h-cobordism is a cobordism (Wm+1;Mm,M ′m) such

that the inclusions M ↪→W , M ′ ↪→W are homotopy equivalences.

(ii) An h-cobordism (W ;M,M ′) is trivial if there exists a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1})

which is the identity on M , in which case the composite homotopy equivalence

M 'W 'M ′ is homotopic to a diffeomorphism. 2

The h-Cobordism Theorem was the crucial first step in the homotopy classi-

fication of high-dimensional manifolds :

h-Cobordism Theorem 1.9 (Smale [83], 1962)

A simply-connected (m+1)-dimensional h-cobordism (Wm+1;M,M ′) with m > 5

is trivial. 2

Thus for m > 5 simply-connected m-dimensional manifolds M,M ′ are dif-

feomorphic if and only if they are h-cobordant.

The h-Cobordism Theorem was subsequently generalised to non-simply-conn-

ected manifolds, using Whitehead torsion (which is described in Chapter 8). The

Whitehead group Wh(π) of a group π is an abelian group which measures the
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extent to which Gaussian elimination fails for invertible matrices with entries

in the group ring Z[π]. The Whitehead torsion of a homotopy equivalence f :

Mm → M ′m of manifolds (or more generally of finite CW complexes) is an

element τ(f) ∈Wh(π1(M)). A homotopy equivalence f is simple if τ(f) = 0.

Definition 1.10 An s-cobordism is a cobordism (Wm+1;Mm,M ′m) such that

the inclusions M ↪→W , M ′ ↪→W are simple homotopy equivalences. 2

A diffeomorphism f : Mm → M ′m of m-dimensional manifolds determines

an (m+ 1)-dimensional s-cobordism (W ;M,M ′) with

W = (M × I ∪M ′)/{(x, 1) ∼ f(x) |x ∈M}

the mapping cylinder, such that there is defined a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1}) .

The s-Cobordism Theorem is the non-simply-connected version of the h-

Cobordism Theorem :

s-Cobordism Theorem 1.11 (Barden-Mazur-Stallings, 1964)

An (m+1)-dimensional h-cobordism (Wm+1;M,M ′) with m > 5 is trivial if and

only if it is an s-cobordism. 2

It follows that for m > 5 h-cobordant m-dimensional manifolds M,M ′ are

diffeomorphic if and only if they are s-cobordant. The proofs of the h- and s-

Cobordism Theorems will be outlined in Chapter 8.

The Whitehead group of the trivial group is trivial, Wh({1}) = 0, and the h-

Cobordism Theorem is just the simply-connected special case of the s-Cobordism

Theorem. The condition m > 5 in the h- and s-Cobordism Theorems is due to

the use of the Whitney Embedding Theorem (1.7) in their proof. It is known

that the h- and s-Cobordism Theorems for (m+ 1)-dimensional cobordisms are

true for m = 0, 1, and are false for m = 4 (Donaldson [21]), m = 3 (Cappell and

Shaneson [18]). It is not known if they are true for m = 2, on account of the

classical 3-dimensional Poincaré conjecture.

Milnor [58] used the lens spaces to construct h-cobordisms (Wm+1;M,M ′)
of non-simply-connected manifolds which are not diffeomorphic.

One way to prove that manifolds are diffeomorphic is to first decide if they are

cobordant, and then to decide if some cobordism can be modified by successive

surgeries on the interior to be an s-cobordism.
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The tangent bundle of an m-dimensional manifold Mm is classified by the

homotopy class of a map

τM : M → BO(m) .

(See Chapter 5 for some basic information on bundles, including the classify-

ing space BO(m)). If f : M → M ′ is a homotopy equivalence of m-dimen-

sional manifolds which is homotopic to a diffeomorphism there exists a homo-

topy f∗τM ′ ' τM : M → BO(m). The tubular neighbourhood of an embedding

Mm ↪→ Sm+k (k large) is a k-plane bundle νM : M → BO(k) which is a stable

inverse of τM . The stable normal bundle of M is classified by a map

νM : M → BO = lim−→
k
BO(k) .

By the result of Mazur [47] for m > 5 a homotopy equivalence of m-dimensional

manifolds f : M → M ′ is covered by a stable bundle map b : νM → νM ′ if and

only if f × 1 : M × Rk → M ′ × Rk is homotopic to a diffeomorphism for some

k > 0. It is possible to extend f to a homotopy equivalence of h-cobordisms

(F ; f, 1) : (W ;M,M ′)→M ′ × (I; {0}, {1})

if and only if f × 1 : M × R→M ′ × R is homotopic to a diffeomorphism.

The surgery theory developed by Browder, Novikov, Sullivan and Wall in the

1960’s provides a systematic solution to the problem of deciding if a homotopy

equivalence f : M → M ′ of m-dimensional manifolds is homotopic to a diffeo-

morphism, with obstructions taking values in the topological K-theory of vector

bundles and the algebraic L-theory of quadratic forms. The obstruction theory

was obtained as the relative version of the systematic solution to the problem of

deciding if a space X with m-dimensional Poincaré duality H∗(X) ∼= Hm−∗(X)

is homotopy equivalent to an m-dimensional manifold. The theory thus deals

both with the existence and the uniqueness of manifold structures in homotopy

types.

Definition 1.12 An m-dimensional geometric Poincaré complex is a fi-

nite CW complex X with a fundamental homology class [X] ∈ Hm(X) (using

twisted coefficients in the nonorientable case) such that the cap products are

isomorphisms

[X] ∩ − : H∗(X; Λ)→ Hm−∗(X; Λ)

for every Z[π1(X)]-module Λ. 2

Example 1.13 Anm-dimensional manifold is anm-dimensional geometric Poin-

caré complex. 2
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The property of being a geometric Poincaré complex is homotopy invariant,

unlike the property of being a manifold. Thus any finite CW complex homotopy

equivalent to a manifold is a geometric Poincaré complex. In order for a space

to have a fighting chance of being homotopy equivalent to an m-dimensional

manifold it must at least be homotopy equivalent to an m-dimensional geomet-

ric Poincaré complex. Geometric Poincaré complexes which are not homotopy

equivalent to a manifolds may be obtained by glueing together m-dimensional

manifolds with boundary (M,∂M), (M ′, ∂M ′) using a homotopy equivalence

∂M ' ∂M ′ which is not homotopic to a diffeomorphism.

Definition 1.14 Let X be an m-dimensional geometric Poincaré complex.

(i) A manifold structure (M,f) on X is an m-dimensional manifold M to-

gether with a homotopy equivalence f : M → X.

(ii) The manifold structure set S(X) of X is the set of equivalence classes of

manifold structures (M,f), subject to the equivalence relation :

(M,f) ∼ (M ′, f ′) if there exists a bordism

(F ; f, f ′) : (W ;M,M ′)→ X × (I; {0}, {1})
with F a homotopy equivalence,

so that (W ;M,M ′) is an h-cobordism.

2

Surgery theory asks : is S(X) non-empty? And if so, then how large is it?

In any case, it is clear from the definition that S(X) is a homotopy invariant

of X, i.e. that a homotopy equivalence X → Y induces a bijection S(X) →
S(Y ). Surgery theory reduces S(X) to more familiar homotopy invariant objects

associated to X. A homotopy equivalence f : Mm → Nm of m-dimensional

manifolds determines an element (M,f) ∈ S(N), such that f is h-cobordant to

1 : N → N if and only if

(M,f) = (N, 1) ∈ S(N) .

In particular, if f is homotopic to a diffeomorphism then f is h-cobordant to

1 : N → N , and (M,f) = (N, 1) ∈ S(N).

The determination of S(X) is closely related to the bundle properties of

manifolds and geometric Poincaré complexes.

A finite CW complex X is an m-dimensional geometric Poincaré complex if

and only if a regular neighbourhood (Y, ∂Y ) ⊂ Sm+k of an embedding X ↪→
Sm+k is such that

mapping fibre (∂Y → Y ) ' Sk−1 .

A regular neighbourhood is the PL analogue of a tubular neighbourhood. The

(k − 1)-spherical fibration
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Sk−1 → ∂Y → Y ' X

is the Spivak normal fibration of a geometric Poincaré complex X, with a

classifying map

νX : X → BG = lim−→
k
BG(k) .

(See Section 9.2 for an exposition of fibrations). The Spivak normal fibration is

the homotopy theoretic analogue of the stable normal bundle νM = −τM of a

manifold M .

The classifying spaces BO, BG for stable bundles and spherical fibrations

are related by a fibration sequence

G/O → BO → BG→ B(G/O) ,

with G/O the classifying space for stable bundles with a fibre homotopy trivial-

isation. The homotopy class of the composite map

t(νX) : X
νX // BG // B(G/O)

is the primary obstruction to X being homotopy equivalent to an m-dimensional

manifold. There exists a null-homotopy t(νX) ' {∗} if and only if the Spivak

normal fibration νX admits a vector bundle reduction ν̃X : X → BO. Surgery

theory offers a two-stage programme for deciding if a geometric Poincaré complex

X is homotopy equivalent to a manifold, involving the concept of a normal map :

Definition 1.15 A degree 1 normal map from an m-dimensional manifold

Mm to an m-dimensional geometric Poincaré complex X

(f, b) : Mm → X

is a map f : M → X such that

f∗[M ] = [X] ∈ Hm(X) ,

together with a stable bundle map b : νM → η over f , from the stable normal

bundle νM : M → BO to a stable bundle η : X → BO. 2

The two stages of the obstruction theory for deciding if an m-dimensional ge-

ometric Poincaré complex X is homotopy equivalent to an m-dimensional man-

ifold are :

(i) Does X admit a degree 1 normal map (f, b) : Mm → X ? This is the case

precisely when the map t(νX) : X → B(G/O) is null-homotopic.

(iii) If the answer to (i) is yes, is there a degree 1 normal map (f, b) : Mm → X

which is bordant to a homotopy equivalence (f ′, b′) : M ′m → X ?
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The extent to which a degree 1 normal map (f, b) : Mm → X of connected

M,X fails to be a homotopy equivalence is measured by the relative homotopy

groups πn+1(f) (n > 0) of pairs of elements

(map g : Sn →M , null-homotopy h : fg ' ∗ : Sn → X) .

By J.H.C. Whitehead’s Theorem, f is a homotopy equivalence if and only if

π∗(f) = 0. Let m = 2n or 2n + 1. It turns out that it is always possible to

‘kill’ πi(f) for i 6 n, meaning that there is a bordant degree 1 normal map

(f ′, b′) : M ′ → X with πi(f
′) = 0 for i 6 n. There exists a normal bordism of

(f, b) to a homotopy equivalence if and only if it is also possible kill πn+1(f ′). In

general there is an obstruction to killing πn+1(f ′), which for m > 5 is essentially

algebraic in nature :

Wall Surgery Obstruction Theorem 1.16 ([92], 1970)

For any group π there are defined algebraic L-groups Lm(Z[π]) depending only

on m ( mod 4), as groups of stable isomorphism classes of (−1)n-quadratic forms

over Z[π] for m = 2n, and as groups of stable automorphisms of such forms for

m = 2n + 1. An m-dimensional degree 1 normal map (f, b) : Mm → X has a

surgery obstruction

σ∗(f, b) ∈ Lm(Z[π1(X)]) ,

such that σ∗(f, b) = 0 if (and for m > 5 only if) (f, b) is bordant to a homotopy

equivalence. 2

If m = 2n > 6 and (f, b) : M2n → X is a degree 1 normal map such that

πi(f) = 0 for i 6 n the surgery obstruction is largely determined by the (−1)n-

symmetric pairing

λ : K ×K → Z[π1(X)]

defined on the kernel Z[π1(X)]-module K = πn+1(f) by the intersection of im-

mersions Sn # M2n which are null-homotopic in X. In order to kill K it is

necessary that there be a sufficient number of elements x ∈ K with λ(x, x) = 0

which are represented by embeddings x : Sn×Dn ↪→M2n. The even-dimensional

surgery obstruction will be obtained in Chapter 11, and involves a (−1)n-quadratic

refinement µ of the (−1)n-symmetric form (K,λ). The odd-dimensional surgery

obstruction for m = 2n+ 1 > 5 will be obtained in Chapter 12.

Example 1.17 The simply-connected surgery obstruction groups are given by :

m (mod 4) 0 1 2 3

Lm(Z) Z 0 Z2 0
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The surgery obstruction of a 4k-dimensional normal map (f, b) : M4k → X with

π1(X) = {1} is

σ∗(f, b) =
1

8
signature (K2k(M), λ) ∈ L4k(Z) = Z

with λ the nonsingular symmetric form on the middle-dimensional homology

kernel Z-module

K2k(M) = ker(f∗ : H2k(M)→ H2k(X)) .

The surgery obstruction of a (4k+ 2)-dimensional normal map (f, b) : M4k+2 →
X with π1(X) = {1} is

σ∗(f, b) = Arf invariant (K2k+1(M ;Z2), λ, µ) ∈ L4k+2(Z) = Z2

with λ, µ the nonsingular quadratic form on the middle-dimensional Z2-coefficient

homology kernel Z2-module

K2k+1(M ;Z2) = ker(f∗ : H2k+1(M ;Z2)→ H2k+1(X;Z2)) .

2

Surgery Exact Sequence 1.18 (Browder, Novikov, Sullivan, Wall 1962–1970)

Let m > 5.

(i) The manifold structure set S(X) of an m-dimensional geometric Poincaré

complex X is non-empty if and only if there exists a normal map (f, b) : Mm →
X with surgery obstruction

σ∗(f, b) = 0 ∈ Lm(Z[π1(X)]) .

(ii) The structure set S(M) of an m-dimensional manifold Mm fits into the

surgery exact sequence of pointed sets

. . .→ Lm+1(Z[π1(M)])→ S(M)→ [M,G/O]→ Lm(Z[π1(M)]) . 2

The surgery exact sequence will be obtained in Chapter 13. The restriction

m > 5 is due to the use of the Whitney Embedding Theorem (1.7) in the proof,

exactly as in the h- and s-Cobordism Theorems.

The geometric surgery construction works just as well in the low dimensions

m 6 4. However, the possible geometric surgeries and their effect (e.g. on the

fundamental group) are much harder to relate to algebra than in the higher

dimensions. The type of algebraic surgery considered in the book thus only deals

with the ‘high-dimensional’ part of 3- and 4-dimensional topology.
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This chapter gives the basic constructions of geometric surgery.

Sections 2.1 and 2.2 give the official definitions of manifolds and surgery.

Section 2.3 is a rapid introduction to Morse theory, including the key fact that

every manifold M admits a Morse function f : M → R. Section 2.4 introduces

handles, which are the building blocks of manifolds and cobordisms. The main

result of this chapter is the Handle Decomposition Theorem 2.22 : a Morse

function f : M → R on a manifold M determines a handle decomposition

M =

m⋃
i=0

(hi ∪ hi ∪ . . . ∪ hi)

with one i-handle hi = Di ×Dm−i for each critical point of f of index i. More

precisely, if a < b ∈ R are regular values of f then f−1(a), f−1(b) ⊂M are codi-

mension 1 submanifolds such that f−1(b) is obtained from f−1(a) by a sequence

of surgeries, one for each critical value in [a, b] ⊂ R, and f−1([a, b]) is the union

of the traces of the surgeries.

f�1(a) f�1(b)M
R � �a b

Morse functions and handle decompositions are highly non-unique. Indeed,

surgery theory is essentially the study of the possible handle structures on man-

ifolds and cobordisms.

2.1 Differentiable manifolds

It is assumed that the reader has already had a first course on differentiable

manifolds, such as Bredon [10] or Hirsch [33].
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Definition 2.1 An m-dimensional differentiable manifold Mm is a paracom-

pact Hausdorff topological space with a maximal atlas of charts

U = { (U ⊆M,φ : Rm → U) }

of open neighbourhoods U ⊆M with a homeomorphism φ : Rm → U , such that

for every (U, φ), (U ′, φ′) ∈ U the transition function

φ′−1φ| : φ−1(U ∩ U ′)→ U ∩ U ′ → φ′−1(U ∩ U ′)

is a diffeomorphism of open subsets of Rm. 2

There is a corresponding notion of a differentiable manifold with boundary

(M,∂M).

Definition 2.2 (i) A differentiable map of manifolds f : Nn →Mm is a map

such that for any charts (U ⊆ M,φ : Rm → U) ∈ UM , (V ⊆ N,ψ : Rn → V ) ∈
UN with f(V ) ⊆ U the function φ−1(f |)ψ : Rn → Rm is differentiable.

(ii) A diffeomorphism f : N → M is a differentiable map which is a homeo-

morphism with a differentiable inverse f−1 : M → N .

(iii) An embedding of manifolds f : Nn↪→Mm is a differentiable map which is

injective, i.e. the inclusion of a submanifold.

(iv) An isotopy between embeddings of manifolds f0, f1 : Nn ↪→ Mm is a

homotopy

f : N × I →M ; (x, t) 7→ ft(x)

which is an embedding ft : N ↪→M at each level t ∈ I.

(v) An immersion of manifolds f : Nn # Mm is a differentiable map which

is locally an embedding, i.e. such that for every x ∈ N there exists a chart

(V, ψ) ∈ UN such that x ∈ V and (f |)ψ : Rn →M is an embedding.

(vi) A regular homotopy of immersions f0, f1 : Nn #Mm is a homotopy

f : N × I →M ; (x, t) 7→ ft(x)

which is an immersion ft : N #M at each level t ∈ I. 2

In particular, an embedding is an immersion, and isotopic embeddings are

regular homotopic.

In Chapter 5 we shall describe the neighbourhoods of submanifolds in terms

of vector bundles. The following is an important special case :

Definition 2.3 An embedding of a submanifold Nn ↪→ Mm is framed if it

extends to an embedding N ×Dm−n ↪→M . 2
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2.2 Surgery

The input of a surgery on a manifold is a framed embedding of a sphere :

Definition 2.4 (i) An n-embedding in an m-dimensional manifold Mm is an

embedding

g : Sn ↪→M .

(ii) A framed n-embedding in M is an embedding

ḡ : Sn ×Dm−n ↪→M ,

with core n-embedding

g = ḡ| : Sn = Sn × {0} ↪→M . 2

The effect of a surgery is another manifold :

Definition 2.5 An n-surgery on anm-dimensional manifoldMm is the surgery

removing a framed n-embedding g : Sn × Dm−n ↪→ M , and replacing it with

Dn+1 × Sm−n−1, with effect the m-dimensional manifold

M ′m = cl.(Mm\g(Sn ×Dm−n)) ∪Sn×Sm−n−1 Dn+1 × Sm−n−1 . 2

The applications of surgery to the classification of manifolds require a plenti-

ful supply of framed n-embeddings Sn×Dm−n ↪→Mm. The Whitney Embedding

Theorem (7.2) shows that for 2n < m every map Sn → Mm can be approxi-

mated by an n-embedding. However, in general an n-embedding Sn ↪→M cannot

be extended to a framed n-embedding Sn ×Dm−n ↪→M – see 5.66 below for a

specific example.

The notion of a cobordism (W ;M,M ′) was defined in 1.1. The trace of an

n-surgery removing Sn ×Dm−n ↪→Mm was defined in 1.4 to be the cobordism

(W ;M,M ′) with

Wm+1 = Mm × I ∪Sn×Dm−n×{1} Dn+1 ×Dm−n .

Definition 2.6 The dual (m−n−1)-surgery on M ′ removes the dual framed

(m − n − 1)-embedding Dn+1 × Sm−n−1 ↪→ M ′ with effect M and trace

(W ;M ′,M). 2

If M is closed (∂M = ∅) then so is M ′. If M has non-empty boundary ∂M

the embedding Sn ×Dm−n ↪→M is required to avoid ∂M , so that

∂M ′ = ∂M .
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Example 2.7 A (−1)-surgery on an m-dimensional manifold M has effect the

disjoint union

M ′ = M ∪ Sm .

The dual m-surgery on M ′ has effect M . 2

Example 2.8 (i) The effect on Sm of the n-surgery removing the framed n-

embedding defined in 1.2

g : Sn×Dm−n ↪→ Sn×Dm−n ∪Dn+1×Sm−n−1 = ∂(Dn+1×Dm−n) = Sm

is the m-dimensional manifold

Dn+1 × Sm−n−1 ∪Dn+1 × Sm−n−1 = Sn+1 × Sm−n−1 .

The trace of the n-surgery (Wm+1;Sm, Sn+1 × Sm−n−1) can be viewed as

W = cl.(Sn+1 ×Dm−n\Dm+1) ,

using any embedding Dm+1 ↪→ Sn+1 ×Dm−n in the interior.

(ii) The special case m = 1, n = 0 of (i) gives a framed 0-embedding in S1

g : S0 ×D1 = D1 ∪D1 ↪→ S1 .

The 0-surgery on S1 removing g(S0 × D1) has effect the disjoint union of two

circles

S1 × S0 = S1 ∪ S1 .

The trace is the cobordism (W 2;S1, S1 ∪S1) obtained from S2 by punching out

the interior of an embedding D2 ∪D2 ∪D2 ↪→ S2.

S1 S1 � I [D1 �D1 S1 [ S1
...................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................


(iii) Modify the framed 0-embedding g : S0×D1 ↪→ S1 in (ii) by twisting one of

the two embeddings of D1 by the diffeomorphism

ω : D1 → D1 ; t 7→ −t ,
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defining a different 0-embedding

gω : S0 ×D1 1 ∪ ω // S0 ×D1 g // S1

with the same core as g. The 0-surgery on S1 removing gω(S0 ×D1) has effect

a single circle S1. The trace is the cobordism (N2;S1, S1) obtained from the

Möbius band M2 by punching out the interior of an embedding D2 ↪→M\∂M .

S1 S1 × I ∪D1 ×D1 S1

.......................................................................................................................................................................................................
.........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.........
...........

........ .......................................................................................................................................................................................................
.........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.........
...........

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.......................................

................................
...................

...............
............
...........
.........
........
....

........
.........
..........
...........
.............
.................

.........................
....................................

.............................................
............................

2

Definition 2.9 The connected sum of connected m-dimensional manifolds

Mm, M ′m is the connected m-dimensional manifold

(M #M ′)m = cl.(M\Dm) ∪ (Sm−1 × I) ∪ cl.(M ′\Dm)

obtained by excising the interiors of embedded discs Dm ↪→M , Dm ↪→M ′ and

joining the boundary components Sm−1 ↪→ cl.(M\Dm), Sm−1 ↪→ cl.(M ′\Dm)

by Sm−1 × I.

..................................................................................................................................................................................................
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..................................................................................................

..................................................................................................................................................................................................
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.........
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........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.....

.......................................................................................................................

......................................................................................................................................................

.......................................................................................................................

......................................................................................................................................................

M#M ′

M M ′

Sm−1 × I

2

Example 2.10 The connected sum M#M ′ is the effect of the 0-surgery on the

disjoint union M ∪ M ′ which removes the framed 0-embedding S0 × Dm ↪→
M ∪M ′ defined by the disjoint union of embeddings Dm ↪→M , Dm ↪→M ′. 2

2.3 Morse theory

Morse theory studies differentiable manifolds M by considering the critical points

of differentiable functions f : M → R for which the second differential is non-

trivial. This section is only a very rudimentary account – see Milnor [55] for the

classic exposition of Morse theory.
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It is assumed that the reader is already acquainted with CW complexes,

which are spaces obtained from ∅ by successively attaching cells

X =

∞⋃
i=0

(Di ∪Di ∪ . . . ∪Di)

of increasing dimension i. Morse theory is used to prove that an m-dimensional

manifold M can be obtained from ∅ by successively attaching handles

M =

m⋃
i=0

(Di ×Dm−i ∪Di ×Dm−i ∪ . . . ∪Di ×Dm−i)

of increasing index i, giving M the structure of a CW complex. However, there

is an essential difference : the cell structure of a CW complex is part of the

definition, whereas a handle decomposition of a manifold has to be proved to

exist.

Here is the basic connection between Morse theory, handles and surgery. If

a < b ∈ R are regular values of a Morse function f : Mm → R then

(M [a, b];Na, Nb) = f−1([a, b]; {a}, {b})

is a cobordism of (m − 1)-dimensional manifolds. If every t ∈ [a, b] is a regular

value then each Nt = f−1(t) is diffeomorphic to Na, with a diffeomorphism

(M [a, b];Na, Nb) ∼= Na × (I; {0}, {1}) .

If [a, b] consists of regular values except for one critical value of index i then

(M [a, b];Na, Nb) is the trace of an (i− 1)-surgery on Na, with

M [a, b] ∼= Na × I ∪Di ×Dm−i

obtained from Na × I by attaching an i-handle. Thus M is obtained from ∅ by

attaching an i-handle for each critical value of f with index i, and M has the

structure of a finite CW complex with one i-cell for each i-handle.

The differential of a differentiable function f : N → M at x ∈ N is defined

using any charts (U ⊆ M,φ : Rm → U) ∈ UM , (V ⊆ N,ψ : Rn → V ) ∈ UN

such that x ∈ V , f(x) ∈ U . The function

(φ)−1fψ : Rn → Rm ; x = (x1, x2, . . . , xn) 7→ (f1(x), f2(x), . . . , fm(x))

is differentiable, and the differential of f at x is the linear map given by the

Jacobian m× n matrix

df(x) =

(
∂fi
∂xj

)
: Rn → Rm ;

h = (h1, h2, . . . , hn) 7→ df(x)(h) =

( n∑
j=1

∂f1

∂xj
hj ,

n∑
j=1

∂f2

∂xj
hj , . . . ,

n∑
j=1

∂fm
∂xj

hj

)
.
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Definition 2.11 Let f : Nn →Mm be a differentiable map.

(i) A regular point of f is a point x ∈ N where the differential df(x) : Rn → Rm
is a linear map of maximal rank, i.e.

rank(df(x)) = min(m,n) .

(ii) A critical point of f is a point x ∈ N which is not regular.

(iii) A regular value of f is a point y ∈M such that every x ∈ f−1(y) ⊆ N is

regular (including the empty case f−1(y) = ∅).
(iv) A critical value of f is a point y ∈M which is not regular. 2

Implicit Function Theorem 2.12 The inverse image of a regular value y ∈
M of a differentiable map f : Nn →Mm is a submanifold

P = f−1(y) ⊆ N

with

dim(P ) = n−min(m,n) =

{
n−m if m 6 n

0 if m > n .

Proof See Chapter II.1 of Bredon [10]. 2

The Taylor expansion of a differentiable function f : Mm → R at x ∈ M is

given in local coordinates by

f(x1 + h1, x2 + h2, . . . , xm + hm)

= f(x1, x2, . . . , xm) +
∞∑
k=1

1

k!

∑
16i1,i2,...,ik6m

∂kf

∂xi1∂xi2 . . . ∂xik
hi1hi2 . . . hik ∈ R ,

((h1, h2, . . . , hm) ∈ Rm) .

The linear term in the Taylor series

L(h1, h2, . . . , hm) =

m∑
i=1

∂f

∂xi
hi

is determined by the differential of f at x (= the gradient vector ∇f(x) ∈ Rm)

df(x) =

(
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xm

)
: Rm → R ; (h1, h2, . . . , hm) 7→

m∑
i=1

∂f

∂xi
hi ,

which is either 0 or has the maximal rank 1. Thus x ∈M is a regular point of f

if df(x) 6= 0, and x ∈M is a critical point of f if df(x) = 0. The quadratic term

in the Taylor series

Q(h1, h2, . . . , hm) =

m∑
i=1

m∑
j=1

(
∂2f

∂xi∂xj

)
hihj/2
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is determined by the Hessian m×m matrix of second partial derivatives

H(x) =

(
∂2f

∂xi∂xj

)
.

Definition 2.13 Let f : Mm → R be a differentiable function on anm-dimensional

manifold.

(i) A critical point x ∈M of f is nondegenerate if the Hessian matrix H(x) is

invertible.

(ii) The index Ind(x) of a nondegenerate critical point x ∈ M is the num-

ber of negative eigenvalues in H(x), so that with respect to appropriate local

coordinates the quadratic term in the Taylor series of f near x is given by

Q(h1, h2, . . . , hm) = −
Ind(x)∑
i=1

(hi)
2 +

m∑
i=Ind(x)+1

(hi)
2 ∈ R .

(iii) The function f is Morse if it has only nondegenerate critical points. 2

In dealing with Morse functions f : M → R it will be assumed that the

critical points x1, x2, . . . ∈ M have distinct images f(x1), f(x2), . . . ∈ R. The

index of a critical value f(xj) ∈ R is then defined by

Ind(f(xj)) = Ind(xj) > 0 .

Theorem 2.14 (Morse)

Every m-dimensional manifold Mm admits a Morse function f : M → R.

Proof There exists an embedding Mm ↪→ Sm+k for k large, by the Whitney

Embedding Theorem (1.7). The function defined for any a ∈ Sm+k\M by

fa : M → R ; x 7→ ‖x− a‖

is Morse for all a except for a set of measure 0. See Milnor [55] or Chapter 6 of

Hirsch [33] for more detailed accounts! 2

In fact, the set of Morse functions is dense in the function space of all differ-

entiable functions f : M → R.

Example 2.15 The height function on the m-sphere

Sm = {(x0, x1, . . . , xm) ∈ Rm+1 |
m∑
k=0

x2
k = 1}

is a Morse function
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f : Sm → R ; (x0, x1, . . . , xm) 7→ xm

with a critical point (0, . . . , 0,−1) of index 0 and a critical point (0, . . . , 0, 1) of

index m. 2

Example 2.16 The m-dimensional real projective space RPm is the quotient of

Sm by the antipodal map

RPm = Sm/{(x1, x2, . . . , xm+1) ∼ (−x1,−x2, . . . ,−xm+1)} .

Equivalently, RPm is the space with one point for each 1-dimensional subspace

of the (m+ 1)-dimensional real vector space Rm+1

[x0, x1, . . . , xm] = {λ(x0, x1, . . . , xm) |λ ∈ R} ⊂ Rm+1 (xk ∈ R, not all 0) .

For any real numbers λ0 < λ1 < . . . < λm there is defined a Morse function

f : RPm → R ; [x0, x1, . . . , xm] 7→

m∑
k=0

λk(xk)2

m∑
k=0

(xk)2

with (m+ 1) critical points [0, . . . , 0, 1, 0, . . . , 0] of index 0, 1, . . . ,m. 2

Example 2.17 The m-dimensional complex projective space CPm is the 2m-

dimensional manifold with one point for each 1-dimensional subspace of the

(m+ 1)-dimensional complex vector space Cm+1

[z0, z1, . . . , zm] = {λ(z0, z1, . . . , zm) |λ ∈ C} ↪→ Cm+1 (zk ∈ C, not all 0) .

For any real numbers λ0 < λ1 < . . . < λm there is defined a Morse function

f : CPm → R ; [z0, z1, . . . , zm] 7→

m∑
k=0

λk|zk|2

m∑
k=0

|zk|2

with (m+ 1) critical points [0, . . . , 0, 1, 0, . . . , 0] of index 0, 2, . . . , 2m. 2

2.4 Handles

Definition 2.18 (i) Given an (m + 1)-dimensional manifold with boundary

(W,∂W ) and an embedding

Si−1 ×Dm−i+1 ↪→ ∂W (0 6 i 6 m+ 1)

define the (m+1)-dimensional manifold with boundary (W ′, ∂W ′) obtained from

W by attaching an i-handle to be
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W ′ = W ∪Si−1×Dm−i+1 Di ×Dm−ii �Dm�i+1W 0
(ii) An elementary (m+1)-dimensional cobordism of index i is the cobor-

dism (W ;M,M ′) obtained from M × I by attaching an i-handle at

Si−1 ×Dm−i+1 ↪→M × {1} ,

with

W = M × I ∪Di ×Dm−i+1 .

(iii) The dual of an elementary (m + 1)-dimensional cobordism (W ;M,M ′) of

index i is the elementary (m + 1)-dimensional cobordism (W ;M ′,M) of index

(m− i+ 1) obtained by reversing the ends, and regarding the i-handle attached

to M × I as an (m− i+ 1)-handle attached to M ′ × I. 2

Lemma 2.19 For any 0 6 i 6 m+ 1 the Morse function

f : Dm+1 → R ; (x1, x2, . . . , xm+1) 7→ −
i∑

j=1

x2
j +

m+1∑
j=i+1

x2
j

has a unique interior critical point 0 ∈ Dm+1, which is of index i. The (m+ 1)-

dimensional manifolds with boundary defined for 0 < ε < 1 by

W−ε = f−1(−∞,−ε] , Wε = f−1(−∞, ε]

are such that Wε is obtained from W−ε by attaching an i-handle

Wε = W−ε ∪Di ×Dm−i+1 . 2

Here is an illustration in the case m = i = 1 :
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Proposition 2.20 Let f : Wm+1 → I be a Morse function on an (m + 1)-

dimensional manifold cobordism (W ;M,M ′) with

f−1(0) = M , f−1(1) = M ′ ,

and such that all the critical points of f are in the interior of W .

(i) If f has no critical points then (W ;M,M ′) is a trivial h-cobordism, with a

diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1})
which is the identity on M .

(ii) If f has a single critical point of index i then W is obtained from M × I
by attaching an i-handle using an embedding Si−1 ×Dm−i+1 ↪→ M × {1}, and

(W ;M,M ′) is an elementary cobordism of index i with a diffeomorphism

(W ;M,M ′) ∼= (M × I ∪Di ×Dm−i+1;M × {0},M ′) .

Proof (i) See Milnor [55].

(ii) In a neighbourhood of the unique critical point p ∈W

f(p+ (x1, x2, . . . , xm+1)) = f(p)−
i∑

j=1

(xj)
2 +

m+1∑
j=i+1

(xj)
2
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with respect to a coordinate chart Rm+1 ↪→W such that 0 ∈ Rm+1 corresponds

to p ∈ W , with f(p) ∈ R the critical value. For any ε > 0 there are defined

diffeomorphisms

f−1(−∞, c− ε] ∼= M × I , f−1[c+ ε,∞) ∼= M ′ × I

by (i), and by 2.19 there is defined a diffeomorphism

f−1[c− ε, c+ ε] ∼= M × I ∪Di ×Dm−i+1 .

2

Attaching a handle (2.18) to a manifold with boundary is a surgery on the

boundary :

Proposition 2.21 If an (m+1)-dimensional manifold with boundary (W ′, ∂W ′)
is obtained from (W,∂W ) by attaching an i-handle

W ′ = W ∪Si−1×Dm−i+1 Di ×Dm−i+1

then ∂W ′ is obtained from ∂W by an (i− 1)-surgery

∂W ′ = cl.(∂W\(Si−1 ×Dm−i+1)) ∪Si−1×Sm−i D
i × Sm−i .

Proof By construction. 2

Somewhat by analogy with the result that every finite-dimensional vector

space has a finite basis :

Handle Decomposition Theorem 2.22 (Thom [87], Milnor [53])

(i) Every cobordism (Wm+1;Mm,M ′m) has a handle decomposition as the union

of a finite sequence

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

of adjoining elementary cobordisms (Wj ;Mj−1,Mj) with index ij, such that

0 6 i1 6 i2 6 . . . 6 ik 6 m+ 1 , M0 = M , Mk = M ′ .M0 W1 M1 W2 M2 Wk Mk
(ii) Closed m-dimensional manifolds M,M ′ are cobordant if and only if M ′ can

be obtained from M by a sequence of surgeries.
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Proof (i) By the relative version of (2.14) any cobordism admits a Morse func-

tion

f : (W ;M,M ′)→ I

with M = f−1(0), M ′ = f−1(1), and such that all the critical values are in the

interior of I. Since W is compact there is only a finite number of critical points :

label them pj ∈W (1 6 j 6 k). Write the critical values as cj = f(pj) ∈ R, and

let ij be the index of pj . It is possible to choose f such that

0 < c1 < c2 . . . < ck < 1 , 0 6 i1 6 i2 6 . . . 6 ik 6 m+ 1 .

Let rj ∈ I (0 6 j 6 k) be regular values such that

0 = r0 < c1 < r1 < c2 < . . . < rk−1 < ck < rk = 1 .

By 2.20 (i) each

(Wj ;Mj−1,Mj) = f−1([rj−1, rj ]; {rj−1}, {rj}) (1 6 j 6 k)

is an elementary cobordism of index ij .

(ii) The trace of a surgery is an elementary cobordism (2.18). Thus surgery-

equivalent manifolds are cobordant. Conversely, note that every elementary cobor-

dism is the trace of a surgery, and that by (i) every cobordism (W ;M,M ′) is a

union of elementary cobordisms. 2

If (W ;M,M ′) has a Morse function f : W → I with critical points of index

0 6 i0 6 i1 6 . . . 6 ik 6 m+ 1 then W has a handle decomposition

W = M × I ∪ hi0 ∪ hi1 ∪ . . . ∪ hik

with hi = Di ×Dm−i+1 a handle of index i.

Corollary 2.23 Every closed m-dimensional manifold Mm can be obtained from

∅ by attaching handles. A Morse function f : M → R with critical points of index

0 6 i0 6 i1 6 . . . 6 ik 6 m determines a handle decomposition

M = hi0 ∪ hi1 ∪ . . . ∪ hik ,

so that M is a finite m-dimensional CW complex with one i-cell for each critical

point of index i.

Proof Apply 2.22 to the cobordism (M ; ∅, ∅). 2

Strictly speaking, the above result shows that M contains a subspace (not a

submanifold)

L = Di0 ∪Di1 ∪ . . . ∪Dik

which is a finite CW complex, and such that the inclusion L→M is a homotopy

equivalence.
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Example 2.24 (i) The m-sphere Sm has a handle decomposition consisting of

a 0-handle and an m-handle

Sm = h0 ∪ hm ,

given by the upper and lower hemispheres.

(ii) The cobordism (Dm+1; ∅, Sm) has a handle decomposition with one 0-handle

Dm+1 = h0 .

The dual cobordism (Dm+1;Sm, ∅) has a handle decomposition with one (m+1)-

handle

Dm+1 = Sm × I ∪ hm+1 .

(iii) The torus M = S1 × S1 has a Morse function f : M → R with 4 critical

values. Here is a picture of the corresponding handle decomposition with the

corresponding 4 handles :




...........................................................................................................................................................................................................................................................................................................................................


.............................................................................................................................................................................................................................................................................


.............................................................................................................................................................................................................................................................................

h0 h1 h1 h2M
R � � � � � � � � �r0 c1 r1 c2 r2 c3 r3 c4 r4M = S1 � S1 = h0 [ h1 [ h1 [ h2Ind(c1) = 0 ; Ind(c2) = Ind(c3) = 1 ; Ind(c4) = 2

2

Example 2.25 The Morse function f : RPm → R of Example 2.16 has one crit-

ical point of index i for i = 0, 1, . . . ,m, so that RPm has a handle decomposition

of the type

RPm = h0 ∪ h1 ∪ . . . ∪ hm . 2
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Example 2.26 The Morse function f : CPm → R of Example 2.17 has one crit-

ical point of index i for i = 0, 2, . . . , 2m, so that CPm has a handle decomposition

of the type

CPm = h0 ∪ h2 ∪ . . . ∪ h2m . 2



3

HOMOTOPY AND HOMOLOGY

In order to understand how surgery theory deals with the homotopy types

of manifolds it is necessary to understand how algebraic topology deals with the

homotopy types of more general spaces such as CW complexes. This chapter

provides some of the necessary background, assuming that the reader already

has some familiarity with the homotopy theory of CW complexes. See Bredon

[10], Hatcher [31], Whitehead [96], . . . for considerably more detailed accounts

of algebraic topology.

Section 3.1 reviews the homotopy groups π∗(X) and the stable homotopy

groups πS∗ (X), and the Freudenthal Suspension Theorem. Section 3.2 deals with

the homology and cohomology groups H∗(X), H∗(X), the Steenrod squares, as

well as the Universal Coefficient Theorem, the Theorems of J.H.C. Whitehead

and Hurewicz, and the method of killing homotopy classes of CW complexes

by attaching cells, the cellular chain complex of a CW complex and the handle

chain complex of a manifold.

3.1 Homotopy

Definition 3.1 (i) A pointed space X is a space together with a base point

x0 ∈ X. A pointed map f : X → Y is a map of pointed spaces f : X → Y

such that

f(x0) = y0 ∈ Y .

A pointed homotopy between pointed maps f, g : X → Y

h : f ' g : X → Y

is a map h : X × I → Y such that

h(x0, t) = y0 ∈ Y (t ∈ I) .

(ii) The homotopy set [X,Y ] of pointed spaces X,Y is the set of pointed

homotopy classes of pointed maps f : X → Y .

(iii) The homotopy groups of a pointed space X are

πn(X) = [Sn, X] (n > 0)

with π0(X) the set of path components, the fundamental group π1(X) nonabelian

(in general), and the higher homotopy groups πn(X) (n > 2) abelian. 2
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Example 3.2 Here are some homotopy groups of spheres :

πm(S1) =

{
Z if m = 1

0 if m > 2 ,

πm(Sn) =

{
0 if m < n

Z if m = n ,

πn+1(Sn) =

{
Z if n = 2

Z2 if n > 3 ,

πn+2(Sn) =

{
0 if n = 1

Z2 if n > 2 .

See Section 6.1 for an account of the degree invariant detecting πn(Sn). See

Section 5.5 for an account of the Hopf invariant H used to detect πn+1(Sn). See

Section 11.4 for an account of the Arf invariant detecting πn+2(Sn). 2

Remark 3.3 As already noted in Chapter 1 the applications of the homotopy

groups to surgery on non-simply-connected manifolds will make use of the action

of the fundamental group π1(X) on the higher homotopy groups πn(X)

π1(X)× πn(X)→ πn(X) (n > 2) .

This action can be defined by considering elements of πn(X) as homotopy classes

of pairs (α, β) consisting of an unpointed map α : Sn → X and a path β : I → X

from β(0) = x to β(1) = α(1Sn), with 1Sn ∈ Sn a base point, and letting π1(X)

act on β. Alternatively, use the universal cover X̃ of X (which may be assumed

connected), identify πn(X) = πn(X̃) with the set of unbased homotopy classes

of maps Sn → X̃, and let π1(X) act on X̃ as the group of covering translations.

2

Definition 3.4 The relative homotopy groups πn(f) (n > 1) of a pointed

map f : X → Y consist of the pointed homotopy classes of pairs

( pointed map α : Sn−1 → X , pointed null-homotopy β : fα ' ∗ : Sn−1 → Y ) ,

designed to fit into a long exact sequence

. . . // πn(X)
f∗ // πn(Y ) // πn(f) // πn−1(X) // . . . // π1(Y ) .

2

For a pair of pointed spaces (Y,X ⊆ Y ) the relative homotopy groups π∗(f)

of the inclusion f : X → Y are denoted π∗(Y,X).
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For any pointed map f : X → Y an element (α, β) ∈ πn(f) can be represented

by a commutative diagram

Sn−1 α //

��

X

f

��
Dn

β // Y

with α : Sn−1 → X, β : Dn → Y pointed maps.

Definition 3.5 Given a space X and a map α : Sn−1 → X let

Y = X ∪α Dn

be the space obtained from X by attaching an n-cell at α. 2

A CW complex is a space obtained from ∅ by successively attaching cells of

non-decreasing dimension

X = (
⋃
D0) ∪ (

⋃
D1) ∪ (

⋃
D2) ∪ . . . .

The images of the maps Dn → X are called the n-cells of X.

Theorem of J.H.C.Whitehead 3.6 The following conditions on a map f :

X → Y of connected CW complexes are equivalent :

(i) f is a homotopy equivalence,

(ii) f induces isomorphisms f∗ : π∗(X)→ π∗(Y ),

(iii) π∗(f) = 0.

Proof See Theorem VII.11.2 of Bredon [10]. 2

Definition 3.7 Let n > 1.

(i) A space X is n-connected if it is connected and

πi(X) = 0 (i 6 n) .

(ii) A map f : X → Y of connected spaces is n-connected if f∗ : πi(X)→ πi(Y )

is an isomorphism for i < n and f∗ : πn(X)→ πn(Y ) is onto, or equivalently if

πi(f) = 0 (i 6 n) .

(iii) A pair of connected spaces (Y,X ⊆ Y ) is n-connected if the inclusion

f : X → Y is n-connected, or equivalently if

πi(Y,X) = 0 (i 6 n) . 2
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Example 3.8 (i) Sn is (n− 1)-connected.

(ii) (Dn, Sn−1) is (n− 1)-connected. 2

Definition 3.9 (i) The suspension of a pointed space X is the pointed space

ΣX = S1 ×X/(S1 × {∗} ∪ {1} ×X) ,

with ∗ ∈ X, 1 ∈ S1 base points.

(ii) The suspension map in the homotopy groups is defined by

E : πm(X)→ πm+1(ΣX) ; (f : Sm → X) 7→ (Σf : Σ(Sm) = Sm+1 → ΣX) .

2

Freudenthal Suspension Theorem 3.10 If X is an (n− 1)-connected space

for some n > 2 then the suspension map E : πm(X)→ πm+1(ΣX) is an isomor-

phism m < 2n− 1 and a surjection for m = 2n− 1.

Proof See Whitehead [96, VII.7.13]. 2

Definition 3.11 The stable homotopy groups of spheres are

πSn = lim−→
k
πn+k(Sk) (n > 0)

with

π2n+2(Sn+2) = π2n+3(Sn+3) = . . . = πSn

by 3.10. 2

Remark 3.12 (i) The stable homotopy groups πSn are finite for n > 0 (Serre).

(ii) The low-dimensional stable homotopy groups of spheres are given by :

n 0 1 2 3 4 5 6 7 8 9

πSn Z Z2 Z2 Z24 0 0 Z2 Z240 (Z2)2 (Z2)3

2

3.2 Homology

This section summarises the aspects of (co)homology which are particularly im-

portant in keeping track of the effects of surgeries : the Universal Coefficient

Theorem, relative groups, cup and cap product pairings
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∪ : Hm(X)⊗Z H
n(X)→ Hm+n(X) ,

∩ : Hm(X)⊗Z H
n(X)→ Hm−n(X) ,

as well as the Steenrod squares

Sqi : Hr(X;Z2)→ Hr+i(X;Z2) (i > 0) .

See Chapters 3,4 of Hatcher [31] and/or Chapter VI of Bredon [10] for more

detailed accounts.

Here are the basic definitions and properties of chain complexes, chain maps,

chain contractions etc.

Let A be an associative ring with 1. An A-module K is understood to have

a left A-action

A×K → K ; (a, x) 7→ ax

unless a right A-action is specified. If A is a commutative ring there is no differ-

ence between left and right A-modules.

A morphism of direct sums of A-modules

f : K = K1 ⊕K2 ⊕ . . .⊕Kn → L = L1 ⊕ L2 ⊕ . . .⊕ Lm

is given by an m × n matrix f = (fij) with entries fij ∈ HomA(Kj , Li), such

that

f : K → L ; (x1, x2, . . . , xn) 7→ (

n∑
j=1

f1j(xj),

n∑
j=1

f2j(xj), . . . ,

n∑
j=1

fmj(xj)) .

Definition 3.13 (i) An A-module chain complex is a sequence of A-module

morphisms

C : . . . // Ci+1
dC // Ci

dC // Ci−1
// . . .

such that (dC)2 = 0. The chain complex is finite if {i ∈ Z |Ci 6= 0} is finite.

(ii) The homology of an A-module chain complex C is the collection of A-

modules

Hi(C) =
ker(dC : Ci → Ci−1)

im(dC : Ci+1 → Ci)
(i ∈ Z) .

(iii) A chain map f : C → D is a sequence of A-module morphisms f : Ci → Di

such that

dDf = fdC : Ci → Di−1 .

(iv) A chain homotopy g : f ' f ′ between chain maps f, f ′ : C → D is a

sequence of A-module morphisms g : Ci → Di+1 such that

f − f ′ = dDg + gdC : Ci → Di .
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(v) A chain equivalence is a chain map f : C → D with a chain homotopy

inverse, i.e. a chain map f ′ : D → C with chain homotopies

g : f ′f ' 1 : C → C , g′ : ff ′ ' 1 : C ′ → C ′ .

(vi) A chain contraction of an A-module chain complex C is a chain homotopy

Γ : 0 ' 1 : C → C .

(vii) The algebraic mapping cone of an A-module chain map f : C → D is

the chain complex C (f) with

dC (f) =

(
dD (−1)i−1f

0 dC

)
: C (f)i = Di⊕Ci−1 → C (f)i−1 = Di−1⊕Ci−2 .

2

Proposition 3.14 (i) A chain map f : C → D induces morphisms in homology

f∗ : H∗(C)→ H∗(D) which depend only on the chain homotopy class of f .

(ii) For any chain map f : C → D the short exact sequence of chain complexes

0 // D // C (f) // C∗−1
// 0

induces a long exact sequence of homology A-modules

. . . // Hi(C)
f∗ // Hi(D) // Hi(f) // Hi−1(C) // . . .

with

Hi(f) = Hi(C (f)) .

(iii) A chain map f : C → D is a chain equivalence if and only if C (f) is chain

contractible.

(iv) A finite chain complex C of projective A-modules is chain contractible if and

only if H∗(C) = 0.

(v) A chain map f : C → D of finite chain complexes of projective A-modules

is a chain equivalence if and only if the morphisms f∗ : H∗(C) → H∗(D) are

isomorphisms.

Proof (i) By construction.

(ii) Every short exact sequence of A-module chain complexes

0 // D // D′ // D′′ // 0

induces a long exact sequence of homology A-modules

. . . // Hi(D) // Hi(D
′) // Hi(D

′′) // Hi−1(D) // . . . .

(iii) Given a chain contraction Γ : 0 ' 1 : C (f) → C (f) let g, h, k be the

morphisms defined by
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Γ =

(
k ?

(−1)ig h

)
: C (f)i = Di ⊕ Ci−1 → C (f)i+1 = Di+1 ⊕ Ci .

Then g : D → C is a chain homotopy inverse for f : C → D, with chain

homotopies

h : gf ' 1 : C → C , k : fg ' 1 : D → D .

Conversely, if f : C → D is a chain equivalence with chain homotopy inverse

g : D → C and chain homotopies h : gf ' 1, k : fg ' 1 then the A-module

morphisms

Γ =

(
1 (−1)i+1(fh− kf)

0 1

)(
k 0

(−1)ig h

)
:

C (f)i = Di ⊕ Ci−1 → C (f)i+1 = Di+1 ⊕ Ci

define a chain contraction

Γ : 0 ' 1 : C (f)→ C (f) .

(iv) If C is any contractible chain complex then H∗(C) = 0.

Conversely, suppose that C is a finite projective A-module chain complex

with H∗(C) = 0. Assume inductively that there exist A-module morphisms Γ :

Ci → Ci+1 for i < k such that

dCΓ + ΓdC = 1 : Ci → Ci .

The A-module morphism 1− ΓdC : Ck → Ck is such that

dC(1− ΓdC) = (1− dCΓ− ΓdC)dC = 0 : Ck → Ck−1

so that

im(1− ΓdC : Ck → Ck) ⊆ ker(dC : Ck → Ck−1) = im(dC : Ck+1 → Ck) .

Since Ck is projective there exists an A-morphism Γ : Ck → Ck+1 such that

dCΓ = 1− ΓdC : Ck → Ck ,

giving the inductive step in the construction of a chain contraction Γ : 0 ' 1 :

C → C.

(v) A chain equivalence f : C → D induces isomorphisms f∗ : H∗(C)→ H∗(D).

For the converse apply (iv) to the algebraic mapping cone C (f). 2

Definition 3.15 (i) The dual of an A-module K is the right A-module

K∗ = HomA(K,A)

with A acting on the right by
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K∗ ×A→ K∗ ; (f, a) 7→ (x 7→ f(x)a) .

(ii) The dual of an A-module morphism f : K → L is the right A-module

morphism

f∗ : L∗ → K∗ ; g 7→ (x 7→ g(f(x))) .

(iii) The cohomology of an A-module chain complex C is the collection of right

A-modules

Hi(C) =
ker(d∗C : Ci → Ci+1)

im(d∗C : Ci−1 → Ci)
(i ∈ Z)

where Ci = (Ci)
∗. 2

The homology and cohomology groups of a space X are defined using the

singular chain complex S(X), with

S(X)n = free abelian group generated by maps σ : ∆n → X ,

d : S(X)n → S(X)n−1 ; σ 7→
n∑
i=0

(−1)iσ∂i

using the standard n-simplices

∆n = {(x0, x1, . . . , xn) ∈ Rn+1 | 0 6 xi 6 1,

n∑
i=0

xi = 1}

and the inclusion maps

∂i : ∆n−1 → ∆n ; (x0, x1, . . . , xn−1) 7→ (x0, x1, . . . , xi−1, 0, xi, . . . , xn−1) .

The (singular) homology and cohomology groups of X are defined by

Hn(X) = Hn(S(X))

= ker(d : Sn(X)→ Sn−1(X))/im(d : Sn+1(X)→ Sn(X)) ,

Hn(X) = Hn(S(X))

= ker(d∗ : Sn(X)→ Sn+1(X))/im(d∗ : Sn−1(X)→ Sn(X))

with Sn(X) = HomZ(Sn(X),Z). For any abelian group G the G-coefficient sin-

gular homology groups H∗(X;G) are defined using the G-coefficient singular

chain complex

S(X;G) = G⊗Z S(X)

and the G-coefficient singular cohomology is defined using

Sn(X;G) = HomZ(Sn(X), G) .

For G = Z these are just H∗(X;Z) = H∗(X), H∗(X;Z) = H∗(X).
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Example 3.16 The Z- and Z2-coefficient homology and cohomology groups are

related by exact sequences

. . .→ Hn(X)
2 // Hn(X)→ Hn(X;Z2)→ Hn−1(X)→ . . . ,

. . .→ Hn(X)
2 // Hn(X)→ Hn(X;Z2)→ Hn+1(X)→ . . . .

2

For a commutative ring R

Sn(X;R) = HomR(Sn(X;R), R) ,

so that Sn(X;R) is the R-module dual of Sn(X;R) as in 3.15. The R-coefficient

homology and cohomology groups H∗(X;R), H∗(X;R) are R-modules which are

related by evaluation morphisms

Hn(X;R)→ HomR(Hn(X;R), R) ; f 7→ (x 7→ f(x)) .

Given an R-module A let TA ⊆ A be the torsion submodule

TA = {x ∈ A | sx = 0 ∈ A for some s 6= 0 ∈ R} .

Universal Coefficient Theorem 3.17

(i) (F -coefficient) For any field F and any n > 0 the evaluation morphism

e : Hn(X;F )→ HomF (Hn(X;F ), F ) ; f 7→ (x 7→ f(x))

is an isomorphism.

(ii) (Z-coefficient) For any n > 0 the evaluation morphism

e : Hn(X)→ HomZ(Hn(X),Z) ; f 7→ (x 7→ f(x))

is onto, and the morphism

ker(e) = THn(X)→ HomZ(THn−1(X),Q/Z) ; f 7→ (x 7→ f(y)

s
)

(f ∈ S(X)n , x ∈ S(X)n−1 , y ∈ S(X)n , s 6= 0 ∈ Z , sx = dy)

is an isomorphism, so that there is defined a short exact sequence

0 // HomZ(THn−1(X),Q/Z) // Hn(X)
e // HomZ(Hn(X),Z) // 0 .
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Proof These results follow from the structure theorem for f.g. R-modules with

R a principal ideal domain. Every f.g. R-module S has a presentation of the type

0 // Rk
d // R` // S // 0

with

d(0, . . . , 0, 1, 0, . . . , 0) = (0, . . . , 0, si, 0, . . . , 0) ∈ R`

for some si 6= 0 ∈ R (1 6 i 6 k), and S is a direct sum of cyclic R-modules

S = R`−k ⊕
k⊕
i=1

R/si .

More generally, every finite chain complex C of f.g. free R-modules is isomorphic

to a direct sum of chain complexes of the type

E[n] : . . .→ 0→ En+1 → En = R→ 0→ . . . (n ∈ Z)

with En+1 = R or 0. For any n ∈ Z the evaluation map

e : Hn(C)→ HomR(Hn(C), R) ; f 7→ (x 7→ f(x))

is onto, with a natural R-module isomorphism

ker(e) = THn(C)→ HomR(THn−1(C),K/R) ; f 7→ (x 7→ f(y)

s
)

(f ∈ Cn , x ∈ Cn−1 , y ∈ Cn , s 6= 0 ∈ R , sx = dy)

where K is the quotient field of R.

(i) If R = F is a field then THn(C) = 0.

(ii) The ring of integers Z is a principal ideal domain, with quotient field Q the

rationals. 2

The homological properties of intersections of subspaces of a space X are

derived from the homological properties of the diagonal map

∆ : X → X ×X ; x 7→ (x, x) ,

using diagonal chain approximations :

Diagonal Chain Approximation Theorem 3.18 The singular chain com-

plex S(X) of any topological space X is equipped with a natural chain map

∆0 : S(X)→ S(X)⊗Z S(X)

and natural higher chain homotopies

∆i : S(X)r → (S(X)⊗Z S(X))r+i (i > 1)
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such that

∆i + (−1)i+1T∆i = dS(X)⊗ZS(X)∆i+1 + (−1)i∆i+1dS(X) :

S(X)r → (S(X)⊗Z S(X))r+i (i > 0)

with T the transposition automorphism

T : S(X)p ⊗Z S(X)q → S(X)q ⊗Z S(X)p ; x⊗ y 7→ (−1)pqy ⊗ x

such that T 2 = 1. Naturality means that for every map f : X → Y there is

defined a commutative square

S(X)r
∆i //

f

��

(S(X)⊗Z S(X))r+i

f ⊗ f
��

S(Y )r
∆i // (S(Y )⊗Z S(Y ))r+i

Proof See Chapter VI.16 of Bredon [10]. 2

Remark 3.19 Diagonal chain approximations were first constructed by Alexan-

der, Whitney and Steenrod in the 1930’s using explicit formulae in simpli-

cial homology. The singular complex diagonal chain approximations {∆i} are

constructed by acyclic model theory. For any spaces X,Y there is a natural

Eilenberg-Zilber chain equivalence

E0 : S(X × Y ) ' S(X)⊗Z S(Y )

with natural higher chain homotopies

Ei : S(X × Y )r → (S(X)⊗Z S(Y ))r+i (i > 1)

such that

EiT + (−1)i+1TEi = dS(X)⊗ZS(Y )Ei+1 + (−1)iEi+1dS(X×Y ) :

S(X × Y )r → (S(X)⊗Z S(Y ))r+i (i > 0)

with

T : X × Y → Y ×X ; (x, y) 7→ (y, x) ,

T : S(X)p ⊗Z S(Y )q → S(Y )q ⊗Z S(X)p ; a⊗ b 7→ (−1)pqb⊗ a

the transposition maps. The diagonal chain approximation is obtained by taking

X = Y and setting

∆i = Ei∆ : S(X)r
∆ // S(X ×X)r

Ei // (S(X)⊗Z S(X))r+i .



40 HOMOTOPY AND HOMOLOGY

Let W be the standard free Z[Z2]-module resolution of Z

W : . . . // Z[Z2]
1− T // Z[Z2]

1 + T // Z[Z2]
1− T // Z[Z2] .

The collection {Ei} defines a natural chain map

E : S(X ×X)→ HomZ[Z2](W,S(X)⊗Z S(X))

and {∆i} defines a natural chain map

∆ : S(X)→ HomZ[Z2](W,S(X)⊗Z S(X)) .

2

Definition 3.20 (i) The cup product pairing is

∪ : Hm(X)⊗Z H
n(X)→ Hm+n(X) ; a⊗ b 7→

(
a ∪ b : x 7→

∑
a(x′)⊗ b(x′′)

)
with ∆0(x) =

∑
x′ ⊗ x′′.

(ii) The cap product pairing is

∩ : Hm(X)⊗Z H
n(X)→ Hm−n(X) ; x⊗ y 7→ x ∩ y =

∑
y(x′)x′′ .

(iii) The Steenrod squares are the cohomology operations

Sqi : Hr(X;Z2)→ Hr+i(X;Z2) ; x 7→ (y 7→ 〈x⊗x,∆r−i(y)〉) (y ∈ Hr+i(X;Z2)) ,

identifying H∗(X;Z2) = HomZ2
(H∗(X;Z2),Z2) by the Universal Coefficient

Theorem 3.17. 2

The cup and cap product pairings are also defined forR-coefficient (co)homology

∪ : Hm(X;R)⊗R Hn(X;R)→ Hm+n(X;R) ,

∩ : Hm(X;R)⊗R Hn(X;R)→ Hm−n(X;R)

for any commutative ring R.

Definition 3.21 (i) The relative homology groups of a map f : X → Y are

the relative homology groups of the induced chain map f : S(X)→ S(Y )

H∗(f) = H∗(f : S(X)→ S(Y )) ,

designed to fit into a long exact sequence

. . .→ Hn(X)
f∗
→ Hn(Y )→ Hn(f)→ Hn−1(X)→ . . . .
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If f : X → Y is the inclusion of a subspace X ⊆ Y the relative homology groups

are written

H∗(f) = H∗(Y,X) .

(ii) The reduced homology groups of a pointed space (X,x ∈ X) are the

relative homology groups of the inclusion i : {x} ↪→ X

Ḣ∗(X) = H∗(i) = H∗(X, {x})

with

H∗(X) = Ḣ∗(X)⊕H∗({x}) ,
so that Ḣr(X) = Hr(X) for r 6= 0, and H0(X) = Ḣ0(X)⊕ Z. 2

For a triple of spaces (X,Y ⊆ X,Z ⊆ Y ) the relative homology groups of the

associated pairs fit into a long exact sequence

. . . // Hr(Y,Z) // Hr(X,Z) // Hr(X,Y )
∂ // Hr−1(Y,Z) // . . . .

The relative cohomology groups H∗(f) of a map f : X → Y are defined

to fit into a long exact sequence

. . . // Hn−1(X)
δ //// Hn(f) // Hn(Y )

f∗ // Hn(X) // . . . .

The relative cohomology groups H∗(Y,X) (X ⊆ Y ) and the reduced coho-

mology groups Ḣ∗(X) are defined by analogy with H∗(Y,X) and Ḣ∗(X).

Definition 3.22 (i) The mapping cylinder of a map f : X → Y is the iden-

tification space

M(f) = (X × I ∪ Y )/{(x, 1) ∼ f(x) |x ∈ X} ,

which contains Y as a deformation retract.

(ii) The mapping cone of a map f : X → Y is the pointed space

C(f) = M(f)/{(x, 0) ∼ (x′, 0) |x, x′ ∈ X}

with base point [X × {0}] ∈ C(f). 2

Example 3.23 The space obtained fromX by attaching an n-cell at α : Sn−1 →
X (3.5) is a mapping cone

X ∪α Dn = C(α : Sn−1 → X) ,

and fits into a cofibration sequence

Sn−1 α // X // X ∪α Dn // Sn // . . . .

2
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Proposition 3.24 The relative homology groups of a map f : X → Y are the

reduced homology groups of the mapping cone

H∗(f) = Ḣ∗(C(f : X → Y )) .

Similarly for relative cohomology.

Proof The cofibration sequence of spaces

X
f // Y // C(f) // ΣX // ΣY // . . .

induces a long exact sequence of homology groups

. . . // Hn(X)
f∗ // Hn(Y ) // Ḣn(C(f)) // Hn−1(X) // . . . .

2

Homology is homotopy invariant : a homotopy h : f ' g : X → Y induces a

chain homotopy h : f ' g : S(X) → S(Y ), so that f∗ = g∗ : H∗(X) → H∗(Y ).

If f : X → Y is a homotopy equivalence then f : S(X) → S(Y ) is a chain

equivalence, and f∗ : H∗(X)→ H∗(Y ) is an isomorphism.

Definition 3.25 The Hurewicz map from the homotopy to the homology

groups is

πn(X)→ Hn(X) ; (f : Sn → X) 7→ f∗[S
n]

with [Sn] = 1 ∈ Hn(Sn) = Z. 2

For n > 2 there is also a Z[π1(X)]-module Hurewicz map

πn(X) = πn(X̃)→ Hn(X̃) ; (f : Sn → X) 7→ f̃∗[S
n]

with X̃ the universal cover of X, and f̃ : Sn → X̃ the lift of f which sends the

base point of Sn to the base point of X̃.

For a map f : X → Y there are also Hurewicz maps π∗(f) → H∗(f̃) from

the relative homotopy groups to the relative homology groups.

Hurewicz Theorem 3.26 (i) For a connected space X the map π1(X) →
H1(X) is onto, with kernel the commutator subgroup [π1(X), π1(X)] / π1(X)

generated by the commutators [g, h] = ghg−1h−1 (g, h ∈ π1(X)).

(ii) If n > 2 and X is an (n − 1)-connected space then πn(X) → Hn(X) is an

isomorphism of abelian groups.

(iii) If n > 2 and f : X → Y is an (n− 1)-connected map then πn(f)→ Hn(f̃)

is an isomorphism of Z[π1(X)]-modules, with f̃ : X̃ → Ỹ a π1(X)-equivariant

lift of f to the universal covers X̃, Ỹ of X,Y .
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Proof See Theorem VII.10.7 of Bredon [10]. 2

Corollary 3.27 (i) A connected space X is n-connected if and only if π1(X) =

{1} and Hi(X) = 0 for 1 6 i < n.

(ii) A map of connected spaces f : X → Y is n-connected if and only if f∗ :

π1(X)→ π1(Y ) is an isomorphism and Hi(f̃) = 0 for i 6 n.

(iii) If Y is obtained from X by attaching m-cells for m > n then the pair (Y,X)

is (n− 1)-connected.

(iv) If f : X → Y is an n-connected map then for any m-dimensional CW

complex M with m < n the induced function

f∗ : [M,X]→ [M,Y ] ; g 7→ fg

is a bijection.

(v) If M,N are CW complexes such that M is m-dimensional, N is n-connected

and m < n then

[M,N ] = 0 .

Proof (i)+(ii) Immediate from the Hurewicz Theorem 3.26.

(iii) For any α : Sm−1 → X and n 6 m

πn−1(X ∪α Dm, X) = Hn−1(X ∪α Dm, X) = Ḣn−1(Sm) = 0 .

(iv) It may be assumed that Y is obtained from X by attaching cells of dimension

j > n+ 1. For an m-dimensional CW complex M attaching a cell of dimension

j > n+ 1 to X has no effect on [M,X], since πi(S
j) = 0 for i 6 m 6 n < j.

(v) Any map D0 → N is n-connected, so that by (iii)

[M,N ] = [M,D0] = 0 .

2

Example 3.28 For n > 2 let X = S1 ∨ Sn be the one-point union of a circle

and an n-sphere.

(i) The fundamental group is π1(X) = Z, and the universal cover

X̃ = (R ∪ (Z× Sn))/{k ∼ (k, 1, 0, . . . , 0) | k ∈ Z} .

is (n− 1)-connected, with the Hurewicz map

πn(X) = πn(X̃)→ Hn(X̃) = Z[Z]

a Z[Z]-module isomorphism.

(ii) The inclusion S1 ↪→ X is (n− 1)-connected.

(iii) The projection X → S1 is n-connected. 2
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Definition 3.29 Given a space X and an element x ∈ πn(X) (n > 1) let

Y = X ∪α Dn+1

be the space obtained from X by attaching an (n + 1)-cell (3.5) at any map

α : Sn → X with x = [α] ∈ πn(X). The operation of attaching the (n + 1)-cell

is said to kill x. 2

The method of killing of homotopy classes by attaching cells is a homotopy-

theoretic precursor of surgery. It does not apply directly to manifolds, since

attaching a cell to a manifold results in a non-manifold space. The effect on the

homotopy and homology groups of attaching an (n+1)-cell is given in dimensions

6 n by :

Proposition 3.30 Let Y = X ∪αDn+1 be the space obtained from a CW com-

plex X by attaching an (n+ 1)-cell at α : Sn → X to kill x = [α] ∈ πn(X).

(i) Let X̃ be a regular cover X with group of covering translations π. Assume

that the induced cover α∗X̃ of Sn is trivial (which is automatically the case if

n > 2), so that α : Sn → X has a π-equivariant lift α̃ : α∗X̃ = π × Sn → X̃ and

Y has a regular cover

Ỹ = X̃ ∪α̃ (π ×Dn+1) .

The relative homology Z[π]-modules of (Ỹ , X̃ ⊂ Ỹ ) are given by

Hi(Ỹ , X̃) = Hi(π ×Dn+1, π × Sn) =

{
Z[π] if i = n+ 1

0 if i 6= n+ 1 .

Thus

Hi(Ỹ ) = Hi(X̃) for i 6= n, n+ 1

and there is defined an exact sequence

0 // Hn+1(X̃) // Hn+1(Ỹ ) // Z[π]
x // Hn(X̃) // Hn(Ỹ ) // 0 .

In particular

Hn(Ỹ ) = Hn(X̃)/〈x〉
with 〈x〉 ⊆ Hn(X̃) the Z[π]-submodule generated by the Hurewicz image x ∈
Hn(X̃).

(ii) The pair (Y,X) is n-connected. For n > 2 the relative homotopy groups of

(Y,X) in dimensions 6 n+ 1 are given by

πi(Y,X) =

{
0

Z[π1(X)]
if

{
i 6 n

i = n+ 1 .

(iii) The homotopy groups of Y in dimensions 6 n are given by

πi(Y ) =

{
πi(X)

πn(X)/〈x〉 if

{
i < n

i = n
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where 〈x〉 ⊆ πn(X) is the normal subgroup generated by x for n = 1, and the

Z[π1(X)]-submodule generated by x for n > 2.

Proof (i) Immediate from

H∗(Ỹ , X̃) = Ḣ∗(Ỹ /X̃) = Ḣ∗(
∨
π

Sn) .

(ii) For n > 2 π1(Y ) = π1(X), so that the universal covers X̃, Ỹ of X,Y define

a pair (Ỹ , X̃ ⊂ Ỹ ). Apply (i) with this pair and the Hurewicz Theorem (3.26)

to obtain

πi(Y,X) = Hi(Ỹ , X̃) =

{
0 if i 6 n

Z[π1(X)] if i = n+ 1.

(iii) The case n = 1 is a direct application of the Seifert-Van Kampen Theorem

(Chapter III.9 of Bredon [10])

π1(Y ) = π1(X) ∗π1(S1) π1(D2) = π1(X)/〈x〉 .

For n > 2 apply (ii) and the homotopy exact sequence

πn+1(Y,X) = Z[π1(X)]
x // πn(X) // πn(Y ) // πn(Y,X) = 0 .

2

Next, we describe the construction of the cellular chain complex C(X) of

a CW complex X. We shall be particularly concerned with the cellular chain

complex C(M) of a manifold M with the CW structure determined by a handle

decomposition (2.23).

Let then X be a CW complex

X =

∞⋃
i=0

⋃
ci

Di

with n-skeleta

X(n) =

n⋃
i=0

⋃
ci

Di ⊆ X (n > 0) .

Definition 3.31 The cellular chain complex C(X) is the chain complex with

C(X)n = Hn(X(n), X(n−1)) = Zcn

the free abelian group generated by the n-cells Dn → X and

d = ∂ : C(X)n = Hn(X(n), X(n−1))→ C(X)n−1 = Hn−1(X(n−1), X(n−2))

the boundary in the homology of the triple (X(n), X(n−1), X(n−2)). 2
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Proposition 3.32 The homology groups of a CW complex X are just the ho-

mology groups of the cellular chain complex C(X)

Hn(X) = Hn(C(X))

= ker(d : C(X)n → C(X)n−1)/im(d : C(X)n+1 → C(X)n) ,

and similarly for the cohomology groups

Hn(X) = Hn(C(X))

= ker(d∗ : C(X)n → C(X)n+1)/im(d∗ : C(X)n−1 → C(X)n)

with

C(X)n = HomZ(C(X)n,Z) = Hn(X(n), X(n−1)) .

Proof The inclusion C(X) ↪→ S(X) is a chain equivalence. 2

Let X = (A,B ⊆ A) be a CW pair with A obtained from B by attaching

cells of non-decreasing dimensions i1 6 i2 6 . . .

A = B ∪Di1 ∪Di2 ∪ . . . .

The relative skeleta of X are defined by

X(n) = B ∪
⋃
i6n

Di (n > 0)

and are such that B ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ A. The cellular chain complex

C(X) = C(A,B) is defined as in the absolute case, with C(X)n = Hn(X(n), X(n−1))

the free abelian group generated by the n-cells, and homology

H∗(C(X)) = H∗(A,B) .

Returning to manifolds, let (W ;M,M ′) be an (m+1)-dimensional cobordism

with a handle decomposition

W = M × I ∪ hi0 ∪ hi1 ∪ . . . ∪ hik

where hi = Di×Dm−i+1 is a handle of index i and 0 6 i0 6 i1 6 . . . 6 ik 6 m+1,

as given by 2.22 from a Morse function f on (W ;M,M ′). As in 2.23 the handle

decomposition can be viewed as a CW structure on X = (W,M), with one

i-dimensional cell for each i-handle, and n-skeleta

X(n) = M × I ∪
⋃
i6n

hi .
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Definition 3.33 The handle chain complex C(W,M) of a cobordism (W ;M,M ′)
with a handle decomposition is the cellular chain complex of the corresponding

relative CW structure on X = (W,M), with

C(W,M)n = Hn(X(n), X(n−1))

the free abelian group generated by the n-handles, and homologyH∗(C(W,M)) =

H∗(W,M). 2

The differentials d : C(W,M)n → C(W,M)n−1 will be interpreted in Section

8.2 in terms of the intersections of (n− 1)- and n-handles.

Example 3.34 A closed m-dimensional manifold M can be regarded as an m-

dimensional cobordism (M ; ∅, ∅). A handle decomposition

M = hi0 ∪ hi1 ∪ . . . ∪ hik

determines a handle chain complex C(M), with H∗(C(M)) = H∗(M). 2
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POINCARÉ DUALITY

The algebraic effect of a geometric surgery on an m-dimensional manifold

M is determined by the Poincaré duality isomorphisms H∗(M) ∼= Hm−∗(M)

between the homology and cohomology groups. The homotopy-theoretic effect

of a surgery is a combination of attaching a cell and detaching a cell of comple-

mentary dimension to restore Poincaré duality.

Section 4.1 establishes Poincaré duality. The main result of this chapter is

the description in Section 4.2 of the effect of a surgery on the homotopy and

homology groups of a manifold. Section 4.3 recalls the classification of surfaces,

and gives a complete description of the effects of surgery on surfaces. Section 4.4

describes the algebraic properties of rings with involution and sesquilinear forms

needed for the intersection form of a non-simply-connected manifold. Finally,

Section 4.5 gives Poincaré duality for the universal cover of a manifold.

4.1 Poincaré duality

The Poincaré duality isomorphisms H∗(M) ∼= Hm−∗(M) of an orientable m-

dimensional manifold M are the global expression of the local property that

every x ∈M has a neighbourhood U ⊆M which is diffeomorphic to Rm, with

H∗(M,M\{x}) ∼= H∗(Rm,Rm\{0}) ∼= Hm−∗({0}) ∼= Hm−∗({x}) .

Orientability is necessary in order to piece together these local isomorphisms to

obtain global isomorphisms H∗(M) ∼= Hm−∗(M).

Definition 4.1 Let R be a commutative ring.

(i) Anm-dimensional manifoldM isR-orientable if there exists anR-coefficient

fundamental class, a homology class [M ] ∈ Hm(M ;R) such that for every

x ∈M the R-module morphism

Hm(M ;R)→ Hm(M,M\{x};R) = Hm(Rm,Rm\{0};R) = R

sends [M ] ∈ Hm(M ;R) to a unit in R.

(ii) A manifold M is orientable if it is Z-orientable, and nonorientable if it

is not Z-orientable. An orientation for an orientable manifold M is a choice of

Z-coefficient fundamental class [M ].
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(iii) The orientation character ofM is the cohomology class w(M) ∈ H1(M ;Z2)

such that

Sq1 = w(M) ∪ − : Hm−1(M ;Z2)→ Hm(M ;Z2) .

2

Remark 4.2 The orientation character is the first Stiefel-Whitney class of the

tangent bundle τM , w(M) = w1(τM ) ∈ H1(M ;Z2). See Chapter 5 for bundles

and characteristic classes. 2

Proposition 4.3 (i) Every manifold M is Z2-orientable, and has a unique Z2-

orientation.

(ii) A manifold M is orientable if and only if w(M) = 0 ∈ H1(M ;Z2). A

connected orientable m-dimensional manifold M has two orientations ±[M ] ∈
Hm(M) = Z.

(iii) An orientable manifold M is R-orientable, for any commutative ring R.

Proof See Chapter VI.7 of Bredon [10] and/or Section 3.3 of Hatcher [31].

2

Poincaré Duality Theorem 4.4 For any R-orientable m-dimensional mani-

fold M cap product with [M ] ∈ Hm(M ;R) defines R-module isomorphisms

[M ] ∩ − : H∗(M ;R) ∼= Hm−∗(M ;R) .

Proof As in Example 3.34 regard M as a cobordism (M ; ∅, ∅), and choose a

Morse function f : M → R to obtain a handle decomposition of M with R-

coefficient handle chain complex C(M ;R). The opposite Morse function −f :

M → R determines another handle decomposition on M , with chain complex

the m-dual C(M ;R)m−∗. Applying the cellular approximation theorem to the

identity map it is possible to approximate 1 : M → M by a cellular homo-

topy equivalence from a subdivision of the dual handlebody CW structure to

the handlebody CW structure. The corresponding R-module chain equivalence

C(M ;R)m−∗ → C(M ;R) is given by the cap product [M ] ∩ −, up to chain

homotopy. 2

Example 4.5 The complex projective space CPm is an orientable 2m-dimensional

manifold with homology and cohomology

Hn(CPm) = H2m−n(CPm) =

{
Z if 0 6 n 6 2m with n even,

0 otherwise.

2
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Example 4.6 The Z2-homology and cohomology of the m-dimensional real pro-

jective space

RPm = Sm/{x ∼ −x}
are given by

Hi(RPm;Z2) = Hm−i(RPm;Z2) = Z2 (0 6 i 6 m) ,

and the orientation character is

w(RPm) = (−1)m+1 ∈ H1(RPm;Z2) = Z2 .

Thus RPm is orientable for odd m, and nonorientable for even m. 2

There are also versions of Poincaré duality for manifolds with boundary, and

cobordisms.

Definition 4.7 Let R be a commutative ring.

(i) An (m+ 1)-dimensional cobordism (W ;M,M ′) is R-orientable if there ex-

ists an R-coefficient fundamental class [W ] ∈ Hm+1(W,M ∪M ′;R), such

that for every x ∈W\(M ∪M ′) the R-module morphism

Hm+1(W,M∪M ′;R)→ Hm+1(W,W\{x};R) = Hm+1(Rm+1,Rm+1\{0};R) = R

sends [W ] to a unit of R, and such that

∂([W ]) = ([M ],−[M ′]) ∈ Hm(M ∪M ′;R) = Hm(M ;R)⊕Hm(M ′;R)

with [M ] ∈ Hm(M ;R), [M ′] ∈ Hm(M ′;R) R-coefficient fundamental classes.

(ii) The orientation character of a cobordism (W ;M,M ′) is the cohomology

class w(W ) ∈ H1(W ;Z2) such that

Sq1 = w(W ) ∪ − : Hm(W ;Z2)→ Hm+1(W ;Z2) .

The morphism H1(W ;Z2)→ H1(M ;Z2)⊕H1(M ′;Z2) induced by the inclusion

M ∪M ′ ↪→ W sends w(W ) to (w(M), w(M ′)). The cobordism (W ;M,M ′) is

orientable if w(W ) = 0 ∈ H1(W ;Z2). 2

Poincaré-Lefschetz Duality Theorem 4.8 For any R-orientable (m + 1)-

dimensional cobordism (W ;M,M ′) cap product with [W ] ∈ Hm+1(W,M∪M ′;R)

defines R-module isomorphisms

[W ] ∩ − : H∗(W,M ;R) ∼= Hm+1−∗(W,M
′;R) . 2

In particular, if (W,∂W ) is an R-oriented (m+1)-dimensional manifold with

boundary there are defined Poincaré duality isomorphisms

[W ] ∩ − : H∗(W,∂W ;R) ∼= Hm+1−∗(W ;R) ,

[W ] ∩ − : H∗(W ;R) ∼= Hm+1−∗(W,∂W ;R) .
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Example 4.9 (Dm+1, Sm) is an orientable (m + 1)-dimensional manifold with

boundary, such that

Hr(Dm+1) = Hm+1−r(D
m+1, Sm) =

{
Z if r = 0

0 otherwise .

2

Poincaré duality relates the cup product structure on the cohomology of a

manifold M with the intersection properties of submanifolds N ⊆ M . If f :

Nn ↪→Mm is an embedding of an oriented submanifold then f∗[N ] ∈ Hn(M) is

a homology class (which we shall usually write as [N ] ∈ Hn(M)). The Poincaré

dual to a cohomology class [N ]∗ ∈ Hm−n(M) determines the homology classes of

(transverse) intersections of submanifolds of M with N . The connection between

Poincaré duality and intersections is particularly straightforward for deRham

cohomology :

Example 4.10 The R-coefficient cohomology group Hp(M ;R) of an m-dimen-

sional manifold Mm can be expressed as the deRham cohomology groups of

differential p-forms ω on M (cf. Bott and Tu [8]). Identify

H∗(M ;R) = HomR(H∗(M ;R),R)

by the R-coefficient Universal Coefficient Theorem (3.17). An oriented M has an

R-coefficient fundamental class [M ] ∈ Hm(M ;R), such that cap product with

[M ] defines R-coefficient Poincaré duality isomorphism

[M ] ∩ − : Hm−n(M ;R)→ Hn(M ;R) .

An embedding of an oriented n-dimensional submanifold f : Nn ↪→M represents

the R-coefficient homology class f∗[N ] ∈ Hn(M ;R) corresponding to integration

over N

f∗[N ] : Hn(M ;R)→ R ; ω 7→
∫
N

f∗ω .

In fact, every R-coefficient homology class x ∈ Hn(M ;R) is of the form r(f∗[N ])

for some f : Nn ↪→M and r ∈ R. Write the Poincaré dual of f∗[N ] ∈ Hn(M ;R)

as ηN ∈ Hm−n(M ;R). If (N1)n1 , (N2)n2 ⊆ Mn1+n2 are oriented submanifolds

which intersect transversely then

ηN1
∧ ηN2

= ηN1∩N2
∈ Hn1+n2(M ;R) = H0(M ;R) = R

is the algebraic number of points in N1 ∩ N2. (See Section 7.2 below for the

precise definition of transverse intersection.) 2
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Definition 4.11 The homology intersection pairing of an orientedm-dimen-

sional manifold M

λ : Hn(M)×Hm−n(M)→ Z ; (x, y) 7→ λ(x, y)

is defined by

λ(x, y) = 〈x∗ ∪ y∗, [M ]〉 ∈ Z

with x∗ ∈ Hm−n(M), y∗ ∈ Hn(M) the Poincaré duals of x, y. 2

Proposition 4.12 The homology intersection pairing satisfies

λ(x+ x′, y) = λ(x, y) + λ(x′, y) ,

λ(x, y + y′) = λ(x, y) + λ(x, y′) ,

λ(ax, by) = abλ(x, y) ,

λ(y, x) = (−1)n(m−n)λ(x, y) ∈ Z

for every a, b ∈ Z, x, x′ ∈ Hn(M), y, y′ ∈ Hm−n(M).

Proof The cup product pairing (for any space M)

∪ : Hp(M)×Hq(M)→ Hp+q(M) ; (x, y) 7→ x ∪ y

is bilinear, and such that

y ∪ x = (−1)pqx ∪ y ∈ Hp+q(M) .

2

Definition 4.13 The algebraic intersection number of immersions of ori-

ented manifolds Nn1
1 #Mn1+n2 , Nn2

2 #Mn1+n2 in a connected oriented man-

ifold

λ([N1], [N2]) ∈ Z

is the homology intersection of the homology classes [N1] ∈ Hn1
(M), [N2] ∈

Hn2
(M). 2
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In Chapter 7 the algebraic intersection of transversely intersecting immersions

N1 #M , N2 #M will be identified with the algebraic number of double points.

Any map of spaces f : N →M induces morphisms f∗ : H∗(N)→ H∗(M) in

homology, and also morphisms f∗ : H∗(M)→ H∗(N) in cohomology.

Definition 4.14 The homology and cohomology Umkehr (= ‘reverse’) mor-

phisms for a map f : Nn →Mm of oriented manifolds are the composites

f ! : H∗(M) ∼= Hm−∗(M)
f∗ // Hm−∗(N) ∼= Hn−m+∗(N) ,

f ! : H∗(N) ∼= Hn−∗(N)
f∗ // Hn−∗(M) ∼= Hm−n+∗(M) .

2

Proposition 4.15 Let f : Nn →Mm be a map of oriented connected manifolds.

(i) The homology Umkehr f ! : Hm(M)→ Hn(N) is such that

f ![M ] = [N ] ∈ Hn(N) .

(ii) The cohomology Umkehr f ! : H0(N) → Hm−n(M) sends 1 ∈ H0(N) = Z
to the cohomology class f !(1) ∈ Hm−n(M) Poincaré dual to the homology class

f∗[N ] ∈ Hn(M), with

[M ] ∩ f !(1) = f∗[N ] ∈ Hn(M) .

Proof (i) The generator 1 ∈ H0(M) = Z is Poincaré dual to the fundamental

class [M ] ∈ Hm(M). The induced map f∗ : H0(M) = Z → H0(N) = Z sends

1 ∈ H0(M) to f∗(1) = 1 ∈ H0(N).

(ii) By construction. 2

The Umkehr map will be used in the next section to describe the homology

effect of surgery.

4.2 The homotopy and homology effects of surgery

The homotopy theoretic effect of an n-surgery on an m-dimensional manifold is

a combination of attaching an (n+1)-cell and detaching the dual (m−n−1)-cell.

This section will describe the effects of the cell attachments and detachments on

the homotopy and homology groups. For 2n − 1 6 m it is possible to separate

the algebraic effects of attaching and detaching the cells. The algebraic effects

of surgery are much more complicated in the middle-dimensional cases m = 2n

or 2n + 1 (on account of self-intersections), and will be considered further in
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Chapters 11,12. In order to deal with surgery on non-simply-connected manifolds

it is also necessary to consider the effect of surgery on the homology of the

universal cover, and this will be done in Chapter 10.

Definition 4.16 An n-surgery on Mm removing the framed n-embedding g :

Sn ×Dm−n ↪→M kills the element x ∈ πn(M) represented by the core

x = g| : Sn × 0 ↪→M .

The dual (m − n − 1)-surgery on the effect M ′m removing the dual framed

(m − n − 1)-embedding g′ : Dn+1 × Sm−n−1 ↪→ M ′ kills the element x′ ∈
πm−n−1(M ′) represented by

x′ = g′| : 0× Sm−n−1 ↪→M ′ . 2

Example 4.17 The zero element 0 ∈ πn(M) can be killed by an n-surgery on

Mm

Sn ×Dm−n ↪→ Sn ×Dm−n ∪Dn+1 × Sm−n−1 = Sm ↪→M#Sm = M ,

with effect the connected sum

M ′m = Mm #(Sn+1 × Sm−n−1) . 2

Remark 4.18 The following Proposition contains a commutative braid of the

type

A

##

""
B

##

""
C

D

;;

##

E

;;

##
F

;;

==G

;;

==H

in which the sequences

A // B // E // H ,

A // D // G // H ,

F // D // B // C ,

F // G // E // C
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are exact. It follows that there is a rudimentary Mayer-Vietoris exact sequence

D // B ⊕G // E

and that there is defined an isomorphism

ker(B → C)

im(A→ B)
∼= ker(G→ H)

im(F → G)
.

2

Proposition 4.19 Let (W ;M,M ′) be the trace of an n-surgery on an m-dimen-

sional manifold M removing the framed n-embedding g : Sn ×Dm−n ↪→ M , let

g′ : Dn+1 × Sm−n−1 ↪→M ′ be the dual framed (m− n− 1)-embedding, and let

M0 = cl.(M\g(Sn ×Dm−n)) = cl.(M ′\g′(Dn+1 × Sm−n−n+1 �Dm�n+1Sn �Dm�n Dn+1 � Sm�n�1
Mm Wm+1 M 0m

M0 � IM0 � f0g M0 � f1g
(i) The trace W is homotopy equivalent to a space obtained from M by attaching

an (n+ 1)-cell and a space obtained from M ′ by attaching an (m− n)-cell

W ' M ∪x Dn+1 ' M ′ ∪x′ Dm−n,

with x = g| : Sn ↪→M , x′ = g′| : Sm−n−1 ↪→M ′ the cores of g, g′. The projection

W →W/(Dn+1 ×Dm−n) ' M0/(S
n × Sm−n−1)

is a homotopy equivalence.

(ii) The homotopy groups are such that

πi(W ) =

{
πi(M) if i < n

πn(M)/〈x〉 if i = n

with 〈x〉 ⊆ πn(M) the normal subgroup (resp. the Z[π1(M)]-module) generated

by x for n = 1 (resp. n > 2). Also, since (W ;M,M ′) is the trace of the dual

(m− n− 1)-surgery on M ′ killing an element x′ ∈ πm−n−1(M ′)

πi(W ) =

{
πi(M

′) if i < m− n− 1

πm−n−1(M ′)/〈x′〉 if i = m− n− 1 .

In particular, if 2n+ 1 6 m then
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πi(M
′) = πi(W ) = πi(M) if i < n ,

and if 2n+ 2 6 m

πn(M ′) = πn(W ) = πn(M)/〈x〉 .

(iii) The homology groups of (W ;M,M ′) fit into a commutative braid of exact

sequences

Hi+1(W,M)

''

x

%%
Hi(M)

''

x!

%%
Hi(W,M

′)

Hi+1(W,M ∪M ′)

77

''

Hi(W )

77

''
Hi+1(W,M ′)

77

x′

99
Hi(M

′)

77

x′ !

99
Hi(W,M)

with

Hi(W,M) = Hi(D
n+1, Sn) =

{
Z if i = n+ 1

0 if i 6= n+ 1 ,

Hi(W,M
′) = Hi(D

m−n, Sm−n−1) =

{
Z if i = m− n
0 if i 6= m− n ,

Hi+1(W,M ∪M ′) = Hi(M0) .

If M is orientable the Umkehr map x! is the evaluation of the homology inter-

section pairing λ : Hn(M)×Hm−n(M)→ Z on x ∈ Hn(M)

x ! = λ(x,−) : Hm−n(M)→ Z ; y 7→ λ(x, y)

Similarly, if M ′ is orientable the Umkehr map x′ ! is the evaluation of the homol-

ogy intersection pairing λ′ : Hm−n−1(M ′)×Hn+1(M ′)→ Z on x′ ∈ Hm−n−1(M ′)

x′
!

= λ′(x′,−) : Hn+1(M ′)→ Z ; y′ 7→ λ′(x′, y′) .

Proof By Proposition 3.30 and the homology exact sequence of a cofibration

(Proposition 3.24). 2

Example 4.20 The homology intersection pairing on the nth homology group

Hn(M) of an oriented 2n-dimensional manifold M2n is (−1)n-symmetric

λ : Hn(M)×Hn(M)→ Z ; (x, y) 7→ λ(x, y) = (−1)nλ(y, x) .
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In order to kill an element x ∈ πn(M) by surgery on M it is necessary (but not

in general sufficient) for the Hurewicz image x ∈ Hn(M) to be such that

λ(x, x) = 0 ∈ Z

– this is automatic if n is odd. Moreover, if surgery on x ∈ πn(M) is possible

and the effect M ′2n is oriented then

Hn(M ′) =
{y ∈ Hn(M) |λ(x, y) = 0 ∈ Z}

{kx | k ∈ Z} ,

the quotient of the subgroup of the homology classes orthogonal to x ∈ Hn(M) by

the subgroup of the classes parallel to x. The (−1)n-symmetric form on Hn(M ′)
is the one inherited from the form on Hn(M)

λ′ : Hn(M ′)×Hn(M ′)→ Z ; ([y], [z]) 7→ λ(y, z) . 2

As before, letM ′ be them-dimensional manifold obtained from anm-dimensional

manifold M by an n-surgery killing a homotopy class x ∈ πn(M). If 2n 6 m

then

πi(M) = πi(W ) = πi(M
′) for i 6 n− 2 .

If 2n+ 1 6 m then

πn−1(M) = πn−1(W ) = πn−1(M ′)

and

πn(M ′) = πn(M)/〈x〉
is smaller than πn(M), in general. If m = 2n+ 1

πn(M)/〈x〉 = πn(W ) = πn(M ′)/〈x′〉

with x′ ∈ πn(M ′) the homotopy class killed by the dual n-surgery, so that πn(M ′)
is in general neither smaller nor larger than πn(M). If m = 2n it is possible for

an n-surgery to create elements in πn−1(M ′), as in :

Example 4.21 For a 2n-dimensional manifold M the effect of the trivial n-

surgery killing 0 ∈ πn(M) is the 2n-dimensional manifold

M ′2n = M2n #(Sn+1 × Sn−1)

with

πn−1(M ′) = πn−1(M)⊕ Z . 2

It is also possible for an n-surgery on a 2n-dimensional manifold to make

πn(M) smaller without affecting πn−1(M), as in :
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Example 4.22 The effect of the n-surgery removing the framed n-embedding

Sn ×Dn ↪→ Sn ×Dn ∪ Sn ×Dn = Sn × Sn

is

Dn+1 × Sn−1 ∪ Sn ×Dn = ∂(Dn+1 ×Dn) = S2n ,

with

πn−1(S2n) = πn−1(Sn × Sn) = 0 .

2

What is the effect of surgery on orientability? 0- and 1-surgeries can change

orientation type :

Example 4.23 The effect of a 0-surgery on S2 depends on the choice of framing

in S0 ×D2 ↪→ S2, and is either a torus T 2 = S1 × S1 :

or a Klein bottle K (which is nonorientable) :

The dual 1-surgery on K has effect S2, and so changes the orientation type. 2
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In general, we have :

Proposition 4.24 Let (W ;M,M ′) be the trace of an n-surgery on an m-dimen-

sional manifold M killing x ∈ Hn(M).

(i) If 1 6 n 6 m− 2 then W and M ′ have the same orientation type as M .

(ii) If n = m− 1 and M is orientable then so are W and M ′.
(iii) If n = m− 1 and M is nonorientable then M ′ is orientable if and only if

x = w(M) ∈ Hm−1(M ;Z2) = H1(M ;Z2) .

(iv) If n = 0 and M is nonorientable then so are W and M ′.

Proof The orientation character w(W ) ∈ H1(W ;Z2) has images the orien-

tation characters w(M) ∈ H1(M ;Z2), w(M ′) ∈ H1(M ′;Z2). The homotopy

equivalences

W ' M ∪Dn+1 ' M ′ ∪Dm−n

give the relative Z2-cohomology groups in the commutative braid of exact se-

quences (as in 4.19)

H1(W,M ′;Z2)

''

%%
H1(M ;Z2)

''

%%
H2(W,M ;Z2)

H1(W ;Z2)

77

''

H2(W,M ∪M ′;Z2)

77

''
H1(W,M ;Z2)

77

99
H1(M ′;Z2)

77

99
H2(W,M ′;Z2)

to be

Hi(W,M ;Z2) =

{
Z2 if i = n+ 1

0 otherwise
, Hi(W,M ′;Z2) =

{
Z2 if i = m− n
0 otherwise.

(i) If 1 6 n 6 m− 2 then the morphisms

H1(W ;Z2)→ H1(M ;Z2) , H1(W ;Z2)→ H1(M ′;Z2)

are injective, so that w(M) = 0 if and only if w(W ) = 0, and w(W ) = 0 if and

only if w(M ′) = 0.

(ii)+(iii) For n = m− 1 the braid is given by



60 POINCARÉ DUALITY

Z2

''

x

%%
H1(M ;Z2)

''

x !

$$
Z2

H1(W ;Z2)

77

''

H2(W,M ∪M ′;Z2)

77

''
0

77

99
H1(M ′;Z2)

77

;; 0

If w(M) = 0 it follows from the injectivity of H1(W ;Z2) → H1(M ;Z2) that

w(W ) = 0, and hence that w(M ′) = 0.

If w(M) 6= 0 it follows from the injectivity of H1(M ′;Z2)→ H2(W,M ∪M ′;Z2)

that w(M ′) = 0 if and only if w(M) = x ∈ H1(M ;Z2).

(iv) Apply (ii) to the cobordism (W ;M ′,M), which is the trace of the dual

(m− 1)-surgery on M ′. 2

It is easy to describe the effect of surgery on the Euler characteristic :

Definition 4.25 The Euler characteristic of a finite CW complex X is

χ(X) =

∞∑
i=0

(−1)idimRHi(X;R) ∈ Z . 2

Proposition 4.26 If the m-dimensional manifold M ′m is obtained from Mm

by an n-surgery then

χ(M ′) = χ(M) + (−1)n+1(1 + (−1)m) ∈ Z .

Proof The effect on the Euler characteristic of attaching an r-cell to a space

X is

χ(X ∪Dr) = χ(X) + (−1)r .

Use the homotopy equivalences given for the trace (W ;M,M ′) by 4.19

W ' M ∪Dn+1 ' M ′ ∪Dm−n

to identify

χ(W ) = χ(M) + (−1)n+1 = χ(M ′) + (−1)m−n .

2

Example 4.27 The m-sphere Sm is obtained from ∅ by a (−1)-surgery, with

Euler characteristic

χ(Sm) = 1 + (−1)m . 2
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Example 4.28 The connected sum of connected m-dimensional manifolds Mm,

M ′m is the connected m-dimensional manifold M#M ′ obtained from M ∪M ′
by 0-surgery (2.10). The Euler characteristic is given by 4.26 to be

χ(M #M ′) = χ(M) + χ(M ′)− (1 + (−1)m) . 2

4.3 Surfaces

Definition 4.29 A surface is a 2-dimensional manifold. 2

Surfaces are excellent illustrations of the surgery construction. Every ori-

entable surface and the nonorientable surfaces of even genus can be obtained

from the empty surface by a sequence of surgeries.

Definition 4.30 The orientable surface of genus g is defined for g > 0 to

be

M(g) = ∂(0-handle D0 ×D3 ∪ g 1-handles D1 ×D2)

= the effect of g orientable 0-surgeries S0 ×D2 ↪→ S2

= 0-handle D0 ×D2 ∪ {2g 1-handles D1 ×D1} ∪ 2-handle D2 ×D0

= #
g
T 2

the g-fold connected sum of the 2-torus T 2 = S1 × S1. 2

In particular

M(0) = the sphere S2 ,

M(1) = the torus T 2 ,

M(2) = the anchor ring T 2#T 2

Here is a picture of M(2) :

Definition 4.31 The nonorientable surface of genus g is defined for g > 1

to be
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N(g) = 0-handle D0 ×D2 ∪ {g 1-handles D1 ×D1} ∪ 2-handle D2 ×D0

= the effect of g crosscaps on S2

= #
g
RP2 ,

where each crosscap replaces D2 ↪→ S2 by an embedded Möbius band. 2

In particular

N(1) = the real projective space RP2 ,

N(2) = the Klein bottle K2 .

If g is even

N(g) = ∂(0-handle D0 ×D3 ∪ g/2 1-handles D1 ×D2)

= the effect of g/2 nonorientable 0-surgeries S0 ×D2 ↪→ S2

= #g/2K .

If g is odd

N(g) = the effect of (g − 1)/2 0-surgeries S0 ×D2 ↪→ RP2

= RP2 # #(g−1)/2 T
2 .

Classification of Surfaces 4.32 (i) Every connected closed surface is diffeo-

morphic to exactly one of

M(g) (g > 0) , N(g) (g > 1) .

Surfaces are classified by orientation type and Euler characteristic, with

χ(M(g)) = 2− 2g , χ(N(g)) = 2− g .

(ii) Every homotopy equivalence of surfaces M → M ′ is homotopic to a diffeo-

morphism.

Proof See Chapter 9 of Hirsch [33] for the detailed classification of surfaces

using surgery and Morse theory. The essential steps are easy to describe from the

surgery-theoretic point of view, as follows. If M is a connected orientable surface

then H1(M) is a f.g. free abelian group, the homology intersection pairing (4.11)

is (−1)-symmetric

λ : H1(M)×H1(M)→ Z ; (x, y) 7→ λ(x, y) = − λ(y, x) ,

and there exists a basis {a1, b1, a2, b2, . . . , ag, bg} for H1(M) such that

λ(ai, bj) =

{
1 if i = j

0 if i 6= j
, λ(ai, aj) = λ(bi, bj) = 0 .

The effect of an orientable 0-surgery on M is to form the connected sum with a

torus T 2 ; dually, the effect of a 1-surgery is to remove a torus. (Proposition 4.33
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below gives a detailed account of the effects of 0- and 1-surgeries on surfaces).

The half-basis {a1, a2, . . . , ag} for H1(M) can be realized by disjoint framed

1-embeddings ai : S1 × D1 ↪→ M . The combined effect of the corresponding

1-surgeries on M is a connected orientable surface M ′ such that

M ′# #
g
T 2 = M , π1(M ′) = H1(M ′) = 0 ,

and the 2-dimensional h-Cobordism Theorem shows that up to diffeomorphism

M ′ = S2 , M = #
g
T 2 = M(g) .

2

The effects of 0- and 1-surgeries on surfaces are given by :

Proposition 4.33 (i) The effect of a 0-surgery on a surface M is a surface M ′

with

χ(M ′) = χ(M)− 2 .

If M = M(g) then M ′ is connected with χ(M ′) = −2g, so that

M ′ =

{
M(g + 1) if orientable

N(2g + 2) if nonorientable.

If M = N(g) then M ′ is connected with χ(M ′) = −g, so that

M ′ =

{
M((g + 2)/2) if orientable, with g even

N(g + 2) if nonorientable.

(ii) The effect of a 1-surgery on a surface M is a surface M ′ with

χ(M ′) = χ(M) + 2 .

If M = M(g) then M ′ is orientable with χ(M ′) = 4− 2g, so that

M ′ =

{
M(g − 1) if connected

M(g1) ∪M(g2) if disconnected, with g1 + g2 = g.

If M = N(g) then χ(M ′) = 4− g, so that

M ′ =



M((g − 2)/2) if connected and orientable

N(g − 2) if connected and nonorientable

N(g1) ∪N(g2) if disconnected, both components nonorientable,

with g1 + g2 = g

M(g1) ∪N(g2) if disconnected, one component orientable,

with 2g1 + g2 = g.

2
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Example 4.34 Let M = M(g) be the orientable surface of genus g > 0, and let

ti : T 2 = S1 × S1 →M = #gT
2 (1 6 i 6 g)

be embeddings of the g tori. The homology group H1(M) = Z2g has a basis

{a1, b1, a2, b2, . . . , ag, bg} given geometrically by

ai = ti(S
1 × {∗}) , bi = ti({∗} × S1) ↪→a1 a2b1 b2

The (−1)-symmetric intersection form

λ : H1(M)×H1(M)→ Z

is such that

λ(ai, bj) =

{
1 if i = j

0 if i 6= j
, λ(ai, aj) = λ(bi, bj) = 0

as in the proof of 4.3. The function

{isotopy classes of embeddings S1 ↪→M} → H1(M) ; (f : S1 ↪→M) 7→ f∗[S
1]

has image the subset of the elements x ∈ H1(M) which generate direct sum-

mands. Every embedding f : S1 ↪→ M has an essentially unique extension to

a framed embedding f : S1 × D1 ↪→ M . (A surface is orientable if and only if

it is not possible to embed a Möbius band in it). By 4.33 (ii) the effect of the

1-surgery on M removing f is an orientable surface M ′ with χ(M ′) = 4 − 2g,

which may be disconnected. There is defined an exact sequence

0→ H1(M\f(S1))→ H1(M)→ Z→ H0(M\f(S1))→ H0(M) = Z→ 0

where

H1(M)→ Z ; y 7→ λ(x, y)

with x = f∗[S1] ∈ H1(M). It follows that M ′ is disconnected if and only if x = 0.

If x 6= 0 then M ′ is connected, and is diffeomorphic to M(g − 1). If x = 0 then

M ′ is disconnected, and

M ′ = M(g1) ∪M(g2)

for some g1, g2 > 0 such that g1 + g2 = g, with g1, g2 depending on the isotopy

class of f : S1 ↪→M .
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More generally, let M ′ be the combined effect of ` 1-surgeries on M removing

disjoint framed embeddings

fk : S1 ×D1 ↪→M (1 6 k 6 `)

and killing xk = (fk)∗[S1] ∈ H1(M). The trace (W ;M,M ′) is orientable by

4.24. As in Proposition 4.19 (for ` = 1) there is a commutative braid of exact

sequences0 ��<<<<< ��H2(M 0)�=��<<<< ��Z̀ ��<<<<< x ��H1(M ) =Z2g��<<<< x! ��Z̀ ��<<<<< ��H0(M 0) ��<<<< �� 0H0(W ) @@���� �=��==== H2(W ) @@����� ��===== H1(W ) @@���� ��==== H1(W ) @@����� ��===== H2(W )�= @@���� ��==== H0(W ) @@����� ��=====0 @@����� DDH2(M ) =Z@@���� DD 0 @@����� DDH1(M 0) @@���� DD 0 @@����� DDH0(M ) =Z�= @@���� DD 0
with

W 3 = M × I ∪ ⋃̀D2 ×D1 ' M ∪ ⋃̀D2 ,

x = (x1, x2, . . . , x`) : Z` → H1(M) = Z2g ; (c1, c2, . . . , c`) 7→
∑̀
k=1

ckxk ,

x! : H1(M) = Z2g → Z` ; y 7→ (λ(x1, y), λ(x2, y), . . . , λ(x`, y)) ,

H0(M ′) = Z⊕ coker(x! : Z2g → Z`) ,

H1(M ′) =
ker(x! : Z2g → Z`)
im(x : Z` → Z2g)

,

H2(M ′) = Z⊕ ker(x : Z` → Z2g) .

Here are some special cases :

(i) If the homology classes x1, x2, . . . , x` ∈ H1(M) are the basis of a direct

summand then

M ′ = M(g − `) .
In particular, this is the case for ` = g, xi = ai (1 6 i 6 g) with

M ′ = M(0) = S2 .

(ii) If x1 = x2 = . . . = x` = 0 ∈ H1(M) then

M ′ = M(g1) ∪M(g2) ∪ . . . ∪M(g`+1)

with g1 + g2 + . . .+ g`+1 = g.
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(iii) The picture shows M(3) with three embedded circles :

The right hand circle represents a non-zero homology class, and the effect

of the corresponding 1-surgery on M(3) is M(2) :

The middle circle is null-homologous, and the effect of the corresponding

1-surgery on M(3) is M(1) ∪M(2) :

The left hand circle is null-homologous (in fact null-homotopic), and the

effect of the corresponding 1-surgery on M(3) is M(0) ∪M(3) :

2

4.4 Rings with involution

This section is purely algebraic, developing the theory of sesquilinear forms on

modules over a ring with involution A. The algebra will be applied in the next

section to obtain the Poincaré duality and sesquilinear form on the homology of

the universal cover M̃ of a manifold M , with A = Z[π1(M)].

Definition 4.35 (i) An involution on a ring A is a function

A→ A ; a 7→ a

satisfying

(a+ b) = a+ b , (ab) = b . a , a = a , 1 = 1 ∈ A (a, b ∈ A) .

(ii) For a ring with involution A define the transposition isomorphism
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t : {left A-modules} → {right A-modules} ; K 7→ Kt

with

Kt ×A→ Kt ; (x, a) 7→ āx .

(iii) For a ring with involution A define the duality contravariant functor

∗ : {left A-modules} → {left A-modules} ; K 7→ K∗

sending a left A-module K to the dual left A-module

K∗ = HomA(K,A) ,

with A acting by

A×K∗ → K∗ ; (a, f) 7→ (x 7→ f(x).a) .

(This is just (K∗)t with K∗ the dual right A-module in the sense of 3.15). The

dual of an A-module morphism f : K → L is the A-module morphism

f∗ : L∗ → K∗ ; g 7→ (x 7→ g(f(x))) . 2

Example 4.36 (i) A commutative ring A admits the identity involution

A→ A ; a 7→ a = a .

(ii) Complex conjugation defines an involution on the ring of complex numbers

C
C→ C ; z = a+ ib 7→ z = a− ib .

2

In the first instance recall the various ways of regarding bilinear pairings on

vector spaces over R. The dual of a vector space V is the vector space

V ∗ = HomR(V,R) .

For vector spaces V,W the bilinear pairings

V ×W → R ; (v, w) 7→ λ(v, w)

are in one-one correspondence with the linear maps

V →W ∗ ; v 7→ (w 7→ λ(v, w)) .

For finite-dimensional V and any W there is defined a natural isomorphism

V ⊗R W → HomR(V ∗,W ) ; v ⊗ w 7→ (f 7→ f(v)w) .

In particular, for W = R this gives a natural isomorphism

V → V ∗∗ ; v 7→ (f 7→ f(v)) .

Thus for finite-dimensional V,W there are natural identifications

{bilinear pairings V ×W → R} = HomR(V,W ∗) = V ∗ ⊗R W
∗ .

For the applications to topology it is necessary to establish analogous properties

for modules over a ring A with an involution A→ A; a 7→ ā.
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Definition 4.37 A sesquilinear pairing (K,L, λ) on A-modules K,L is a

function

λ : K × L→ A ; (x, y) 7→ λ(x, y)

such that for all x, x′ ∈ K, y, y′ ∈ L, a, b ∈ A

(i) λ(x+ x′, y) = λ(x, y) + λ(x′, y) ∈ A ,

(ii) λ(x, y + y′) = λ(x, y) + λ(x, y′) ∈ A ,

(iii) λ(ax, by) = bλ(x, y)a ∈ A .

Let S(K,L) be the additive group of sesquilinear pairings λ : K × L→ A. 2

There is an evident natural isomorphism of additive groups

S(K,L)→ HomA(K,L∗) ;

(λ : K × L→ A) 7→ (λ : K → L∗;x 7→ (y 7→ λ(x)(y) = λ(x, y)))

which is used to identify

S(K,L) = HomA(K,L∗) .

Definition 4.38 (i) An A-module K is f.g. projective if it is a direct summand

of a f.g. free A-module An, that is if there exists an isomorphism

K ⊕ L ∼= An

for some A-module L and n > 0.

(ii) An A-module K is stably f.g. free if there exists an isomorphism

K ⊕Am ∼= An

for some m,n > 0. In particular, K is f.g. projective. 2

Proposition 4.39 The dual of a f.g. projective A-module K is a f.g. projective

A-module K∗. The natural A-module morphism

eK : K → K∗∗ ; x 7→ (f 7→ f(x))

is an isomorphism for f.g. projective K. The dual of a stably f.g. free A-module

is stably f.g. free.

Proof For any A-modules K,L there are evident identifications

(K ⊕ L)∗ = K∗ ⊕ L∗ ,
eK⊕L = eK ⊕ eL : K ⊕ L→ (K ⊕ L)∗∗ = K∗∗ ⊕ L∗∗ .

Thus it suffices to consider the case K = A, for which the result is clear. 2
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Use 4.39 to identify K∗∗ = K for any f.g. projective A-module K.

Definition 4.40 Let (K,L, λ) be a sesquilinear pairing. The transpose sesquilin-

ear pairing (L,K, Tλ) is )

Tλ : L×K → A ; (y, x) 7→ Tλ(y, x) = λ(x, y) .

Transposition defines an isomorphism

T : S(K,L)→ S(L,K) ; λ 7→ Tλ . 2

Definition 4.41 (i) The transposition isomorphism is defined for A-modules

K, L by

T : Kt ⊗A L→ Lt ⊗A K ; x⊗ y 7→ y ⊗ x .

(ii) The slant map is the morphism defined for A-modules K, L by

eK,L : Kt ⊗A L→ HomA(K∗, L) ; x⊗ y 7→ (f 7→ f(x) y) . 2

Proposition 4.42 Let K, L be f.g. projective A-modules.

(i) The transposition isomorphism T : S(K,L) → S(L,K) corresponds to the

duality isomorphism

∗ : HomA(K,L∗)→ HomA(L,K∗) ;

(λ : K → L∗) 7→ (λ∗ : L→ K∗;x 7→ (y 7→ λ(y)(x))) ,

with a commutative square of isomorphisms

S(K,L) //

T
��

HomA(K,L∗)

T
��

S(L,K) // HomA(L,K∗)

(ii) The slant map is an isomorphism

eK,L : Kt ⊗A L→ S(K∗, L∗) = HomA(K∗, L) .

Duality corresponds to transposition, with a commutative square of isomorphisms

Kt ⊗A L
eK,L //

T

��

HomA(K∗, L)

T

��
Lt ⊗A K

eL,K // HomA(L∗,K)
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Proof It suffices to verify that eK,L is an isomorphism for K = L = A, in

which case eA,A can be expressed as the composite of the natural isomorphisms

At ⊗A A→ A ; a⊗ b 7→ ba ,

A→ HomA(A∗, A) ; a 7→ (f 7→ f(a)) .

2

In view of 4.42 it is possible to identify

S(K,L) = HomA(K,L∗) = (K∗)t ⊗A L∗

for any f.g. projective A-modules K, L, with duality corresponding to transpo-

sition.

The additive group HomA(An, Am) of the morphisms An → Am between f.g.

free A-modules is identified with the additive group Mm,n(A) of m×n matrices

(aij)16i6m,16j6n with entries aij ∈ A, using the isomorphism

Mm,n(A)→ HomA(An, Am) ;

(aij) 7→ ((x1, x2, . . . , xn) 7→ (
n∑
j=1

xja1j ,
n∑
j=1

xja2j , . . . ,
n∑
j=1

xjamj)) .

The composition of morphisms

HomA(Ap, An) × HomA(An, Am)→ HomA(Ap, Am) ;

(f, g) 7→ (gf : x 7→ (gf)(x) = g(f(x)))

corresponds to the multiplication of matrices

Mm,n(A)×Mn,p(A)→Mm,p(A) ; ((aij), (bjk)) 7→ (cik)

cik =

n∑
j=1

aijbjk (1 6 i 6 m, 1 6 k 6 p) .

Use the isomorphism of f.g. free A-modules

Am → (Am)∗ ; (x1, x2, ..., xm) 7→ ((y1, y2, ..., ym) 7→
m∑
i=1

yixi)

to identify

(Am)∗ = Am .

The duality isomorphism

∗ : HomA(An, Am)→ HomA((Am)∗, (An)∗) = HomA(Am, An) ; f 7→ f∗

corresponds to the isomorphism defined by conjugate transposition of matrices
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Mm,n(A)→Mn,m(A) ; α = (aij) 7→ α∗ = (bji) , bji = aij .

It is thus possible to identify

S(An, Am) = HomA(An, Am) = Mm,n(A) ,

with an m× n matrix (aij) corresponding to the sesquilinear form

An ×Am → A ; ((y1, y2, . . . , yn), (x1, x2, . . . , xm)) 7→
m∑
i=1

n∑
j=1

xiaijyj ,

and the transposition of sesquilinear pairings corresponding to the conjugate

transposition of matrices.

Example 4.43 A 2× 2 matrix

λ =

(
a b

c d

)
∈M2,2(A)

corresponds to the A-module morphism(
a b

c d

)
: A⊕A→ A⊕A ; (x, y) 7→ (xa+ yb, xc+ yd) .

The conjugate transpose matrix

λ∗ =

(
a c

b d

)
∈M2,2(A)

corresponds to the dual A-module morphism(
a c

b d

)
: (A⊕A)∗ = A⊕A→ (A⊕A)∗ = A⊕A ;

(x, y) 7→ (xa+ yc, xb+ yd) .

Regarded as a sesquilinear pairing λ is

λ : A⊕A×A⊕A→ A ;

((x1, x2), (y1, y2)) 7→ y1ax1 + y2bx1 + y1cx2 + y2dx2 .

2

4.5 Universal Poincaré duality

In order to describe the homology effect of surgery on a non-simply-connected

manifold M it is necessary to deal with the Poincaré duality properties of the

universal cover M̃ . The Z2- and Z-coefficient Poincaré duality isomorphisms of a

manifold M obtained in Section 4.1 will now be generalised to the nonorientable

case, and also to Z[π1(M)]-coefficient Poincaré duality isomorphisms.
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The connected regular covers of a connected space X with universal cover X̃

are given by

X = X̃/ρ

with ρ / π1(X) a normal subgroup. The group of covering translations X → X

is the quotient π1(X)/ρ. In particular, if ρ / π1(X) is a subgroup of index 2 (as

in the nonorientable case below) then X is a double cover of X.

The double cover of the infinite-dimensional projective space by the infinite-

dimensional sphere

p : S∞ =

∞⋃
n=0

Sn → RP∞ =

∞⋃
n=0

RPn

has the following universal property : a map w : X → RP∞ determines a double

cover of X

Xw = {(x, y) ∈ X × S∞ |w(x) = p(y) ∈ RP∞} ,
and every double cover of X arises in this way. The double covers of X are in

one-one correspondence with the elements w ∈ [X,RP∞] = H1(X;Z2). For a

connected X there is defined a bijection

H1(X;Z2) = [X,RP∞]→ Hom(π1(X),Z2) ;

(w : X → RP∞) 7→ (w∗ : π1(X)→ π1(RP∞) = Z2) .

Definition 4.44 The orientation double cover of a connectedm-dimensional

manifold M is the double cover M = Mw classified by the orientation character

w = w(M) ∈ H1(M ;Z2)

M =

{
M ∪M
M̃/ker(w : π1(M)→ Z2)

if M is

{
orientable

nonorientable

with M̃ the universal cover of M . The orientation double cover M is an orientable

m-dimensional manifold. 2

Example 4.45 The real projective space RPm is an m-dimensional manifold

which is orientable for m odd, and nonorientable for m even. The orientation

double cover is

RPm =
{
Sm

RPm ∪ RPm
if m is

{ even

odd.

2

Definition 4.46 (i) The w-twisted homology groups of a space X with an

orientation character w ∈ H1(X;Z2) are

H∗(X;Zw) = H∗(S(X;Zw)) ,
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where

S(X;Zw) = Z− ⊗Z[Z2] S(Xw)

is the w-twisted singular chain complex of X, with Xw the double cover of X

classified by w, and Z− the Z[Z2]-module defined by Z with the generator T ∈ Z2

acting by T (1) = −1.

(ii) The w-twisted cohomology groups of X are

H∗(X;Zw) = H∗(HomZ[Z2](S(Xw),Z−)) . 2

Example 4.47 For the trivial orientation character w = 0 ∈ H1(X;Z2) the

orientation double cover is Xw = X ∪X with T : Xw → Xw interchanging the

two copies of X, and

H∗(X;Zw) = H∗(X) , H∗(X;Zw) = H∗(X) . 2

Proposition 4.48 (i) The w-twisted homology and cohomology groups fit into

exact sequences

. . .→ Hn+1(X)→ Hn(X;Zw)→ Hn(Xw)
p∗−→Hn(X)→ Hn−1(X;Zw)→ . . . ,

. . .→ Hn−1(X)→ Hn(X;Zw)→ Hn(Xw)
p !

−→Hn(X)→ Hn+1(X;Zw)→ . . .

with p : Xw → X the covering projection, p∗ the induced morphisms in homology,

and p ! the transfer map in cohomology

p ! : Hn(Xw)→ Hn(X) ; f 7→ (f ! : x 7→ f(xw + T (xw)))

with f : S(Xw) → Z a cocycle, using any lift of a cycle x ∈ S(X) to a chain

xw ∈ S(Xw).

(ii) The w-twisted (co)homology groups have cup and cap products

∪ : Hm(X;Zw)⊗Z H
n(X)→ Hm+n(X;Zw) ,

∪ : Hm(X;Zw)⊗Z H
n(X;Zw)→ Hm+n(X) ,

∩ : Hm(X;Zw)⊗Z H
n(X)→ Hm−n(X;Zw) ,

∩ : Hm(X)⊗Z H
n(X;Zw)→ Hm−n(X;Zw) .

Proof (i) The short exact sequence of Z[Z2]-modules

0→ Z− → Z[Z2]→ Z→ 0

with
Z− → Z[Z2] ; 1 7→ 1− T ,

Z[Z2]→ Z ; a+ bT 7→ a+ b
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determines a short exact sequence of Z-module chain complexes

0→ Z− ⊗Z[Z2] S(Xw)→ Z[Z2]⊗Z[Z2] S(Xw)→ Z⊗Z[Z2] S(Xw)→ 0

which can be written as

0→ S(X;Zw)→ S(Xw)
p∗−−−→ S(X)→ 0 .

The exact sequence for w-twisted homology is the corresponding long exact se-

quence of homology groups. Similarly for w-twisted cohomology. The short exact

sequence of Z-module chain complexes

0→ HomZ[Z2](S(Xw),Z−)→ HomZ[Z2](S(Xw),Z[Z2])

→ HomZ[Z2](S(Xw),Z)→ 0

can be written as

0→ HomZ[Z2](S(Xw),Z−)→ HomZ(S(Xw),Z)→ HomZ(S(X),Z)→ 0 .

The exact sequence for w-twisted cohomology is the corresponding long exact

sequence of homology groups.

(ii) As for the ordinary cup and cap products, using a diagonal chain approxi-

mation ∆0 : S(Xw)→ S(Xw)⊗Z S(Xw). 2

Orientation Convention 4.49 (i) Orientable manifolds M are equipped with

a choice of orientation, and the two copies of M in the orientation double cover

M = M ∪M are given opposite orientations.

(ii) Nonorientable manifolds M are equipped with a choice of orientation for the

orientation double cover M . 2

Similarly for cobordisms (W ;M,M ′), with ∂W = M ∪ −M ′.

Definition 4.50 The w-twisted fundamental class of anm-dimensional man-

ifold M with orientation character w = w(M) ∈ H1(M ;Z2) is the w-twisted

homology class

[M ] = [M ] ∈ Hm(M ;Zw) = ker(p∗ : Hm(M)→ Hm(M))

given by the fundamental class [M ] ∈ Hm(M) of the orientation double cover

M = Mw. 2

Twisted Poincaré Duality Theorem 4.51 For any m-dimensional manifold

M cap product with the w-twisted fundamental class [M ] ∈ Hm(M ;Zw) defines

the w-twisted Poincaré duality isomorphisms

[M ] ∩ − : H∗(M)→ Hm−∗(M ;Zw) ,

[M ] ∩ − : H∗(M ;Zw)→ Hm−∗(M) .
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Proof As for the R-coefficient case (4.4), but using Zw-coefficients. 2

Example 4.52 The real projective space RPm has a non-trivial double cover

RPm = Sm, so that Sm has Z2-equivariant CW structure

Sm =

m⋃
n=0

(Dn ∪ TDn)

with quotient

RPm = Sm/T =

m⋃
n=0

Dn .

The Z[Z2]-module cellular chain complex of Sm is

C(Sm) : . . .→ 0→ Z[Z2]→ Z[Z2]→ . . .→ Z[Z2]

with

d = 1 + (−1)n+1T : C(Sm)n+1 = Z[Z2]→ C(Sm)n = Z[Z2] (0 6 n < m) .

(The chain complex in Remark 3.19 is W = C(S∞).) The Z-module cellular

chain complexes of RPm are given by

C(RPm) : . . .→ 0→ Z
1+(−1)m

−−−−−→ Z→ . . .→ Z
2
−→ Z

0
−−−→ Z ,

C(RPm;Zw) : . . .→ 0→ Z
1+(−1)m+1

−−−−−−→ Z→ . . .→ Z
0
−→ Z

2
−−−→ Z

(with w = w(RPm) = (−1)m+1) and

Hn(RPm) = Hm−n(RPm;Zw) =


Z if n = 0, or if m = n is odd

Z2 if 0 < n < m with n odd

0 otherwise,

Hn(RPm;Zw) = Hm−n(RPm) =


Z if m = n, or if (n = 0 and m is odd)

Z2 if 0 < n < m with n even,

or if (n = 0 and m is even)

0 otherwise.

2

Definition 4.53 Let X be a pointed space, and let T : Xw → Xw be an

involution of a pointed space which fixes the base point and is free away from

the base point, such that

Xw/Z2 = X .

(i) The reduced w-twisted homology groups of X are

Ḣ∗(X;Zw) = H∗(Z− ⊗Z[Z2] Ṡ(Xw)) ,
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with Ṡ(Xw) = S(Xw, {pt.}) the reduced chain complex regarded as a (free)

Z[Z2]-module chain complex by T : Xw → Xw.

(ii) The reduced w-twisted cohomology groups of X are

Ḣ∗(X;Zw) = H∗(HomZ[Z2](Ṡ(Xw),Z−)) . 2

Proposition 4.54 The reduced w-twisted homology and cohomology groups fit

into exact sequences

. . .→ Ḣn+1(X)→ Ḣn(X;Zw)→ Ḣn(Xw)
p∗−→Ḣn(X)→ Ḣn−1(X;Zw)→ . . . ,

. . .→ Ḣn−1(X)→ Ḣn(X;Zw)→ Ḣn(Xw)
p !

−→Ḣn(X)→ Ḣn+1(X;Zw)→ . . . .

Proof As for 4.48, using the short exact sequences of Z-module chain complexes

0→ Z− ⊗Z[Z2] Ṡ(Xw)→ Z[Z2]⊗Z[Z2] Ṡ(Xw)→ Z⊗Z[Z2] Ṡ(Xw)→ 0 ,

0→ HomZ[Z2](Ṡ(Xw),Z)→ HomZ[Z2](Ṡ(Xw),Z[Z2])

→ HomZ[Z2](Ṡ(Xw),Z−)→ 0 .

2

We now move on to universal Poincaré duality.

Let X be a space, and let X̃ be a regular cover of X with group of covering

translations π. The action of π on X̃ by covering translations

π × X̃ → X̃ ; (g, x) 7→ gx

determines an action of Z[π] on H∗(X̃)

Z[π]×H∗(X̃)→ H∗(X̃) ; (g, x) 7→ g∗x ,

so that the homology groups H∗(X̃) are (left) Z[π]-modules. The ordinary coho-

mology groups H∗(X̃) are Z[π]-modules via

Z[π]×H∗(X̃)→ H∗(X̃) ; (g, x) 7→ (g−1)∗x .

For finite π the ordinary cohomologyH∗(X̃) is adequate for studying the Poincaré

duality of X̃ (if X is a manifold, say), since then X̃ is compact. However, for

infinite π and a compact X the cover X̃ is non-compact and it is the compactly

supported cohomology H∗cpt(X̃) which is relevant. Using an involution on Z[π]

it is in fact possible to give a uniform treatment of the ordinary cohomology for

finite π and the compactly supported cohomology for infinite π, as follows.
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Definition 4.55 Let π be a group together with an orientation character w :

π → Z2, i.e. a group morphism.

(i) The group ring Z[π] is the ring with elements the linear combinations∑
g∈π

ngg (ng ∈ Z)

such that {g ∈ π |ng 6= 0} is finite. Addition and multiplication are by∑
g∈π

mgg +
∑
g∈π

ngg =
∑
g∈π

(mg + ng)g ,

(
∑
g∈π

mgg)(
∑
g∈π

ngg) =
∑

g,h∈π
(mgnh)gh .

(ii) The w-twisted involution on Z[π] is given by

: Z[π]→ Z[π] ; a =
∑
g∈π

ngg 7→ a =
∑
g∈π

ngw(g)g−1 (ng ∈ Z) .

In the untwisted case w(g) = +1 (g ∈ π) this is the oriented involution on

Z[π].

(iii) Let Zw denote the right Z[π]-module defined by Z with Z[π] acting by

Zw × Z[π]→ Zw ; (m,
∑
g∈π

ngg) 7→
∑
g∈π

w(g)mng . 2

Definition 4.56 An oriented cover (X̃, π, w) of a (connected) space X with

an orientation character w(X) ∈ H1(X;Z2) = Hom(π1(X),Z2) is a regular

covering of X with group of covering translations π, together with an orientation

character w : π → Z2 such that

w(X) : π1(X) // π
w // Z2 ,

so that

S(X;Zw) = Zw ⊗Z[π] S(X̃) . 2

In an oriented cover (X̃, π, w) the double cover Xw of X pulls back to a

trivial double cover X̃w = X̃ ∪ X̃ of X̃.

Given an oriented cover (X̃, π, w) of a space X it is clear that the homology

groups H∗(X̃) are Z[π]-modules (irrespective of w). The action of Z[π] is by

Z[π]×H∗(X̃)→ H∗(X̃) ; (
∑
g∈π

ngg, x) 7→
∑
g∈π

ngg∗(x) ,

with g ∈ π acting by the Z-module automorphism g∗ : H∗(X̃)→ H∗(X̃) induced

by the covering translation g : X̃ → X̃.
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Definition 4.57 The cohomology Z[π]-modules of an oriented cover (X̃, π, w)

a space X are defined for n > 0 by

Hn(X̃) = Hn(S(X̃))

= ker(d∗ : S(X̃)n → S(X̃)n+1)/im(d∗ : S(X̃)n−1 → S(X̃)n)

using the w-twisted involution on Z[π] to define

S(X̃)n = HomZ[π](S(X̃)n,Z[π]) . 2

Warning : the Z[π]-module cohomology groups H∗(X̃) are not in general the

same as the singular cohomology groups of X̃, although this is the case if X is

a finite CW complex, π is finite and w = +1.

Evaluation defines Z[π]-module morphisms

Hn(X̃)→ Hn(X̃)∗ ; f 7→ (x 7→ f(x)) .

Proposition 4.58 Let X be a space with an oriented cover (X̃, π, w).

(i) The homology and cohomology groups of X̃ are related by cap products

∩ : Hm(X;Zw)⊗Z H
n(X̃)→ Hm−n(X̃) ; (x, y) 7→ x ∩ y

such that for every a ∈ Z[π]

x ∩ ay = a(x ∩ y) ∈ Hm−n(X̃) .

(ii) For any homology class [X] ∈ Hm(X;Zw) the cohomology intersection

pairing

λ : Hm−n(X̃)×Hn(X̃)→ Z[π] ; (a, b) 7→ a([X] ∩ b)
is sesquilinear and such that

λ(b, a) = (−1)n(m−n)λ(a, b) ∈ Z[π] .

The cohomology intersection pairing is the adjoint of the composite

Hm−n(X̃)
[X] ∩ −
∼=

// Hn(X̃) // Hn(X̃)∗ .

Proof (i)+(ii) The diagonal chain approximation (3.18) is a Z[π]-module chain

map

∆̃0 : S(X̃)→ S(X̃)⊗Z S(X̃)

with Z[π] acting by

Z[π]× S(X̃)⊗Z S(X̃) → S(X̃)⊗Z S(X̃) ;

(
∑
g∈π

ngg, y ⊗ z) 7→
∑
g∈π

ng(gy ⊗ gz) .
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Apply Zw ⊗Z[π] − to obtain a Z-module chain map

∆0 = 1⊗ ∆̃0 : Zw ⊗Z[π] S(X̃) = S(X;Zw)→
Zw ⊗Z[π] (S(X̃)⊗Z S(X̃)) = S(X̃)t ⊗Z[π] S(X̃)

where S(X̃)t denotes the right Z[π]-module cellular chain complex S(X̃) with

the same additive structure and

S(X̃)t × Z[π]→ S(X̃)t ; (x, a) 7→ ax .

Given an m-chain x ∈ S(X;Zw)m let

∆0(x) =
∑
i

x′i ⊗ x′′i ∈ (S(X̃)t ⊗Z[π] S(X̃))m =
∑

p+q=m

(S(X̃)tp ⊗Z[π] S(X̃)q) .

The cap product of x and an n-cochain y ∈ S(X̃)n is the (m− n)-chain

x ∩ y =
∑
i

y(x′i)x
′′
i ∈ S(X̃)m−n ,

with y(x′i) = 0 ∈ Z[π] if the dimension of x′i is 6= n. The composite

Hm(X;Zw)
∆0−−−→ Hm(S(X̃)t ⊗Z[π] S(X̃))→ Hm(HomZ[π](S(X̃)−∗, S(X̃)))

sends a homology class x ∈ Hm(X;Zw) to a chain homotopy class of Z[π]-module

chain maps

x ∩ − : S(X̃)m−∗ → S(X̃)

inducing the cap products

x ∩ − : Hn(X̃)→ Hm−n(X̃) ; y 7→ x ∩ y .

The symmetry property of the cohomology intersection pairing λ follows from

the existence of a Z[π]-module chain homotopy

∆̃1 : ∆̃0 ' T ∆̃0 : S(X̃)→ S(X̃)⊗Z S(X̃) .

2

Remark 4.59 For any [X] ∈ H2n(X;Zw), x ∈ Hn(X̃)

λ(x, x) = (−1)nλ(x, x) ∈ Z[π] .

It can be shown (using the work of Weiss [95]) that in fact

λ(x, x) = a+ b+ (−1)nb ∈ Z[π]

for some a = (−1)na ∈ Z, b ∈ Z[π\{1}]. 2
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Proposition 4.60 Let X be a connected space with an orientation character

w ∈ H1(X;Z2) = Hom(π1(X),Z2) and universal cover X̃. The w-twisted ho-

mology and cohomology groups of X are given by

H∗(X;Zw) = H∗(Zw ⊗Z[π1(X)] S(X̃))

H∗(X;Zw) = H∗(HomZ[π1(X)](S(X̃)t,Zw)) .

Proof Let Xw be the double cover classified by w and identify

Zw ⊗Z[π1(X)] S(X̃) = Zw ⊗Z[Z2] S(Xw) ,

HomZ[π1(X)](S(X̃)t,Zw)) = HomZ[Z2](S(Xw),Zw)) .

2

For a CW complex X with oriented cover (X̃, π, w) let C(X̃) be the cellular

Z[π]-module chain complex of X̃, with

C(X̃)n = Hn(X̃(n), X̃(n−1))

= free left Z[π]-module generated by the n-cells of X

and d : C(X̃)n → C(X̃)n−1 the boundary map of the triple (X̃(n), X̃(n−1),

X̃(n−2)). The homology Z[π]-modules of C(X̃)

Hn(C(X̃)) = ker(d : C(X̃)n → C(X̃)n−1)/im(d : C(X̃)n+1 → C(X̃)n)

are just the ordinary integral homology groups of X̃

H∗(C(X̃)) = H∗(X̃) .

Use the w-twisted involution on Z[π] to define the dual Z[π]-modules

C(X̃)n = (C(X̃)n)∗ (n > 0) .

If X is a finite CW complex then C(X̃) is a finite f.g. free Z[π]-module chain

complex.

Example 4.61 Let X be a finite CW complex with an oriented cover (X̃, π, w)

such that w = +1.

(i) If π is finite the cohomology Z[π]-modules H∗(X̃) are just the ordinary co-

homology groups H∗(X̃) with the Z[π] action

Z[π]×H∗(X̃)→ H∗(X̃) ; (
∑
g

ngg, x) 7→
∑
g

ng(g
−1)∗(x) .

(ii) For arbitrary π

H∗(X̃) = H∗cpt(X̃)

with H∗cpt(X̃) the cohomology groups defined by integral cochains with compact

support (i.e. taking non-zero values on only a finite number of cells) with the

induced Z[π]-module structure. 2
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Example 4.62 The homology and cohomology Z[Z]-modules of the oriented

cover (R,Z,+1) of R/Z = S1 are given by

Hn(R) =

{
Z n = 0

0 n 6= 0
, Hn(R) =

{
Z n = 1

0 n 6= 1
.

2

Remark 4.63 For any space Y there are defined cap product pairings

∩ : H lf
m(Y )⊗Z H

n
cpt(Y )→ Hm−n(Y ) ,

with H lf
∗ (Y ) the homology groups defined using the locally finite infinite chains

in Y . Thus for any (noncompact) cover X̃ of a finite CW complex X there are

defined (infinite) transfer maps

p ! : H∗(X)→ H lf
∗ (X̃) ; x 7→ x̃ .

The cap product of 4.58 can be expressed as the composite

∩ : Hm(X)⊗Z H
n(X̃)

p! ⊗ 1 // H lf
m(X̃)⊗Z H

n
cpt(X̃)

∩ // Hm−n(X̃) ,

using 4.61 to identify H∗(X̃) = H∗cpt(X̃). 2

Example 4.64 For X̃ = X, π = {1} the cohomology intersection pairing is just

the evaluation of the cup product

∪ : Hm−n(X)×Hn(X)→ Hm(X) ; (a, b) 7→ a ∪ b

on [X] ∈ Hm(X)

λ(a, b) = 〈a ∪ b, [X]〉 ∈ Z . 2

Universal Poincaré Duality Theorem 4.65 For any m-dimensional mani-

fold M and oriented cover (M̃, π, w) cap product with the w-twisted fundamental

class [M ] ∈ Hm(M ;Zw) is a Z[π]-module chain equivalence

[M ] ∩ − : C(M̃)m−∗ → C(M̃)

inducing Z[π]-module isomorphisms

[M ] ∩ − : Hm−∗(M̃)→ H∗(M̃) .

Proof As for the R-coefficient case (4.4), but using Z[π]-coefficients. 2

In particular, the Universal Poincaré Duality Theorem for the orientation

double cover (M,Z2, id.) classified by w(M) ∈ H1(M ;Z2) is just the Twisted

Poincaré Duality Theorem (4.51). The homology intersection pairing (4.11) has

the following non-simply-connected generalisation :
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Definition 4.66 The homology intersection pairing of an m-dimensional

manifold M with respect to an oriented cover (M̃, π, w)

λ : Hn(M̃)×Hm−n(M̃)→ Z[π] ; (a, b) 7→ λ(a, b)

is the sesquilinear pairing defined by

λ(a, b) = a∗(b) ∈ Z[π]

with a∗ ∈ Hm−n(M̃) the Poincaré dual of a, such that

λ(b, a) = (−1)n(m−n)λ(a, b) ∈ Z[π] . 2

The homology intersection pairing (4.66) coincides with the cohomology in-

tersection pairing (4.58) via the Poincaré duality isomorphisms

Hm−n(M̃)×Hn(M̃)
λ //

∼=
��

Z[π]

Hn(M̃)×Hm−n(M̃)
λ // Z[π] .

The homology intersection pairing will now be used to extend the results of

Section 4.2 on the homology effect of a geometric surgery to the homology of

an oriented cover, using the following equivariant version of the Umkehr map

(4.14).

Definition 4.67 Let f : Nn → Mm be a map of manifolds, and let (M̃, π, w)

be an oriented cover of M such that the pullback (Ñ = f∗M̃, π, w) is an oriented

cover of N . The Umkehr Z[π]-module chain map

f ! : C(M̃) // C(Ñ)∗−m+n

is defined up to chain homotopy to be the composite

f ! : C(M̃)
([M ] ∩ −)−1

' // C(M̃)m−∗
f∗ // C(Ñ)m−∗

([N ] ∩ −)

' // C(Ñ)∗−m+n .

2

The effect of surgery on the homology of an oriented cover is given by :

Proposition 4.68 Let (Wm+1;Mm,M ′m) be the trace of an n-surgery on an

m-dimensional manifold Mm, with

M ′m = cl.(Mm\Sn ×Dm−n) ∪Dn+1 × Sm−n−1 ,

Wm+1 = Mm × I ∪Dn+1 ×Dm−n .
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Let ((W̃ ; M̃, M̃ ′), π, w) be an oriented cover of (W ;M,M ′), and let x ∈ Hn(M̃)

be the Hurewicz image of the element in πn(M) killed by the surgery. The ho-

mology Z[π]-modules are such that

Hi(W̃ , M̃) =

{
Z[π] if i = n+ 1

0 if i 6= n+ 1 ,

Hi(W̃ , M̃ ′) =

{
Z[π] if i = m− n
0 if i 6= m− n

with a commutative braid of exact sequences of Z[π]-modules

Hi+1(W̃ , M̃)

''

x

&&
Hi(M̃)

''

x!

&&
Hi(W̃ , M̃ ′)

Hi+1(W̃ , M̃ ∪ M̃ ′)

77

''

Hi(W̃ )

77

''
Hi+1(W̃ , M̃ ′)

77

x′

99
Hi(M̃

′)

77

(x′)!

99
Hi(W̃ , M̃)

and

Hn+1(W̃ , M̃) = Z[π]→ Hn(M̃) ; 1 7→ x ,

Hm−n(M̃)→ Hm−n(W̃ )→ Hm−n(W̃ , M̃ ′) = Z[π] ; y 7→ λ(x, y) .

Proof Proposition 4.19 gives homotopy equivalences

W ' M ∪Dn+1 ' M ′ ∪Dm−n .

Thus M ′ is obtained from M by first attaching an (n+1)-cell, and then “detach-

ing” the Poincaré dual (m − n)-cell from M ∪ Dn+1. Attaching an (n + 1)-cell

to M has the algebraic effect on the cellular chain complex C(M̃) of forming

the algebraic mapping cone of the Z[π]-module chain map x : SnZ[π] → C(M̃)

representing x ∈ Hn(M̃), so that the cellular chain complex of W̃ is given by

C(W̃ )i =

{
C(M̃)n+1 ⊕ Z[π] if i = n+ 1 ,

C(M̃)i otherwise .

Detaching an (m− n)-cell from W has the algebraic effect on the cellular chain

complex of forming the algebraic mapping cone of the Z[π]-module chain map

x∗ : C(W̃ ) → Sm−nZ[π] representing the Poincaré dual x∗ ∈ Hm−n(M̃) of x,

and shifting the dimension by 1, so that

C(M̃ ′)i =

{
C(W̃ )m−n−1 ⊕ Z[π] if i = m− n− 1 ,

C(W̃ )i otherwise .
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Eliminating W from these two expressions gives

C(M̃ ′)i =


C(M̃)n+1 ⊕ Z[π] if i = n+ 1 6= m− n− 1 ,

C(M̃)m−n−1 ⊕ Z[π] if i = m− n− 1 6= n+ 1 ,

C(M̃)n+1 ⊕ Z[π]⊕ Z[π] if i = m− n− 1 = n+ 1 ,

C(M̃)i otherwise .

2

Example 4.69 For an oriented cover (M̃, π, w) of a 2n-dimensional manifold

M2n there is defined a (−1)n-symmetric pairing

λ : Hn(M̃)×Hn(M̃)→ Z[π] ; (x, y) 7→ λ(x, y)

with

λ(y, x) = (−1)nλ(x, y) ∈ Z[π] (x, y ∈ Hn(M̃)) .

If (W 2n+1;M2n,M ′2n) is the trace of an n-surgery on a 2n-dimensional manifold

M killing x ∈ πn(M) then the Hurewicz image x ∈ Hn(M̃) is such that λ(x, x) =

0 ∈ Z[π] and

Hn(M̃ ′) = 〈x〉⊥/〈x〉 ,
with

〈x〉⊥ = {y ∈ Hn(M̃) |λ(x, y) = 0 ∈ Z[π]} .
2

The reader is referred to Ranicki [69] for a comprehensive theory of surgery

on chain complexes – the homology effect of a geometric surgery is determined

by the chain level effect of a corresponding algebraic surgery.
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BUNDLES

The algebraic and topological properties of bundles are an essential tool in

understanding manifolds in general, and surgery theory in particular. This chap-

ter brings together the basic properties of fibre bundles, fibrations and vector

bundles required. Milnor and Stasheff [61] is the standard reference for vector

bundles and their characteristic classes.

Section 5.1 deals with fibrations and fibre bundles with arbitrary fibres F .

Section 5.2 considers vector bundles, which are fibre bundles with F = Rk.

Section 5.3 describes the tangent bundle of a manifold, and the normal bundle

of a submanifold. Section 5.4 gives a necessary and sufficient bundle-theoretic

condition for killing a homotopy class of a manifold by surgery, and describes

the effect of surgery on the tangent bundle. Section 5.5 recalls the Hopf invariant

and the J-homomorphism.

5.1 Fibre bundles and fibrations

The basic definitions and properties of fibre bundles and fibrations are reviewed.

Definition 5.1 A fibre bundle is a sequence of spaces and maps

F // E
p // B

with base space B, total space E and fibre F = p−1(b) (for some base point

b ∈ B), together with a maximal collections of pairs

( open neighbourhood U ⊆ B , homeomorphism φ : U × F → p−1(U))

such that

pφ(y, z) = y ∈ X (y ∈ B) . 2

Example 5.2 A fibre bundle over Sm

F // E
p // Sm

is determined by a clutching map

ω : Sm−1 → Homeo(F )
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to the space of homeomorphisms F → F , with

E = (Dm × F ) ∪(x,y)∼(x,ω(x)(y)) (Dm × F ) (x ∈ Sm−1, y ∈ F ) . 2

More generally :

Definition 5.3 A fibration is a sequence of spaces and maps

F // E
p // B

with base space B, total space E and fibre F = p−1(b) (for some base point

b ∈ B), such that p has the homotopy lifting property : for each map f : X → E

and homotopy h : X × I → B with

h(x, 0) = pf(x) ∈ B (x ∈ X)

there exists a homotopy g : X × I → E such that

g(x, 0) = f(x) ∈ E , pg(x, t) = h(x, t) ∈ B (x ∈ X, t ∈ I) .

X × {0} f //

��

E

p

��
X × I

g
;;

h // B

2

Example 5.4 A fibre bundle F → E → B with the base space B paracompact

is a fibration (Whitehead [96, I.7.13]). 2

For every map p : E → B there exists a fibration F(p) → E(p) → B such

that p : E ' E(p)→ B, defined as follows :

Definition 5.5 The path space fibration of a map p : E → B

F(p) // E(p)
q // B

is given by

E(p) = {(ω, x) ∈ BI × E |ω(1) = p(x) ∈ B} ,
q : E(p)→ B ; (ω, x) 7→ ω(0) ,

F(p) = q−1(b) = {(ω, x) ∈ BI × E |ω(0) = b, ω(1) = p(x) ∈ B}
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with BI the topological space of maps I → B (with the compact-open topology).

The maps

E(p)→ E ; (ω, x) 7→ x ,

H : E → E(p) ; x 7→ (ω : t 7→ p(x), x)

are inverse homotopy equivalences, with qH ' p. The fibre F(p) is called the

mapping fibre of p : E → B. 2

Proposition 5.6 (i) Let p : E → B be a pointed map. A pointed map X → F(p)

is a pair

( pointed map f : X → E , pointed null-homotopy g : pf ' {∗} : X → B ) .

The pointed homotopy set [X,F(p)] is the set of pointed homotopy classes of

pairs (f, g), and if B is connected there is defined an exact sequence of pointed

sets

. . .→ [X,ΩB]→ [X,F(p)]→ [X,E]→ [X,B] ,

with ΩB = F(b : {∗} → B) the loop space of B at the base point b ∈ B.

(ii) The relative homotopy groups of a pointed map of connected spaces p : E → B

with connected mapping fibre F(p) are such that

πn(p) = πn−1(F(p)) (n > 1) ,

with an exact sequence

. . .→ πn(F(p))→ πn(E)
p∗
→ πn(B)→ πn−1(F(p))→ . . .→ π1(B) .

(iii) For a fibration of pointed spaces

F // E
p // B

with B connected there is defined a homotopy equivalence F ' F(p), and for any

pointed space X there is defined an exact sequence of pointed sets

. . .→ [X,ΩB]→ [X,F ]→ [X,E]→ [X,B]

If F,E,B are all connected there is defined a long exact sequence of homotopy

groups

. . .→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . .→ π1(B) .

Proof See Chapter VII.6 of Bredon [10]. 2
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Example 5.7 The Hopf bundles

S1 // S2n+1
η // CPn,

S3 // S4n+3
η // HPn,

S7 // S15
η // OP = S8

are defined over the projective spaces CPn, HPn (n > 1), OP of the complex

numbers C, the Hamilton quaternions H and the Cayley octonions O respectively,

with

C = {x+ iy|x, y ∈ R}, i2 = −1, i = −i,
H = {a+ bi+ cj + dk|a, b, c, d ∈ R},

i2 = j2 = k2 = −1, i = −i, j = −j, k = −k,
jk = −kj = i, ki = −ik = j, ij = −ji = k,

O = H⊕H, (x, y) = (x, y), (x1, x2)(y1, y2) = (x1y1 − y2x2, x2y1 + y2x1).

The complex and quaternion projective spaces

CPn = {(z0, z1, . . . , zn) 6= (0, 0, . . . , 0) ∈ Cn+1}/(z ∼ λz for λ 6= 0 ∈ C),

HPn = {(z0, z1, . . . , zn) 6= (0, 0, . . . , 0) ∈ Hn+1}/(z ∼ λz for λ 6= 0 ∈ H)

are manifolds of dimension 2n, 4n, respectively. The complex and quaternion

Hopf bundle projections are given by

η : S2n+1 ∼= {(z0, z1, . . . , zn) ∈ Cn+1|
n∑
k=0

zkzk = 1}
→ CPn ; (z0, z1, . . . , zn) 7→ [z0, z1, . . . , zn],

η : S4n+3 ∼= {(z0, z1, . . . , zn) ∈ Hn+1|
n∑
k=0

zkzk = 1}
→ HPn ; (z0, z1, . . . , zn) 7→ [z0, z1, . . . , zn]

and for n = 1 are fibre bundles of spheres

S1 // S3
η // CP1 = S2,

S3 // S7
η // HP1 = S4.

See Chapter VII.8 of Bredon [10] and Chapter 4.2 of Hatcher [31] for more

detailed expositions of the complex and quaternion Hopf bundles. See §3.1 of

Baez (The Octonions, Bull. A.M.S. 39, 145–205 (2002)) for the construction of

the octonion projective line OP and the Hopf bundle S7 → S15 → OP = S8. 2
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5.2 Vector bundles

Definition 5.8 (i) A k-plane bundle (or vector bundle) (X, η) is a fibre

bundle

Rk // E(η)
p // X

such that

(a) each fibre

η(x) = p−1(x) (x ∈ X)

is a k-dimensional real vector space,

(b) every x ∈ X has a neighbourhood U ⊆ X with a homeomorphism

φ : U × Rk → p−1(U)

such that for each u ∈ U the function

Rk → η(u) ; v 7→ φ(u, v)

is an isomorphism of vector spaces.

(ii) A bundle map

(f, b) : (X ′, η′)→ (X, η)

is a commutative square of maps

E(η′)
b //

p′

��

E(η)

p

��
X ′

f // X

such that the restriction of b

b(x′) : η′(x′)→ η(f(x′)) ; v 7→ b(v)

is a linear map of vector spaces for each x′ ∈ X ′. 2

Definition 5.9 (i) The pullback of a k-plane bundle η over X along a map

f : X ′ → X is the k-plane bundle f∗η over X ′ defined by

E(f∗η) = {(x′, y) ∈ X ′ × E(η) | f(x′) = p(y) ∈ X} ,

with projection

p′ : E(f∗η)→ X ′ ; (x′, y) 7→ x′

and fibres
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f∗η(x′) = η(f(x′)) (x′ ∈ X ′) .
(ii) A pullback bundle map is a bundle map (f, b) : (X ′, η′) → (X, η) such

that each of the linear maps

b(x′) = b| : η′(x′)→ η(f(x′)) (x′ ∈ X ′)
is an isomorphism of vector spaces, i.e. such that the function

E(η′)→ E(f∗η) ; y 7→ (p′(y), b(y))

is a homeomorphism.

(iii) An isomorphism b : η′ → η of bundles over the same space X is a pullback

bundle map of the type (1, b) : (X, η′)→ (X, η). 2

Proposition 5.10 (i) For any k-plane bundle η over X and any map f : X ′ →
X there is defined a pullback bundle map

(f, b) : (X ′, f∗η)→ (X, η) .

(ii) A pullback bundle map (f, b) : (X ′, η′) → (X, η) is a bundle map such that

(1, b) : (X ′, η′)→ (X ′, f∗η) is an isomorphism of bundles.

Proof (i) The map

b : E(f∗η)→ E(η) ; (x′, y) 7→ y

determines a bundle map

(f, b) : (X ′, f∗η)→ (X, η)

with

b(x′) : f∗η(x′) = p′−1(x′)→ η(f(x′)) = p−1(f(x′)) ; (x′, y) 7→ y

a vector space isomorphism for each x′ ∈ X ′.
(ii) Trivial. 2

The topology of vector bundles is closely related to the topology of the general

linear and orthogonal groups :

Definition 5.11 (i) The k-dimensional general linear group

GL(k) = AutR(Rk)

is the automorphism group of the standard k-dimensional real vector space Rk,

with elements the invertible k × k real matrices.

(ii) The k-dimensional orthogonal group

O(k) = AutR(Rk, 1)

is the automorphism group of the standard k-dimensional symmetric bilinear

form (Rk, 1), with elements the orthogonal k × k real matrices. 2
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Identify the set of all k×k matrices with the k2-dimensional Euclidean space

Mk,k(R) = Rk
2

,

and give O(k) ⊂ GL(k) ⊂Mk,k(R) the subspace topologies.

Proposition 5.12 (i) GL(k) is an open manifold of dimension

dimGL(k) = k2 .

(ii) O(k) is a compact manifold of dimension

dimO(k) =
1

2
k(k − 1) .

(iii) The inclusion O(k) ↪→ GL(k) is a homotopy equivalence.

Proof (i) The determinant of k × k matrices defines a differentiable function

det : Mk,k(R) = Rk
2 → R ; a 7→ det (a)

such that

GL(k) = Mk,k(R)\det−1(0) ⊂ Rk
2

is an open subset.

(ii) A k × k matrix a = (aij) is orthogonal if and only if

aTa = I

where aT = (aji) is the transpose k × k matrix. The function

f : Rk
2 → Rk(k+1)/2 ; a 7→ {(aTa− I)ij | 1 6 i 6 j 6 k}

has regular value 0, with

O(k) = f−1(0) ⊂Mk,k(R) = Rk
2

.

The Implicit Function Theorem (2.12) gives that O(k) is a manifold with

dimO(k) = k2 − k(k + 1)/2 = k(k − 1)/2 .

The subspace O(k) ⊂ Rk2 is closed and bounded, and hence compact.

(iii) The Gram-Schmidt orthonormalisation process defines a homotopy inverse

GL(k)→ O(k) to the inclusion O(k) ↪→ GL(k). 2
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Example 5.13 An orthogonal map R2 → R2 is a rotation or a reflection, so

that the orthogonal group O(2) is diffeomorphic to the disjoint union of two

circles, with a diffeomorphism

S1 ∪ S1 = S1 × {±1} → O(2) ;
((cos θ, sin θ),+1) 7→

(
cos θ −sin θ

sin θ cos θ

)
(rotation through θ)

((cos θ, sin θ),−1) 7→
(

cos θ sin θ

sin θ −cos θ

)
(reflection in θ/2) .

2

Definition 5.14 The base space X of a k-plane bundle η is covered by open

neighbourhoods U ⊆ X with homeomorphisms φ : U × Rk → p−1(U) such that

(i) pφ(x, v) = x ∈ X for all x ∈ U, v ∈ Rk,

(ii) for any (U, φ), (U ′, φ′) with non-empty intersection U ∩ U ′ the transition

functions

φ′−1φ| : (U ∩ U ′)× Rk → p−1(U ∩ U ′)→ (U ∩ U ′)× Rk

are of the form (x, v) 7→ (x, h(x)(v)) for some continuous function

h = hU
′

U : U ∩ U ′ → GL(k)

satisfying the usual compatibility conditions

hU
′′

U (x) = hU
′′

U ′ (x)hU
′

U (x) : Rk → Rk (x ∈ U ∩ U ′ ∩ U ′′) . 2

It follows from Proposition 5.12 (iii) that the transition functions of a vector

bundle can always be deformed to be of the form

(U ∩ U ′)× Rk → (U ∩ U ′)× Rk ; (x, v) 7→ (x, h(x)(v))

with h : U ∩ U ′ → O(k). From now on, we shall only consider bundles of this

type. The transition functions preserve the standard inner products on the fibres,

so that each vector v ∈ E(η) has a length ‖v‖ > 0.

Definition 5.15 (i) A k-plane bundle η over a space X is trivial if it is iso-

morphic to the bundle εk with projection

p : E(εk) = X × Rk → X ; (x, y) 7→ x .

(ii) A framing (or trivialisation) of a k-plane bundle η is an isomorphism to

the trivial k-plane bundle
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b : η ∼= εk .

(iii) Two framings b0, b1 of a k-plane bundle η over X are isomorphic if there

exists a continuous family of framings

bt : η ∼= εk (0 6 t 6 1) ,

or equivalently if b0, b1 extend to a framing of the k-plane bundle η × I over

X × I with total space E(η × I) = E(η)× I.

(iv) A section of a k-plane bundle η over a spaceX with projection p : E(η)→ X

is a map s : X → E(η) such that

ps = 1 : X
s // E(η)

p // X .

Thus for each x ∈ X there is given a continuous choice of element s(x) ∈ η(x).

(v) A section s of η is non-zero if s(x) 6= 0(x) ∈ η(x) for every x ∈ X.

(vi) The zero section of η is the section

z : X → E(η) ; x 7→ 0(x) .

(vii) The Whitney sum of a j-plane bundle α over X and a k-plane bundle β

over X is the (j + k)-plane bundle α⊕ β over X defined by

E(α⊕ β) = {(u, v) ∈ E(α)× E(β) | pα(u) = pβ(v) ∈ X}

with fibres

(α⊕ β)(x) = α(x)⊕ β(x) (x ∈ X) . 2

Example 5.16 The trivial k-plane bundle εk over a space X is the k-fold Whit-

ney sum of the trivial 1-plane (= line) bundle

εk = ε⊕ ε⊕ . . .⊕ ε ,

with k linearly independent sections. For any map f : Y → X the pullback f∗εk

is (isomorphic to) the trivial k-plane bundle εk over Y . 2

Proposition 5.17 A k-plane bundle η admits a non-zero section (5.15) if and

only if it is isomorphic to η′ ⊕ ε for a (k − 1)-plane bundle η′.

Proof Given a non-zero section s : X → E(η) define η′ by

E(η′) =
⋃
x∈X

η(x)/〈s(x)〉

with 〈s(x)〉 ⊆ η(x) the 1-dimensional subspace spanned by s(x) 6= 0 ∈ η(x).

2
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Definition 5.18 Let η be a k-plane bundle over a space X.

(i) The disk bundle of η is

D(η) = {v ∈ E(η) | ‖v‖ 6 1} .

(ii) The sphere bundle of η is

S(η) = {v ∈ E(η) | ‖v‖ = 1} .

(iii) The Thom space of η is the pointed space

T (η) = D(η)/S(η)

which is the one-point compactification of E(η). 2

The disk and sphere bundles are the total spaces of a fibre bundle

(Dk, Sk−1)→ (D(η), S(η))→ X .

Example 5.19 (i) For any vector bundle η over a space X the Thom space of

η ⊕ ε is the suspension (3.9) of the Thom space of η

T (η ⊕ ε) = ΣT (η) .

(ii) For the trivial k-plane bundle εk over a space X

(D(εk), S(εk)) = X × (Dk, Sk−1) , T (εk) = Σk(X+)

where X+ = X ∪ {pt.}. 2

Proposition 5.20 The Thom space T (η) of a k-plane bundle η over a CW

complex X has the structure of a CW complex with one 0-cell (at the base point)

and one (n+ k)-cell for each n-cell of X.

Proof By definition, X is obtained from ∅ by successively attaching n-cells. It

therefore suffices to consider the effect on the Thom space T (η) of attaching an

n-cell to X along a map α : Sn−1 → X with a trivialisation β : α∗η ∼= εk over

Sn−1, giving a k-plane bundle ω over X ∪α Dn with ω|X = η. The Thom space

T (ω) is obtained from T (η) by attaching an (n+ k)-cell

T (ω) = T (η) ∪γ Dn+k

with

γ : Sn+k−1 ↪→ T (α∗η) ∼= T (εk) = Sk ∨ Sn+k−1 // T (η) .

2
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Z2-coefficient Thom Isomorphism Theorem 5.21 Every k-plane bundle η

over a CW complex X has a mod2 Thom class Uη ∈ Ḣk(T (η);Z2) such that

for each x ∈ X the morphism

(ix)∗ : Ḣk(T (η);Z2)→ Ḣk(T ((ix)∗η);Z2) = Ḣk(Sk;Z2) = Z2

induced by the inclusion ix : {x} ↪→ X sends Uη to the non-zero element in Z2.

The cap and cup products define isomorphisms

Uη ∩ − : Ḣ∗(T (η);Z2)→ H∗−k(X;Z2) ,

Uη ∪ − : H∗(X;Z2)→ Ḣ∗+k(T (η);Z2) .

Proof The reduced Z2-coefficient cellular chain complex of T (η) may be iden-

tified with the cellular chain complex of X with a k-fold dimension shift

Ċ(T (η);Z2) = C(X;Z2)∗−k .

(See Theorem 4D.10 of Hatcher [31], Theorem VI.11.3 of Bredon [10], Lemma

18.2 of Milnor and Stasheff [61] for more detailed accounts.) 2

Definition 5.22 Let V be a real vector space, and let k > 1 be finite and such

that k 6 dim(V ) 6∞.

(i) The Grassmann manifold Gk(V ) is the space of k-dimensional subspaces

W ⊆ V .

(ii) The canonical k-plane bundle over Gk(V )

γk(V ) = {(W,x) |W ∈ Gk(V ), x ∈W}

has projection

γk(V )→ Gk(V ) ; (W,x) 7→W . 2

Bundle Classification Theorem 5.23 (Steenrod [86])

Let X be a finite CW complex.

(i) Every k-plane bundle η over X is (isomorphic to) the pullback f∗γk(R∞) of

the canonical k-plane bundle 1k = γk(R∞) over the classifying space

BO(k) = Gk(R∞)

along a map f : X → BO(k).

(ii) The isomorphism classes of k-plane bundles over X are in one-one corre-

spondence with the homotopy classes of maps X → BO(k).

(iii) The trivial k-plane bundle εk is classified by the trivial map {∗} : X →
BO(k).

(iv) The pullback f∗η of a k-plane bundle η : X → BO(k) along a map f : X ′ →
X is classified by the composite

f∗η : X ′
f
−→ X

η
−→ BO(k) .
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Proof See Chapter 5 of Milnor and Stasheff [61]. 2

In particular, the identity map 1k : BO(k) → BO(k) classifies γk(R∞). On

the level of classifying spaces, the Whitney sum is given by a map

⊕ : BO(j)×BO(k)→ BO(j + k) .

Definition 5.24 (i) An orthonormal n-frame b = (b1, b2, . . . , bn) in an inner

product space W is an ordered set of n orthonormal vectors, with

bi • bj = δij =

{
1 if i = j

0 if i 6= j .

(ii) The Stiefel n-frame manifold Vn(W ) of an inner product space W is the

space of orthonormal n-frames in W . In particular, the Stiefel n-frame manifold

of Rm is denoted1

Vm,n = Vn(Rm) .

(iii) The Stiefel n-frame bundle Vn(η) of an m-plane bundle η over X with

n 6 m is the fibre bundle

Vm,n → Vn(η)→ X

with total space

Vn(η) =
⋃
x∈X

Vn(η(x)) . 2

Proposition 5.25 (i) The Stiefel manifold Vm,n of orthonormal n-frames in

Rm is a compact manifold of dimension

dimVm,n = (2m− n− 1)n/2 .

(ii) The Grassmann manifold Gn(Rm) of n-dimensional subspaces in Rm is a

compact manifold of dimension

dimGn(Rm) = n(m− n) .

(iii) The Stiefel manifolds Vm,n, Vm,m−n and the Grassmann manifold Gn(Rm)

fit into a commutative braid of fibrations

O(n)

%%

""
Vm,n

%%

##
BO(m− n)

%%
O(m)

99

%%

Gn(Rm)

99

%%

BO(m)

O(m− n)

99

;;
Vm,m−n

99

;;
BO(n)

99

1Some authors (e.g. Browder [11] and Wall [92]) use a different terminology, with Vm,n

denoting the Stiefel manifold of orthonormal m-frames in Rm+n.
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with
Vm,n = O(m)/O(m− n) , Vm,m−n = O(m)/O(n) ,

Gn(Rm) = Gm−n(Rm) = O(m)/(O(n)×O(m− n)) ,

BO(n) = Gn(R∞) .

Proof (i) The Stiefel manifold

Vm,n = {(b1, b2, . . . , bn) ∈
∏
n

Sm−1 | bi • bj = δij}

is a closed subspace of the compact Hausdorff space
∏
n
Sm−1, so that it is also a

compact Hausdorff space. Use the standard unit vectors

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm (1 6 i 6 m)

to define the projection

O(m)→ Vm,n ; ω 7→ (ω(em−n+1), ω(em−n+2), . . . , ω(em))

of a fibre bundle

O(m− n)→ O(m)→ Vm,n .

Applying the dimension formula given by Proposition 5.12 (ii) we have

dimVm,n = dimO(m)− dimO(m− n)

= (m(m− 1)− (m− n)(m− n− 1))/2

= (2m− n− 1)n/2 .

(ii) The map

Vm,n → Gn(Rm) ; (b1, b2, . . . , bn) 7→ span(b1, b2, . . . , bn)

is the projection of a fibre bundle with fibre O(n), so

dimGn(Rm) = dimVm,n − dimO(n)

= (2m− n− 1)n/2− n(n− 1)/2

= n(m− n) .

(Alternatively, note that for any n-dimensional subspace U ⊆ Rm the orthogonal

complement U⊥ ⊆ Rm is (m − n)-dimensional, and the graphs of linear maps

f : U → U⊥

Γf = {(x, f(x)) |x ∈ U} ⊆ U ⊕ U⊥ = Rm

define an open neighbourhood {Γf} ⊆ Gn(Rm) of U ∈ Gn(Rm) with

{Γf} = HomR(U,U⊥) = Rn(m−n)
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up to homeomorphism.)

(iii) The Stiefel n-frame bundle of the universal m-plane bundle 1m

Vm,n → Vn(1m)→ Gm(R∞)

has total space

Vn(1m) = {(W, b) |W ⊂ R∞ , dimR(W ) = m, b ∈ Vn(W )}

and projection

Vn(1m)→ Gm(R∞) ; (W, b) 7→W .

The map

Vn(1m)→ Gm−n(R∞) ; (W, b) 7→ span(b)⊥

is a homotopy equivalence, so there is defined a fibration

Vm,n = O(m)/O(m−n)→ Gm−n(R∞) = BO(m−n)→ Gm(R∞) = BO(m) .

2

Example 5.26 An element x ∈ Vm,1 is a unit vector x ∈ Rm, so

Vm,1 = Sm−1 . 2

Vector bundles over Sn are constructed as follows :

Definition 5.27 Given a map ω : Sn−1 → O(k) define a k-plane bundle ηω :

Sn → BO(k) over Sn = Dn ∪Dn with total space

E(ηω) = Dn × Rk ∪(x,y)∼(x,ω(x)(y)) D
n × Rk (x ∈ Sn−1, y ∈ Rk)

and clutching map ω (5.2). 2

Proposition 5.28 (Steenrod [86])

(i) The function

πn−1(O(k))→ πn(BO(k)) ; ω 7→ ηω

is an isomorphism.

(ii) The loop space of the classifying space BO(k) is such that there are defined

homotopy equivalences

ΩBO(k) ' O(k) ' GL(k) ,

and

π∗(BO(k)) = π∗−1(O(k)) = π∗−1(GL(k)) .
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Proof Every k-plane bundle over Dn is trivial. For every k-plane bundle η

over Sn = Dn ∪Dn the restrictions to the two Dn’s are trivial, which are glued

together using an automorphism ω : εk ∼= εk of the trivial k-plane bundle εk over

Sn−1. Thus η is isomorphic to ηω for some ω : Sn−1 → O(k). 2

Proposition 5.29 (i) Every vector bundle η : X → BO(k) has a stable inverse,

a vector bundle −η : X → BO(j) (j large) such that

η ⊕−η = εj+k : X → BO(j + k) .

(ii) A k-plane bundle η can be framed (= is trivial) if and only if the classifying

map η : X → BO(k) is null-homotopic, with the isomorphism classes of framings

b : η ∼= εk in (unnatural) one-one correspondence with [X,O(k)].

Proof This is a direct consequence of the Bundle Classification Theorem (5.23).

2

Definition 5.30 (i) A stable isomorphism between a k-plane bundle η and

a k′-plane bundle η′ over the same space X is a bundle isomorphism

b : η ⊕ εj ∼= η′ ⊕ εj′

for some j, j′ > 0 with j + k = j′ + k′.
(ii) A stable bundle over X is an equivalence class of bundles η over X, subject

to the equivalence relation

η ∼ η′ if there exists a stable isomorphism η ⊕ ε j ∼= η′ ⊕ ε j′

for some j, j′ > 0 .

(iii) A k-plane bundle η is stably trivial if η ⊕ εj is trivial for some j > 0. 2

Proposition 5.31 The isomorphism classes of stable bundles over a finite CW

complex X are in one-one correspondence with the homotopy classes of maps

X → BO to the classifying space

BO = lim−→
k
BO(k) ,

the direct limit with respect to the inclusions BO(k)→ BO(k + 1) passing from

η to η ⊕ ε.

Proof Immediate from the Bundle Classification Theorem 5.23. 2

Remark 5.32 The homotopy groups π∗(BO) are 8-periodic by the Bott peri-

odicity theorem, and are given by :
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n(mod 8) 0 1 2 3 4 5 6 7

πn(BO) Z Z2 Z2 0 Z 0 0 0

2

Proposition 5.33 (Steenrod [86])

(i) The pair (BO(k + 1), BO(k)) is k-connected.

(ii) If k > m then two k-plane vector bundles η, η′ over an m-dimensional finite

CW complex X are isomorphic if and only if they are stably isomorphic.

(iii) The Stiefel manifold Vm,n is (m− n− 1)-connected.

Proof (i) The inclusion BO(k)→ BO(k + 1) fits into a fibration sequence

Vk+1,1 = Sk → BO(k)→ BO(k + 1) ,

the k-sphere bundle of the universal (k+ 1)-plane bundle. (See Proposition 5.83

(ii) for the special case of the tangent bundle τSk+1 : Sk+1 → BO(k + 1)). The

pair (BO(k + 1), BO(k)) is k-connected, with

πj(BO(k + 1), BO(k)) = πj−1(Sk) = 0 for j 6 k .

(ii) It follows from (i) that for k > m each map

[X,BO(k)]→ [X,BO(k + 1)]→ . . .→ [X,BO]

is a bijection.

(iii) It follows from (i) that the pair (BO(m), BO(m−n)) is (m−n)-connected,

so that

πk(Vm,n) = πk+1(BO(m), BO(m− n)) = 0 for k 6 m− n− 1 .

2

Every cohomology class c ∈ Hj(BO(k)) determines a characteristic class,

associating to each k-plane bundle η : X → BO(k) a cohomology class

c(η) = η∗(c) ∈ Hj(X) .

Characteristic classes are the basic algebraic topology invariants of vector bun-

dles.

Remark 5.34 (i) See Chapters 7,8 of Milnor and Stasheff [61] for the definition

of the characteristic Stiefel-Whitney classes of a k-plane bundle η : X →
BO(k)

wi(η) ∈ Hi(X;Z2) (i > 0)

which Thom characterised by
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Sqi(Uη) = wi(η) ∪ Uη ∈ Ḣk+i(T (η);Z2) ,

with Uη ∈ Ḣk(T (η);Z2) the mod2 Thom class. The universal Stiefel-Whitney

classes wi = wi(1k) ∈ Hi(BO(k);Z2) are the generators of the mod2 cohomology

of BO(k)

H∗(BO(k);Z2) = Z2[w1, w2, . . . , wk] .

(ii) See Chapter 15 of [61] for the definition of the characteristic Pontrjagin

classes of a k-plane bundle η : X → BO(k)

pj(η) ∈ H4j(X) (j = 0, 1, 2, . . .)

and the computation

H∗(BO(k);Q) = Q[p1, p2, . . . , p[k/2]] . 2

The k-dimensional general linear group has two components

GL(k) = GL+(k) ∪GL−(k)

with
GL+(k) = { a ∈ GL(k) |det(a) > 0 } ,
GL−(k) = { a ∈ GL(k) |det(a) < 0 } .

The determinant defines a surjective group morphism

det : GL(k)→ R\{0} ; a 7→ det(a)

and

GL+(k) = ker(sign(det) : GL(k)→ Z2) / GL(k)

is a normal subgroup of index 2.

Definition 5.35 (i) An orientation for a k-dimensional real vector space V is

an equivalence class of (ordered) bases, with two bases equivalent if they differ

by an element of GL+(k). There are exactly [GL(k) : GL+(k)] = 2 orientations

for V .

(ii) A k-plane bundle η : X → BO(k) is orientable if the transition functions

h : U∩U ′ → GL(k) (5.8) are orientation-preserving, that is h(U∩U ′) ⊆ GL+(k).

(iii) A k-plane bundle is nonorientable if it is not orientable.

(iv) An orientation for an orientable k-plane bundle η : X → BO(k) is a com-

patible choice of orientation for each of the k-dimensional vector spaces η(x)

(x ∈ X). An oriented bundle is an orientable bundle with a choice of orienta-

tion.

(v) The k-dimensional special orthogonal group

SO(k) = {a ∈ O(k) |det(a) = 1}
is the index 2 subgroup of O(k) consisting of the orientation-preserving ele-

ments. The inclusion SO(k) ↪→ GL+(k) is a homotopy equivalence, by the Gram-

Schmidt orthonormalisation process. 2
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The orientability of a vector bundle η : X → BO(k) is determined by the

first Stiefel-Whitney class w1(η) ∈ H1(X;Z2).

Proposition 5.36 (i) A k-plane bundle η : X → BO(k) is orientable if and

only if w1(η) = 0 ∈ H1(X;Z2).

(ii) For any η : X → BO(k) over a connected CW complex X the double cover

X of X classified by w1(η) ∈ H1(X;Z2) is such that there are exactly two lifts

of η to an oriented bundle η : X → BSO(k). In particular, BSO(k) is the

double cover of BO(k) classified by the universal first Stiefel-Whitney class w1 ∈
H1(BO(k);Z2) = Z2.

(iii) An orientable k-plane bundle η : X → BO(k) over a connected space X has

two orientations.

Proof See Bredon [10, VI.17.2]. 2

Example 5.37 Vector bundles over S1 are determined by their orientation type,

as follows. The first Stiefel-Whitney class defines an isomorphism

w1 : π1(BO(k))→ H1(S1;Z2) = Z2 ; ω 7→ w1(ω) .

An orientable k-plane bundle ω : S1 → BO(k) is isomorphic to the trivial

bundle εk. A nonorientable k-plane bundle ω : S1 → BO(k) is isomorphic to the

Whitney sum µ⊕ εk−1, with µ : S1 → BO(1) = RP∞ the nonorientable 1-plane

bundle with total space the open Möbius band

E(µ) = R× I/{(x, 0) ∼ (−x, 1)} .

The 1-disk bundle D(µ) is the closed Möbius band :

2

Given a finite-dimensional real vector space W let W̃ denote W with a choice

of orientation.
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Definition 5.38 For any real vector space V let G̃k(V ) be the Grassmann man-

ifold of k-dimensional subspaces W ⊆ V with a choice of orientation W̃ , and let

γ̃k(V ) = {(W̃ , x) | W̃ ∈ G̃k(V ), x ∈W} . 2

The projection

γ̃k(V )→ G̃k(V ) ; (W̃ , x) 7→ W̃

is an oriented k-plane bundle. Also, the projection

G̃k(V )→ Gk(V ) ; W̃ 7→W

is a double covering.

Oriented Bundle Classification Theorem 5.39 The isomorphism classes of

oriented k-plane bundles over a finite CW complex X are in one-one correspon-

dence with the homotopy classes of maps X → BSO(k) to the classifying space

BSO(k) = G̃k(R∞) .

The identity map 1̃k : BSO(k) → BSO(k) classifies the universal oriented k-

plane bundle

Rk → γ̃k(R∞)→ BSO(k) .

In fact, BSO(k) = BO(k)w1 is the orientation double cover of BO(k) classified

by the first Stiefel-Whitney class of the universal unoriented k-plane bundle 1k :

BO(k)→ BO(k)

w1(1k) = 1 ∈ H1(BO(k);Z2) = Z2 .

Proof As for the unoriented case (5.23) 2

Example 5.40 The low-dimensional special orthogonal groups are given by

SO(1) = {1} , SO(2) = S1 , SO(3) = RP3 .

(See 5.13 for SO(2), and Bredon [10,III.10] for SO(3)). 2

Example 5.41 The Hopf bundle η : S2 → BSO(2) (5.7) is obtained by the

construction of 5.27 with clutching map the diffeomorphism

ω : S1 → SO(2) ; (cos θ, sin θ) 7→
(

cos θ −sin θ

sin θ cos θ

)
,

such that

(D(η), S(η)) = (cl.(CP2\D4), S3) , T (η) = D(η)/S(η) = CP2 . 2
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Thom Isomorphism Theorem 5.42 An oriented k-plane bundle η : X →
BSO(k) has a Thom class Uη ∈ Ḣk(T (η)) such that for each x ∈ X the

morphism

(ix)∗ : Ḣk(T (η))→ Ḣk(T ((ix)∗η)) = Ḣk(Sk) = Z

induced by the inclusion ix : {x} ↪→ X sends Uη to 1 ∈ Z. Cap and cup products

define isomorphisms

Uη ∩ − : Ḣ∗(T (η))→ H∗−k(X) ,

Uη ∪ − : H∗(X)→ Ḣ∗+k(T (η)) .

Proof As in the unoriented Z2-coefficient case (5.21), with

Ċ(T (η)) = C(X)∗−k .

2

Corollary 5.43 A choice of orientation for a vector bundle η : X → BO(k)

corresponds to a choice of Thom class Uη ∈ Ḣk(T (η)), which is unique up to

sign on each component. 2

Definition 5.44 (i) The Euler class e(η) ∈ Hn(N) of an oriented n-plane

bundle η : N → BSO(n) over a finite CW complex N is characterised by

Uη ∪ Uη = e(η) ∪ Uη ∈ Ḣ2n(T (η))

with Uη ∈ Ḣn(T (η)) the Thom class, and − ∪ Uη : Hn(N) ∼= Ḣ2n(T (η)) the

Thom isomorphism. The Euler class is such that

e(η) = (−1)ne(η) ∈ Hn(N) .

(ii) The Euler number of an oriented n-plane bundle η : N → BSO(n) over a

connected oriented n-dimensional manifold N is

χ(η) = e(η) ∈ Hn(N) = H0(N) = Z .

Note that χ(η) = 0 for odd n, on account of e(η) = (−1)ne(η). 2

Proposition 5.45 The Euler class e(η) ∈ Hn(N) of an n-plane bundle η : N →
BSO(n) is the primary obstruction to the existence of a non-zero section of η.

Proof See Milnor and Stasheff [61] (pp. 98, 130, 147). 2
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Remark 5.46 See Chapter 15 of Milnor and Stasheff [61] for the computation

H∗(BSO(k);Q) =

{
Q[p1, p2, . . . , pj ][e]/(e

2 = pj) if k = 2j

Q[p1, p2, . . . , pj ] if k = 2j + 1

with pi ∈ H4i(BSO(k);Q) the rational Pontrjagin classes, and e ∈ H2j(BSO(2j);Q)

the universal Euler class. 2

5.3 The tangent and normal bundles

Definition 5.47 (i) The tangent bundle of an m-dimensional manifold Mm

with atlas U is the m-plane bundle τM : M → BO(m) with total space the open

2m-dimensional manifold

E(τM ) =

( ∐
(U,φ)∈U

U × Rm
)/
∼

with ∼ the equivalence relation defined by

(x ∈ U, h ∈ Rm) ∼ (x′ ∈ U ′, h′ ∈ Rm)

if

x = x′ ∈ U ∩ U ′ ⊆M , d(φ′−1φ|)(φ−1(x))(h) = h′ ∈ Rm .

and projection

p : E(τM )→M ; (x, h) 7→ x .

The tangent space to x ∈M is the m-dimensional vector space

τM (x) =

( ∐
(U,φ)∈U,x∈U

{x} × Rm
)/
∼

such that

E(τM ) =
⋃
x∈M

τM (x) .

(ii) The differential of a differentiable map f : Nn →Mm is the bundle map

df : τN → τM ; (x ∈ V, h ∈ Rn) 7→ (f(x) ∈ U, d(φ−1(f |)ψ)(ψ−1(x))(h) ∈ Rm) .

2

A differentiable map f : Nn →Mm is given in local coordinates by

f : Rn → Rm ; x = (x1, x2, . . . , xn) 7→ (f1(x), f2(x), . . . , fm(x)) .

The differential of f is the bundle map

df : τN → τM
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given in local coordinates by the Jacobian matrix

df(x) =

(
∂fi
∂xj

)
: τN (x) = Rn → τM (f(x)) = Rm ;

(h1, h2, . . . , hn) 7→
( n∑
j=1

∂f1

∂xj
hj ,

n∑
j=1

∂f2

∂xj
hj , . . . ,

n∑
j=1

∂fm
∂xj

hj

)
.

Proposition 5.48 (i) A differentiable map of manifolds f : Nn → Mm with

n 6 m is an immersion if and only if the differential at each x ∈ N is an

injective linear map

df(x) : τN (x)→ τM (f(x)) ,

or equivalently such that the Jacobian m× n matrix

(
∂fi
∂xj

)
at each x ∈ N has

rank n.

(ii) The orientation character of M is the first Stiefel-Whitney class of the tan-

gent bundle τM
w(M) = w1(τM ) ∈ H1(M ;Z2) .

An m-dimensional manifold M is orientable (4.1) if and only if the tangent

bundle τM : M → BO(m) is orientable. 2

An immersion f : Nn #Mm induces injections of tangent spaces

df(x) : τN (x)→ τM (f(x)) (x ∈ N) ,

which we shall use to identify τN (x) with a subspace of τM (f(x)). Choosing a

metric on M there is defined an inner product

〈 , 〉 : τM (f(x))× τM (f(x))→ R ; (v, w) 7→ 〈v, w〉

and the orthogonal complement of τN (x)

τN (x)⊥ = {v ∈ τM (f(x)) | 〈v, τN (x)〉 = 0}

is a subspace such that

τN (x)⊕ τN (x)⊥ = τM (f(x)) .

Definition 5.49 The normal bundle νf : N → BO(m − n) of an immersion

f : Nn #Mm is the (m− n)-plane bundle over N with

E(νf ) =
⋃
x∈N

νf (x)

the union of the orthogonal complements

νf (x) = τN (x)⊥ ⊆ τM (f(x)) ,

and is such that

τN ⊕ νf = f∗τM : N → BO(m) . 2
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The normal bundle νf : N → BO(m − n) of an immersion f : Nn # Mm

of oriented manifolds has a unique orientation such that τN ⊕ νf = f∗τM as

oriented bundles.

Tubular Neighbourhood Theorem 5.50 An embedding f : Nn ↪→ Mm ex-

tends to a codimension 0 embedding E(νf ) ↪→ Mm of the total space of the

normal (m− n)-plane bundle νf : N → BO(m− n). Similarly for an immersion

f : N #M , with E(νf ) #M .

Proof See Theorem 11.1 of Milnor and Stasheff [61], or Theorem II.11.14 of

Bredon [10]. 2

Example 5.51 For any m > 1 the normal 1-plane bundle of the embedding of

real projective spaces

RPm = G1(Rm+1) ↪→ RPm+1 = G1(Rm+2)

is classified by the inclusion

νRPm↪→RPm+1 : RPm = G1(Rm+1)→ RP∞ = G1(R∞) = BO(1) .

In particular, for m = 1 the normal bundle of the embedding RP1 = S1 ↪→ RP2

is the non-trivial 1-plane bundle

µ = νS1↪→RP2 : S1 → BO(1)

with D1-bundle D(µ) the Möbius band and S0-bundle

S(µ) = S1 → S1 ; z 7→ z2

the non-trivial double cover of S1. 2

Proposition 5.52 (i) If f : Nn # Mm, g : Mm # L` are immersions with

normal bundles νf : N → BO(m− n), νg : M → BO(`−m) then the composite

immersion gf : Nn # L` has normal bundle

νgf = νf ⊕ f∗νg : N → BO(`− n) .

(ii) The Umkehr map of an embedding f : Nn ↪→ Mm of an oriented n-

dimensional manifold N as submanifold of an oriented m-dimensional M is given

by

f ! : H∗(M)→ H∗(M,M\f(N)) ∼= Ḣ∗(T (νf )) ∼= H∗−m+n(N) .

The evaluation of the Thom class

Uνf ∈ Ḣm−n(T (νf )) ∼= Hm−n(M,M\f(N))
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on the homology class f∗[N ] ∈ Hn(M) is

〈Uνf , f∗[N ]〉 = 1 ∈ Z .

(iii) The fundamental class [M ] ∈ Hm(M) of an oriented m-dimensional mani-

fold M is related to the Thom class of τM

UτM ∈ Ḣm(T (τM )) ∼= Hm(M ×M,M ×M\∆(M))

by

〈UτM ,∆∗[M ]〉 = 1 ∈ Z ,

with ∆∗[M ] ∈ Hm(M ×M,M ×M\∆(M)). The Euler number of τM is just the

Euler characteristic of M

χ(τM ) = χ(M) ∈ Z .

Proof (i)+(ii) By construction.

(iii) Use the identification of the tangent bundle of M with the normal bundle

of the diagonal embedding

∆ : M ↪→M ×M ; x 7→ (x, x) ,

that is

τM = ν∆ : M → BO(m)

(Milnor and Stasheff [61, 11.5]). 2

Example 5.53 The Euler number of τSn : Sn → BSO(n) is

χ(τSn) = χ(Sn) = 1 + (−1)n ∈ Z . 2

Definition 5.54 The n-dimensional regular homotopy group In(M) of an

m-dimensional manifold M is the Z[π1(M)]-module of regular homotopy classes

of immersions f : Sn # Mm with a choice of lift f̃ : Sn # M̃ to the universal

cover M̃ of M , with addition by connected sum. 2

Proposition 5.55 (i) The isomorphism class νf ∈ [N,BO(m−n)] of the normal

bundle of an immersion f : Nn #Mm is a regular homotopy invariant.

(ii) The normal bundle defines a Z[π1(M)]-module morphism

ν : In(M)→ πn(BO(m− n)) ; (f : Sn #M) 7→ νf

with the trivial Z[π1(M)]-action on πn(BO(m− n)).
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Proof (i) The track of a regular homotopy {ft : N #M | t ∈ I} of immersions

f0, f1 : Nn #Mm is a level-preserving immersion

f : N × I #M × I ; (x, t) 7→ (ft(x), t) .

The normal bundle of f defines a homotopy of classifying maps

νf : νf0 ' νf1 : N → BO(m− n) ,

corresponding to a bundle isomorphism νf0
∼= νf1 .

(ii) The normal bundle of an immersion f : Sn #Mm is an (m−n)-plane bundle

νf : Sn → BO(m− n), such that

E(νf ) = Dn × Rm−n ∪(x,y)∼(x,cf (x)(y)) D
n × Rm−n (x ∈ Sn−1, y ∈ Rm−n)

for a clutching map cf : Sn−1 → O(m − n). The isomorphism class of νf is the

homotopy class of cf

νf = cf ∈ πn(BO(m− n)) = πn−1(O(m− n)) .

The connected sum of immersions f, g : Sn #Mm is an immersion

f # g : Sn #Sn = Sn →Mm

with clutching map

cf # g = cfcg : Sn−1 → O(m− n) ; x 7→ cf (x)cg(x) ,

so that

νf # g = νf + νg ∈ πn(BO(m− n)) .

2

Definition 5.56 A framing of an immersion g : Nn #Mm is a framing of the

normal bundle νg : N → BO(m− n)

b : νg ∼= εm−n . 2

Example 5.57 For any n < m the embedding

Sn ×Dm−n ↪→ Sm = ∂(Dn+1 ×Dm−n) = Sn ×Dm−n ∪Dn+1 × Sm−n−1

gives a standard framed embedding

(g : Sn ↪→ Sm, b : νg ∼= εm−n) .

The framing can be altered by any element ω ∈ πn(O(m − n)), using the au-

tomorphism ω : εm−n ∼= εm−n of the trivial (m − n)-plane bundle over Sn it

classifies. 2
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Proposition 5.58 The framings b (if any) of an embedding g : Nn ↪→Mm are

in one-one correspondence with extensions of g to an embedding g : N×Dm−n ↪→
Mm. Similarly for an immersion g : N #M , with extensions g : N ×Dm−n #
M .

Proof By the Tubular Neighbourhood Theorem (5.50). 2

Proposition 5.59 For any m-dimensional manifold Mm and k > m there

exists an embedding M ↪→ Sm+k, and for k > m + 1 any two embeddings

M ↪→ Sm+k are isotopic.

Proof This is a special case of the Whitney Embedding Theorem (1.7,7.2)

applied to a constant map {∗} : M → Sm+k, noting that M is an m-dimensional

CW complex (2.23) and [M,Sm+k] = 0 for any k > 1 by 3.27. 2

Definition 5.60 (i) A normal bundle of an m-dimensional manifold is the

normal bundle (5.49)

νM = νg : M → BO(k)

of any embedding g : M ↪→ Sm+k (k > 1), such that

τM ⊕ νM = εm+k : M → BO(m+ k) .

(ii) The stable normal bundle of an m-dimensional manifold M is the stable

bundle

νM : M → BO

represented by the normal k-plane bundle ν : M → BO(k) of any embedding

M ↪→ Sm+k (k large), such that

τM ⊕ νM = ε∞ : M → BO . 2

More precisely, any embedding g : Mm ↪→ Sm+k with k > 1 is null-homotopic

(by 3.27) and the pullback g∗τSm+k : M → BO(m + k) is trivial, allowing an

identification of the tangent space τM (x) at each x ∈M with an m-dimensional

subspace of

τSm+k(g(x)) = g∗τSm+k(x) = Rm+k .

The map

τM : M → Gm(Rm+k) ; x 7→ τM (x)

represents the classifying map

τM : M → lim−→
k
Gm(Rm+k) = BO(m) .



THE TANGENT AND NORMAL BUNDLES 111

The orthogonal complements with respect to the standard inner product on

Rm+k define a map

νM : M → Gk(Rm+k) ; x 7→ νM (x) = τM (x)⊥

representing the classifying map

νM : M → lim−→m Gk(Rm+k) = BO(k) ,

such that

τM ⊕ νM = εm+k : M → BO(m+ k) .

Example 5.61 The normal bundle of Sm is trivial

νSm = εk : Sm → BO(k)

since already the standard embedding Sm ↪→ Sm+1 has trivial normal bundle

νSm↪→Sm+1 = ε : Sm → BO(1) .

The stable normal bundle is also trivial

νSm = ε∞ : Sm → BO . 2

Proposition 5.62 The normal bundle νg : Sn → BO(m− n) of an immersion

g : Sn #Mm is such that :

νg ⊕ τSn = g∗τM ∈ πn(BO(m)) ,

νg ⊕ εn+1 = g∗(τM ⊕ ε) ∈ πn(BO(m+ 1)) ,

νg = − g∗(νM ) ∈ πn(BO) .

Proof Stabilise the identity given by 5.49

νg ⊕ τSn = g∗τM : Sn → BO(m)

by adding ε and using the isomorphism τSn ⊕ ε ∼= εn+1 given by 5.61 to obtain

the isomorphism

νg ⊕ εn+1 ∼= g∗(τM ⊕ ε) .

Stabilise further by adding g∗νM to obtain a stable isomorphism

νg ⊕ g∗νM ∼= ε∞ .

2
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5.4 Surgery and bundles

Recall from 2.5 that an n-surgery on an m-dimensional manifold Mm removes a

framed n-embedding g : Sn×Dm−n ↪→M to obtain the m-dimensional manifold

M ′ = cl.(Mm\g(Sn ×Dm−n)) ∪Sn×Sm−n−1 Dn+1 × Sm−n−1 .

The n-surgery kills the homotopy class [g] ∈ πn(M) of the core n-embedding

g = g| : Sn × {0} ↪→M .

Theorem 5.63 Let Mm be an m-dimensional manifold. The following condi-

tions on an element x ∈ πn(M) are equivalent :

(i) x can be killed by an n-surgery on M ,

(ii) x can be represented by a framed n-embedding g : Sn ×Dm−n ↪→M ,

(iii) x can be represented by an n-embedding g : Sn ↪→ Mm with trivial normal

bundle νg : Sn → BO(m− n).

Proof (i) ⇐⇒ (ii) By definition.

(ii)⇐⇒ (iii) By 5.58 the framings b (if any) of an embedding g : Sn ↪→Mm are in

one-one correspondence with extensions to an embedding g : Sn×Dm−n ↪→Mm.

2

It follows that below the middle dimension the possibility of killing an element

of πn(Mm) is entirely determined by the stable normal bundle νM : M → BO.

Corollary 5.64 If 2n < m an element x ∈ πn(M) can be killed by surgery if

and only if (νM )∗(x) = 0 ∈ πn(BO).

Proof The Whitney Embedding Theorem (1.7,7.2) shows that x can be repre-

sented by an n-embedding g : Sn ↪→M . The result now follows from the identity

νg = −g∗(νM ) ∈ πn(BO) given by 5.62 and the stability result πn(BO(m−n)) =

πn(BO) of 5.33. 2

Here are some examples of homotopy classes which cannot be killed by

surgery :

Example 5.65 For m > 2 the generator 1 ∈ π1(RPm) = Z2 is represented by

the standard 1-embedding

g : S1 = RP1 ↪→ RPm

with normal bundle
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νg = (m− 1)µ =

{
µ⊕ εm−2

εm−1
if m is

{
even

odd ,

with µ : S1 → BO(1) the nontrivial 1-plane bundle. The first Stiefel-Whitney

class is

w1(νg) = (−1)m−1 ∈ H1(S1;Z2) = Z2 = {±1} .
Thus if m is even the generator 1 ∈ π1(RPm) cannot be represented by a framed

1-embedding, and so cannot be killed by a 1-surgery on RPm. 2

The 1-embedding S1 ↪→ RPm in 5.65 cannot be framed since it is not even

orientable. There exist n-embeddings Sn ↪→ Mm with orientable non-trivial

normal bundles, as in :

Example 5.66 For m > 2 the generator 1 ∈ π2(CPm) = Z is represented by

the standard 1-embedding

g : S2 = CP1 ↪→ CPm

with oriented normal bundle

νg = (m− 1)η =

{
η ⊕ ε2m−4

ε2m−2
: S2 → BSO(2m− 2) if m is

{
even

odd ,

with η : S2 → BSO(2) the Hopf bundle (5.41). The second Stiefel-Whitney class

is

w2(νg) = (−1)m−1 ∈ H2(S2;Z2) = Z2 = {±1} .
If m is even 1 ∈ π2(CPm) cannot be represented by a framed 2-embedding, and

so cannot be killed by a 2-surgery on CPm. For odd m = 2n+ 1 it is possible to

kill the generator 1 ∈ π2(CP2n+1) = Z by surgery; the map

CP2n+1 → HPn ; [z1, z2, . . . , z2n+2] 7→ (z1 + z2j, z3 + z4j, . . . , z2n+1 + z2n+2j)

is the projection of a fibre bundle with fibre S2, and the total pair of the corre-

sponding fibre bundle

(D3, S2)→ (E,CP2n+1)→ HPn

defines a null-cobordism of CP2n+1. 2

The following result describes the number of ways of killing an element x ∈
πn(M) by surgery on M , and also describes the behaviour of τM and νM under

surgery.

Theorem 5.67 Let g : Sn ↪→ Mm be an n-embedding in an m-dimensional

manifold.
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(i) The extensions of g to a framed n-embedding g : Sn×Dm−n ↪→M are in one-

one correspondence with the framings g : νg ∼= εm−n of νg : Sn → BO(m− n).

(ii) An extension of g to a framed n-embedding g determines a stable framing

ag : g∗τM ⊕ ε ∼= εm+1 of g∗τM : Sn → BO(m).

(iii) Let (W ;M,M ′) be the trace of the n-surgery on M determined by an exten-

sion of g to g. The tangent bundle of W is classified by

τW ' τM ⊕ ε ∪ ag : W ' M ∪g Dn+1 → BO(m+ 1) .

(iv) Let νM : M → BO(k) be the normal bundle of an embedding Mm ↪→ Sm+k

(k large). An extension of g to g determines a framing cg : g∗νM ∼= εk of g∗νM :

Sn → BO(k). The embedding M ↪→ Sm+k extends to an embedding

(Wm+1,Mm) ↪→ (Dm+k+1, Sm+k)

with normal bundle

νW ' νM ∪ cg : W ' M ∪g Dn+1 → BO(k) .

Proof (i) By the Tubular Neighbourhood Theorem (5.50).

(ii) Stabilise the identity of m-plane bundles over Sn

τSn ⊕ νg = g∗τM : Sn → BO(m)

by adding ε

(τSn ⊕ ε)⊕ νg = g∗(τM ⊕ ε) : Sn → BO(m+ 1)

and combine the framing g : νg ∼= εm−n with the framing given by 5.57,5.61

τSn ⊕ ε = τSn+1 |Sn ∼= εn+1

to obtain the stable framing ag : g∗(τM ⊕ ε) ∼= εm+1.

(iii) The tangent bundle of

W = M × I ∪g Dn+1 ×Dm−n

is obtained by glueing together

τM×I = (τM ⊕ ε)× I : M × I → BO(m+ 1)

and

τDn+1×Dm−n = εm+1 : Dn+1 ×Dm−n → BO(m+ 1)

using the framing

ag : τM×I |g(Sn×Dm−n)
∼= εm+1 .

(iv) The normal bundle of W ↪→ Dm+k+1 is obtained by glueing together
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νM×I↪→Dm+k+1 = (νM ⊕ ε)× I : M × I → BO(k)

and

νDn+1×Dm−n↪→Dm+k+1 = εk : Dn+1 ×Dm−n → BO(k)

using the framing

cg : νM×I↪→Dm+k+1 |g(Sn×Dm−n)
∼= εk .

2

Here are the effects of the n-surgeries on Sm removing all the extensions of the

standard n-embedding Sn ↪→ Sm (5.57) to a framed n-embedding Sn×Dm−n ↪→
Sm.

Proposition 5.68 An element

ω ∈ πn(O(m− n)) = πn+1(BO(m− n))

classifies an (m−n)-plane bundle over Sn+1, with an associated (Dm−n, Sm−n−1)-

bundle

(Dm−n, Sm−n−1)→ (D(ω), S(ω))→ Sn+1 .

The effect of the n-surgery on Sm removing the framed n-embedding

gω : Sn×Dm−n ↪→ Sm = Sn×Dm−n∪Dn+1×Sm−n−1 ; (x, y) 7→ (x, ω(x)(y))

is the (m− n− 1)-sphere bundle over Sn+1

S(ω) = Dn+1 × Sm−n−1 ∪ω Dn+1 × Sm−n−1 .

The trace (W (ω)m+1;Sm, S(ω)) is given by

W (ω)m+1 = cl.(D(ω)\Dm+1) ,

with tangent and stable normal bundle

τW (ω) ' 0 ∨ (τSn+1 ⊕ ω) : W (ω) ' Sm ∨ Sn+1 → BO(m+ 1) ,

νW (ω) ' 0 ∨ −ω : W (ω) ' Sm ∨ Sn+1 → BO

for any stable inverse −ω : Sn+1 → BO of ω : Sn+1 → BO(m− n).

Proof The zero section is an embedding z : Sn+1 ↪→ D(ω) with normal bundle

ω : Sn+1 → BO(m− n), such that

τSn+1 ⊕ ω = z∗τD(ω) : Sn+1 → BO(m+ 1) .

2
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The sphere bundle S(ω) of ω : Sn+1 → BO(m − n) is an m-dimensional

manifold which is orientable if and only if ω is orientable; this is the case if

n 6= 0, or if n = 0 and w1(ω) = 0 ∈ H1(S1;Z2) = Z2.

Example 5.69 Let m = 1, n = 0 in 5.68. The two elements in π1(BO(1)) = Z2

correspond to the two 1-plane bundles over S1 (5.37)

ω0 , ω1 : S1 → BO(1)

with ω0 trivial and ω1 non-trivial. The corresponding 0-embeddings

gω0
, gω1

: S0 ×D1 ↪→ S1

have the same core embeddings

gω0
| = gω1

| : S0 ↪→ S1

but different framings, exactly as in 2.8 (ii). The effects of the 0-surgeries are

S(ω0) = the trivial double cover of S1 = S1 × S0 = S1 ∪ S1

S(ω1) = the non-trivial double cover of S1 = S1 .

2

Example 5.70 Let m = 2, n = 0 in 5.68. The two elements in π1(BO(2)) = Z2

correspond to the two 2-plane bundles over S1 (5.37), say

ω0 , ω1 : S1 → BO(2)

with ω0 = ε2 the trivial bundle and ω1 = µ⊕ ε the nonorientable 2-plane bundle,

with µ : S1 → BO(1) the non-trivial 1-plane bundle (as in 5.51). The (D1, S0)-

bundle

(D1, S0)→ (D(µ), S(µ)) = (M2, S1)→ S1

has M2 the Möbius band. The total spaces of the S1-bundles over S1 associated

to ω0, ω1

S1 → S(ωi)→ S1 (i = 0, 1)

are given by

S(ω0) = S1 × S1 = the torus T 2 ,

S(ω1) = {(x, y) ∈ D(µ)× S(ε) ∪ S(µ)×D(ε) | [x] = [y] ∈ S1}
= M2 × S0 ∪ S1 ×D1 = the Klein bottle K2

(cf. Example 4.22). The torus T 2 is obtained from S2 by the 0-surgery removing

the 0-embedding

gω0 : S0 ×D2 ↪→ S0 ×D2 ∪D1 × S1 = ∂(D1 ×D2) = S2 ,
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and the Klein bottle K2 is obtained from S2 by the 0-surgery removing the

0-embedding

gω1 : S0 ×D2 ↪→ S0 ×D2 ∪D1 × S1 = ∂(D1 ×D2) = S2 .

2

Example 5.71 Let m = 2n+ 1 in 5.68, and let

ω = τSn+1 ∈ πn(SO(n+ 1)) = πn+1(BSO(n+ 1)) .

The total space of the tangent Sn-bundle over Sn+1

SO(n+ 1)/SO(n) = Sn → Vn+2,2 → SO(n+ 2)/SO(n+ 1) = Sn+1

is the Stiefel manifold of orthonormal 2-frames in Rn+2 (5.24)

S(ω)2n+1 = Vn+2,2 = SO(n+ 2)/SO(n) . 2

Proposition 5.72 An element

(δω, ω) ∈ πn+1(O,O(m− n)) = πn+2(BO,BO(m− n))

classifies an (m−n)-plane bundle ω : Sn+1 → BO(m−n) together with a stable

framing δω : ω ' {∗} : Sn+1 → BO. As in 5.68 the effect of the n-surgery on

Sm removing the framed n-embedding

gω : Sn×Dm−n ↪→ Sm = Sn×Dm−n∪Dn+1×Sm−n−1 ; (x, y) 7→ (x, ω(x)(y))

is the (m− n− 1)-sphere bundle over Sn+1

S(ω) = Dn+1 × Sm−n−1 ∪ω Dn+1 × Sm−n−1

with (m− n)-disk bundle

D(ω) = Dn+1 ×Dm−n ∪ω Dn+1 ×Dm−n .

The trace (W (ω)m+1;Sm, S(ω)) is given by

W (ω)m+1 = cl.(D(ω)\Dm+1) ,

with stable normal bundle

νW (ω) ' 0 ∨ ω : W (ω) ' Sm ∨ Sn+1 → BO .

The stable framing δω of ω determines an extension of the standard framing of

τSm to a framing bδω of τW (ω).

Proof By construction. 2
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Definition 5.73 Anm-dimensional manifoldM is parallelisable if the tangent

bundle τM : M → BO(m) is trivial. 2

Bott-Milnor Sphere Parallelisability Theorem 5.74 ([9], [51])

The sphere Sn is parallelisable if and only if n = 1, 3, 7. 2

Example 5.75 The element (1, 1) ∈ Hn(Sn × Sn) = Z ⊕ Z is represented by

the diagonal embedding ∆ : Sn ↪→ Sn × Sn with ν∆ = τSn : Sn → BO(n). For

n 6= 1, 3, 7 it is not possible to kill (1, 1) by surgery. 2

5.5 The Hopf invariant and the J-homomorphism

Definition 5.76 (i) The Hopf invariant H(f) ∈ Z of a map f : S2n+1 → Sn+1

with n > 1 is determined by the cup product structure of the mapping cone

X = Sn+1 ∪f D2n+2

with

a ∪ a = H(f)b ∈ H2n+2(X) ,

where a = 1 ∈ Hn+1(X) = Z, b = 1 ∈ H2n+2(X) = Z.

(ii) The mod2 Hopf invariant H2(g) ∈ Z2 of a map g : S` → Sm with

` > m > 1 is determined by the Steenrod squares on the mod2 cohomology of

the mapping cone

Y = Sm ∪g D`+1

with

Sq`−m+1 = H2(g) : Hm(Y ;Z2) = Z2 → H`+1(Y ;Z2) = Z2.

If ` = 2n + 1, m = n + 1 then H2(g) ∈ Z2 is the mod2 reduction of the Hopf

invariant H(g) ∈ Z in (i). 2

Example 5.77 The Hopf maps η : S3 → S2, η : S7 → S4, η : S15 → S8 (5.7)

each have Hopf invariant H(η) = 1. 2

Proposition 5.78 (i) The Hopf invariant defines a morphism of groups

H : π2n+1(Sn+1)→ Z ; f 7→ H(f)

which is an isomorphism for n = 1.

(ii) The mod2 Hopf invariant defines an isomorphism

H2 : πm+1(Sm)→ Z2 ; g 7→ H2(g) (m > 3) .

(iii) The Hopf invariant is such that H(f) = (−1)n+1H(f), so that
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H = 0 : π2n+1(Sn+1)→ Z for even n .

(iv) The suspension map E and the Hopf invariant map H fit into an exact

sequence

π2n(Sn)
E // π2n+1(Sn+1)

H // Z P // π2n−1(Sn) .

Proof (i) See Proposition 4B.1 of Hatcher [31]. The homotopy exact sequence

of the Hopf fibration S1 → S3 → S2 is

π3(S1) = 0 // π3(S3) = Z // π3(S2) // π2(S1) = 0 .

(ii) See Theorem VII.8.3 of Bredon [10].

(iii) The cup product pairing for any space X

∪ : Hp(X)×Hq(X)→ Hp+q(X) ; (x, y) 7→ x ∪ y
is such that

x ∪ y = (−1)pq(y ∪ x) .

Now take X as in 5.76, with p = q = n+ 1.

(iv) This is part of the EHP exact sequence of homotopy theory

. . .→ πm(X)
E
→ πm+1(ΣX)

H
→ πm(X ∧X)

P
→ πm−1(X)→ . . .

which holds for any (n − 1)-connected space X with m 6 3n − 2 (Whitehead

[96], p.548). Here X = Sn, m = 2n. 2

Hopf Invariant 1 Theorem of Adams 5.79 ([2])

There exists a map f : S2n+1 → Sn+1 with Hopf invariant H(f) = 1 if and only

if n = 1, 3, 7. 2

It follows that for odd n the image of the Hopf invariant map is

im(H : π2n+1(Sn+1)→ Z) =

{
Z if n = 1, 3, 7

2Z if n 6= 1, 3, 7.

Definition 5.80 The J-homomorphism

J : πm(SO(k))→ πm+k(Sk) ; ω 7→ J(ω)

sends the homotopy class of a map ω : Sm → SO(k) to the homotopy class of

the composite

J(ω) : Sm+k = Sm ×Dk ∪Dm+1 × Sk−1
proj.
−−→ (Sm ×Dk)/(Sm × Sk−1)

bω−→ (Sm ×Dk)/(Sm × Sk−1)
proj.
−−→ Dk/Sk−1 = Sk

with bω : εk ∼= εk the automorphism of the trivial k-plane bundle over Sm adjoint

to ω

bω : E(εk) = Sm × Rk → Sm × Rk ; (x, y) 7→ (x, ω(x)(y)) . 2
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In other words, the J-homomorphism sends ω : Sm → SO(k) to the com-

ponent J(ω) : Sm+k → Sk of the self-homeomorphism of the Thom space of

εk : Sm → BSO(k) induced by bω

(bω)∗ =

(
1 0

J(ω) 1

)
:

T (εk) = (Sm ×Dk)/(Sm × Sk−1) = Sm+k ∨ Sk → Sm+k ∨ Sk .

Example 5.81 The Hopf bundle η over S2 (5.7) is the normal bundle of the

embedding

CP1 = G1(C2) = S2 ↪→ CP2 = G1(C3)

(extending the terminology of 5.22 to complex vector spaces), that is

η = νS2↪→CP2 : S2 → BSO(2) .

In this case, the J-homomorphism J : π1(SO(2)) → π3(S2) is an isomorphism

sending the generator

ω = 1 ∈ π1(SO(2)) = π1(S1) = Z

to the element η ∈ π3(S2) of Hopf invariant 1, with inverse

H : π3(S2)→ π1(SO(2)) = Z ; η 7→ H(η) .

The Hopf bundle η has Euler number

χ(η) = e(η) = 1 ∈ Z

and Thom space

T (η) = S2 ∪η D4 ' CP2 . 2

Proposition 5.82 (i) The Euler number map

χ : πn+1(BSO(n+ 1))→ Z ; ω 7→ χ(ω)

is the composite

χ = HJ : πn+1(BSO(n+ 1))
J
→ π2n+1(Sn+1)

H
→ Z .

(ii) The inclusion SO(k)→ SO(k + 1) corresponds under the J-homomorphism

to the suspension E in the homotopy groups of spheres, with a commutative

square

πm(SO(k))

J
��

// πm(SO(k + 1))

J
��

πm+k(Sk)
E // πm+k+1(Sk+1) ,
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and there is also defined a stable J-homomorphism

J : πm(SO) = lim−→
k
πm(SO(k))→ πSm = lim−→

k
πm+k(Sk) .

Moreover,

πm(SO(m+ 2)) = πm(SO(m+ 3)) = . . . = πm(SO) ,

π2m+2(Sm+2) = π2m+3(Sm+3) = . . . = πSm .

(iii) The Thom space of the bundle ω : Sm+1 → BSO(k) with clutching map

ω : Sm → SO(k) is given up to homotopy equivalence by

T (ω) = Sk ∪J(ω) D
m+k+1 .

Proof (i) For any (n+1)-plane bundle ω : Sn+1 → BSO(n+1) the Euler class

χ(ω) ∈ Hn+1(Sn+1) = Z is the obstruction to the existence of a non-zero section

of ω, and the Hopf invariant HJ(ω) ∈ Z is the obstruction to desuspending

J(ω) : S2n+1 → Sn+1.

(ii) By construction and the Freudenthal Suspension Theorem (3.10).

(iii) See Milnor [50]. 2

Here is some basic information concerning the Stiefel manifold of orthonormal

2-frames in Rn+2

Vn+2,2 = O(n+ 2)/O(n) = SO(n+ 2)/SO(n)

which will play an important role in the bundle theoretic aspects of surgery on

n-spheres in 2n-dimensional manifolds (Chapters 10,11).

Proposition 5.83 (i) The Stiefel manifold Vn+2,2 fits into a fibration

Vn+2,2 → BSO(n)→ BSO(n+ 2)

with a long exact sequence of homotopy groups

. . .→ πm(Vn+2,2)→ πm(BSO(n))→ πm(BSO(n+ 2))→ πm−1(Vn+2,2)→ . . . .

An element x ∈ πm(Vn+2,2) is an equivalence class of pairs x = (δω, ω) with

ω : Sm → BSO(n) an oriented n-plane bundle over Sm and δω : ω ⊕ ε2 ∼= εn+2

a 2-stable trivialisation.

(ii) The Stiefel manifold Vn+2,2 is the tangent n-sphere bundle of Sn+1

Sn → Vn+2,2 = S(τSn+1)→ Sn+1

which fits into a commutative braid of fibrations
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Sn

&&

τSn

##
BSO(n)

&&

##
BSO(n+ 2)

Vn+2,2

88

&&

BSO(n+ 1)

88

Sn+1

τSn+1 88

An element of Vn+2,2 can be regarded as a pair (x ∈ Sn+1, y ∈ τSn+1(x)) with

‖y‖ = 1, so that

Vn+2,2 → Sn+1 ; (x, y) 7→ x .

Vn+2,2 is an orientable (n− 1)-connected (2n+ 1)-dimensional manifold with

Hi(Vn+2,2) =


Z if i = 0, 2n+ 1

Q(−1)n(Z) if i = n

0 otherwise ,

where

Q(−1)n(Z) = Z/{1 + (−1)n+1} =

{
Z if n is even

Z2 if n is odd.

(iii) The projection

p : SO(n+ 1)→ SO(n+ 1)/SO(n) = Sn

induces the map

p∗ : πn(SO(n+ 1)) = πn+1(BSO(n+ 1))→ πn(Sn) = Z

which sends an (n+ 1)-plane bundle ω : Sn+1 → BSO(n+ 1) to the obstruction

p∗(ω) = HJ(ω) = χ(ω) ∈ Hn+1(Sn+1) = Z

to the existence of a non-zero section of ω : Sn+1 → BSO(n+ 1).

(iv) The homotopy groups of Vn+2,2, BSO(n), BSO(n+ 1), BSO(n+ 2) fit into

a commutative braid of exact sequences :

πn+1(Sn+1)
τSn+1

$$

∂

  
πn(Sn)

$$

τSn

  
πn(BSO(n))

$$

  
πn(BSO(n+ 2))

πn+1(BSO(n+ 1))

HJ ::

$$

πn(Vn+2,2)

::

$$

πn(BSO(n+ 1))

$$

::

πn+1(BSO(n))

::

>>
πn+1(BSO(n+ 2))

::

>>
πn(Sn+1) = 0

::

>>
πn−1(Sn) = 0

with
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∂ = χ(Sn+1) = 1 + (−1)n+1 : πn+1(Sn+1) = Z→ πn(Sn) = Z ,

πn(Sn) = Z→ πn(BSO(n)) ; 1 7→ τSn ,

πn(BSO(n+ 1)) = πn(BSO(n+ 2)) = . . . = πn(BSO) ,

πn+1(BSO(n+ 2)) = πn+1(BSO(n+ 3)) = . . . = πn+1(BSO) ,

πn(Vn+2,2) = πn+1(BSO(n+ 2), BSO(n))

= πn+1(BSO(n+ 3), BSO(n))

= . . . = πn+1(BSO,BSO(n)) = Q(−1)n(Z) .

(v) The morphism

πn(Vn+2,2) = Q(−1)n(Z)→ πn(BSO(n)) ; 1 7→ τSn

is
{

injective

0
for

{
n 6= 1, 3, 7

n = 1, 3, 7.

Proof (i)+(ii)+(iii)+(iv) See Chapter 25.6 of Steenrod [86].

(v) Immediate from the Bott-Milnor Sphere Parallelisability Theorem (5.74).

2
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COBORDISM THEORY

We have already seen in Chapter 2 that every cobordism is a union of the

traces of a finite sequence of consecutive surgeries. However, this result is not

useful in the cobordism classification of manifolds, since there are so many possi-

bilities of performing surgeries. This chapter describes the Sard-Thom Transver-

sality Theorem, the Pontrjagin-Thom construction of a homotopy class of maps

from a bordism class of manifolds, and the Thom Cobordism Theorem establish-

ing the isomorphism between the cobordism groups and the homotopy groups

of Thom spaces. In Chapter 13 the isomorphism between the framed cobordism

groups and the stable homotopy groups of spheres will be used in the surgery

classification of exotic spheres. More generally, the surgery exact sequence will

make use of the expression of the bordism set of normal maps as a homotopy

group.

6.1 Cobordism and transversality

The basic definition of cobordism (1.1) is now repeated.

Definition 6.1 A cobordism of closed m-dimensional manifolds Mm, M ′m is

an (m+ 1)-dimensional manifold Wm+1 with boundary

∂W = M ∪ −M ′

where −M ′ denotes M ′ with the opposite orientation. 2

Remark 6.2 The definition of homology due to Poincaré was motivated by

the invariance of integration on cobordant submanifolds. If ω is a closed differ-

ential n-form on an m-dimensional manifold Mm then for any closed oriented

n-dimensional submanifold Nn ↪→Mm it is possible to define the integral∫
N

ω ∈ R .

For disjoint submanifolds Nn, N ′n ↪→ Mm related by an oriented cobordism

(W ;N,N ′) which is also a submanifold Wn+1 ↪→Mm∫
N

ω −
∫
N ′
ω =

∫
W

dω = 0 ∈ R
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by Stokes’ theorem. In modern terminology integration along submanifolds gives

the isomorphism of the R-coefficient Universal Coefficient Theorem

Hn(M ;R)→ HomR(Hn(M ;R),R) ; [ω] 7→ ([N ] 7→
∫
N

ω) ,

with [ω] ∈ Hn(M ;R) the deRham cohomology class of the form ω, and [N ] ∈
Hn(M ;R) the homology class of a submanifold Nn ↪→Mm (cf. Remark 4.10).2

Proposition 6.3 Cobordism is an equivalence relation on manifolds.

Proof Every manifold M is cobordant to itself by the product cobordism

M × (I; {0}, {1}) = (M × I;M × {0},M × {1}) ,

with I = [0, 1] the unit interval. The union of adjoining cobordisms

(W ;M,M ′) , (W ′;M ′,M ′′)

is a cobordism

(W ;M,M ′) ∪ (W ′;M ′,M ′′) = (W ∪M ′ W ′;M,M ′′) .
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M W M ′ W ′ M ′′

2

Diffeomorphic manifolds are cobordant.

Definition 6.4 The m-dimensional bordism set Bm(N,X, η) is defined for

an n-manifold Nn and a k-plane bundle η : X → BO(k) to be the set of

equivalence classes of pullback bundle maps from m-dimensional submanifolds

Mm ↪→ Nn (m = n− k)

(f, b) : (M,νM↪→N )→ (X, η)

with respect to the bordism relation :

(M, (f, b)) ∼ (M ′, (f ′, b′))
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if there exists a submanifold Wm+1 ↪→ N × I with a pullback bundle map

(F,B) : (W, ν)→ (X, η) (ν = νW↪→N×I)

such that

(F,B)|M = (f, b) : (W, ν) ∩ (N × {0}) = (M,νM↪→N )→ (X, η) ,

(F,B)|M ′ = (f ′, b′) : (W, ν) ∩ (N × {1}) = (M ′, νM ′↪→N )→ (X, η) .

2

In particular, there is defined a cobordism (Wm+1;Mm,M ′m) such that the

normal 1-plane bundles νM↪→W , νM ′↪→W are trivial. Only cobordisms with this

property will be considered.

The computation of the bordism sets only became feasible with the develop-

ment of transversality.

Definition 6.5 A map g : Nn → T (η) from an n-manifold N to the Thom space

(5.18) of a k-plane bundle η : X → BO(k) is transverse at the zero section

X ↪→ T (η) if the inverse image is a closed (n− k)-dimensional submanifold

Mn−k = g−1(X) ⊆ N

with normal k-plane bundle

νM↪→N = f∗η : M
f
→ X

η
→ BO(k)

the pullback of η to M along the restriction f = g| : M → X, so that there is

defined a pullback bundle map

(f, b) : (M,νM↪→N )→ (X, η) . 2

Sard-Thom Transversality Theorem 6.6 ([88])

Every continuous map Nn → T (η) from an n-dimensional manifold to the Thom

space T (η) of a k-plane bundle η : X → BO(k) is homotopic to a map g : N →
T (η) which is transverse at the zero section X ↪→ T (η), with a pullback bundle

map

(f, b) : (M,νM↪→N )→ (X, η)

with f = g| : M = g−1(X)→ X.

Proof See Bredon [10, II.6] or Hirsch [33, Chapter 3]. 2



COBORDISM AND TRANSVERSALITY 127

Example 6.7 Let f : Nn → Kk be a differentiable function from an n-dimension-

al manifold N to a k-dimensional manifold K, with m = n−k > 0, and let x ∈ K
be a regular value. The normal bundle of X = {x} ↪→ K is the (trivial!) k-plane

bundle εk : X → BO(k) with Thom space

T (εk) = Sk .

If U ∼= Rk ⊆ K is a neighbourhood of x ∈ K then the composite

g : N
f
→ K → K/(K\U) = T (εk) = Sk

is transverse at the zero section X ↪→ T (εk). The inverse image is the m-

dimensional submanifold

M = g−1(x) = f−1(x) ⊆ N
with normal bundle

νM↪→N = εk : N → BO(k) ,

as already considered in the Implicit Function Theorem (2.12). 2

Pontrjagin-Thom Construction 6.8 Given an embedding f : Mm ↪→ Nn

with normal bundle νf : M → BO(n−m) and tubular neighbourhood E(νf ) ↪→ N

the projection defines a map

g : N → N/(N\E(νf )) = D(νf )/S(νf ) = T (νf )

which is transverse at the zero section M ↪→ T (νf ), with

g| = id. : g−1(M) = M →M . 2

Example 6.9 Apply the Pontrjagin-Thom construction to an embedding f :

S0 ↪→ Sn (n > 1), to obtain a map

g : Sn → Sn/(Sn\(S0 ×Dn)) = Sn ∨ Sn

representing

(1, 1) ∈ πn(Sn ∨ Sn) =

{
Z ∗ Z if n = 1

Z⊕ Z if n > 2.

Here is a picture for n�� �S1 g // S1 _ S1
2
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Thom Cobordism Theorem 6.10 ([88])

For any n-dimensional manifold Nn and k-plane bundle η : X → BO(k) the

bordism set Bm(N,X, η) (m = n− k) is in natural one-one correspondence with

the homotopy classes of maps N → T (η)

Bm(N,X, η) = [N,T (η)] .

Proof The function in one direction is given by the Sard-Thom Transversality

Theorem (6.6)

[N,T (η)]→ Bm(N,X, η) ; g 7→ (M, (f, b)) ,

with g transverse at the zero section X ↪→ T (ν), and f the restriction

f = g| : Mm = g−1(X)→ X .

The inverse function is defined by the Pontrjagin-Thom construction (6.8)

Bm(N,X, η)→ [N,T (η)] ; (M,f, b) 7→ h

with h the composite

h : N → N/(N\E(νM↪→N )) = T (νM↪→N )
T (b)
→ T (η) .

2

The identification Bm(N,X, η) = [N,T (η)] of 6.10 is already interesting in

the case m = 0, X = {∗}, η = εn when T (η) = Sn, when the bordism set

B0(N,X, η) = [N,Sn] is an abelian group isomorphic to Z by the degree, as

follows.

Definition 6.11 The degree of a map of oriented connected n-dimensional

manifolds f : Nn →Mn is the integer deg(f) ∈ Z characterised by

f∗[N ] = deg(f)[M ] ∈ Hn(M) = Z . 2

Example 6.12 Given a differentiable map f : Nn →Mn of oriented connected

n-dimensional manifolds and a regular value x ∈M let

f−1(x) = {y1, y2, . . . , yk} ⊆ N .

For each i = 1, 2, . . . , k there is defined an isomorphism of oriented n-dimensional

vector spaces

df(yi) : τN (yi)→ τM (x) .

Set
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εi =

{
+1

−1
if df(yi) is

{
orientation-preserving

orientation-reversing.

It follows from the commutative square

Hn(N) = Z
deg(f)

//
1
...

1


��

Hn(M) = Z

1

��
Hn(N,N\f−1(x)) = Zk

( ε1 . . . εk )
// Hn(M,M\{x}) = Z

that the degree is given by

deg(f) =

k∑
i=1

εi ∈ Z ,

as in the original definition of Brouwer. 2

Proposition 6.13 (Hopf)

For any connected oriented n-dimensional manifold N the degree (6.11) of maps

f : N → Sn defines an isomorphism

d : B0(N, {∗}, εn) = [N,Sn]→ Z ; f 7→ deg(f) .

Proof The inverse isomorphism d−1 : Z→ [N,Sn] sends 1 ∈ Z to the homotopy

class of the degree 1 map f : N → Sn constructed using any embedding Dn ↪→ N

and the Pontrjagin-Thom construction (6.8)

f : N
proj.
−−−→ N/(N\Dn) = Dn/Sn−1 = Sn .

See Chapter 6 of Milnor [56] for a more detailed exposition. 2

6.2 Framed cobordism

The identification of 6.13 for N = Sn

B0(Sn, {∗}, εn) = πn(Sn) = Z

can be viewed as the computation of the 0-dimensional framed cobordism group.

Framed cobordism was an important early special case of bordism :

Definition 6.14 A framing of an m-dimensional manifold Mm is an embed-

ding M ↪→ Sm+k together with a framing of the normal bundle

b : νM ∼= εk .

The pair (M, b) is a framed manifold. 2
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A manifold Mm can be framed if and only if the tangent bundle τM : M →
BO(m) is stably trivial.

Example 6.15 Let f : Rm+k → Rk be a differentiable function for which 0 ∈ Rk
is a regular value. The inverse image

M = f−1(0) ⊆ Rm+k = Sm+k\{pt.}

is a framed m-dimensional manifold, by Example 6.7. 2

Definition 6.16 The framed cobordism ring

Ωf r
∗ =

∞∑
m=0

Ωf r
m

is the graded ring of cobordism classes [M, b] of framed m-dimensional manifolds

(M, b). The addition is by disjoint union

[M, b] + [M ′, b′] = [M ∪M ′, b ∪ b′] ∈ Ωf r
m ,

and the multiplication is by cartesian product

Ωf r
m × Ωf r

n → Ωf r
m+n ; ([M, b], [N, c]) 7→ [M ×N, b× c] . 2

Pontrjagin Framed Cobordism Theorem 6.17 ([66])

The framed cobordism ring is isomorphic to the ring of the stable homotopy

groups of spheres

Ωf r
m = πSm (m > 0) .

Proof For each k > 0 6.10 gives identifications

Bm(Sm+k, {∗}, εk) = πm+k(Sk)

and

Ωf r
m = lim−→

k
Bm(Sm+k, {∗}, εk) = lim−→

k
πm+k(Sk) = πSm .

2

Proposition 6.18 (i) In terms of framed cobordism the J-homomorphism (5.80)

is the map

J : πm(SO(k))→ πm+k(Sk) = Bm(Sm+k, ∗, εk) ; ω 7→ (Sm, bω)

which sends the homotopy class of ω : Sm → SO(k) to the framed cobordism

class of the submanifold Sm ↪→ Sm+k with the framing
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bω : νSm↪→Sm+k = εk ∼= εk ,

where νSm↪→Sm+k = εk refers to the standard framing given by the standard

embedding

Sm ↪→ Sm+k = Sm ×Dk ∪Dm+1 × Sk−1 .

(ii) The image of J : πm(SO) → πSm = Ωf r
m consists of the framed cobordism

classes of spheres (Sm, c) with a choice of framing.

Proof (i) The inverse image J(ω)−1(∗) = Sm ⊂ Sm+k has the framing bω.

(ii) Immediate from (i). 2

Remark 6.19 Surgery theory grew out of the classification of homotopy spheres,

i.e. manifolds Σm homotopy equivalent to Sm. Given a framed m-dimensional

manifold (M, b) one can ask two questions :

(i) Is (M, b) framed cobordant to a sphere (Sm, c)?

(ii) Is (M, b) framed cobordant to a homotopy sphere (Σm, c)?

By (6.18) question (i) is equivalent to asking if (M, b) ∈ Ωf r
m is in the image of

J , and is thus answered by homotopy theory. (The image of J was much studied

in the 1960’s, notably by Adams.) Question (ii) is answered by surgery theory :

the simply-connected surgery obstruction morphism

σ∗ : Ωf r
m = πSm → Lm(Z) (m > 0)

is such that σ∗(M, b) = 0 if (and for m > 5 only if) (M, b) is framed cobordant

to a homotopy sphere – see Section 13.3 for a further discussion. 2

Example 6.20 The J-homomorphism

J : π1(SO(n))→ πn+1(Sn) = B1(Sn+1, ∗, εn) (n > 1)

is an isomorphism.

(i) The inverse of the isomorphism for n = 2

J : π1(SO(2)) = π1(S1) = Z→ π3(S2) = B1(S3, ∗, ε2)

is given by the Hopf invariant (5.76), as follows. Given an embedding k : S1 ↪→ S3

(which in general may be knotted) extend k to an embedding E(νk) ↪→ S3 as

a tubular neighbourhood. Let X = S3\k(S1) be the knot complement, and

let p : X → S1 be a map representing the generator 1 ∈ H1(X) = Z. (The
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computation H1(X) = Z is an easy application of the Mayer-Vietoris exact

sequence to

S3 = E(νk) ∪S(νk) cl.(S3\E(νk)) ,

noting that the inclusion cl.(S3\E(νk))→ X is a homotopy equivalence). Given

a framing b : νk ∼= ε2 use the diffeomorphism

b : E(νk) ∼= S1 × R2

to define a disjoint embedding

kb : S1 ↪→ S3 ; x 7→ b−1(x, (1, 0)) .

The degree of the composite map

p ◦ kb : S1 kb // X
p // S1

is the linking number of i(S1), kb(S
1) ↪→ S3, defining an invariant

H(S1, k, b) = d(p ◦ kb) ∈ Z

of the framed cobordism class (S1, k, b) ∈ B1(S3, ∗, ε2). The Hopf invariant iso-

morphism

H : π3(S2)→ Z ; (f : S3 → S2) 7→
∑
f−1(∗)

H(S1, k, b)

sends a map f : S3 → S2 to the sum of the invariants for the components of the

framed submanifold

f−1(∗) =
⋃
S1 ↪→ S3 .

The isomorphism

J : π1(SO(2)) = π1(S1) = Z→ π3(S2) = B1(S3, ∗, ε2)

sends a map ω : S1 → SO(2) = S1 (5.13) with degree d to a map J(ω) : S3 → S2

with Hopf invariant d. In particular, the map 1 : S1 → S1 of degree 1 has image

the map η = J(1) : S3 → S2 of Hopf invariant 1, with J(1)−1(∗) = S1 ↪→ S3 the

standard embedding with a nonstandard framing bη : νS1↪→S3 ∼= ε2.

(ii) The inverse of the isomorphism for n > 3

J : π1(SO(n)) = Z2 → πn+1(Sn) = B1(Sn+1, ∗, εn)

is given by the stable (i.e. mod 2) Hopf invariant. The stable J-homomorphism

is an isomorphism

J : π1(SO) = Z2 → Ωf r
1 = πS1

and Ωf r
1 is generated by (S1, bη). 2
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Example 6.21 The J-homomorphism

J : π2(SO(n)) = 0→ πn+2(Sn) = B2(Sn+2, ∗, εn) (n > 1)

is an isomorphism for n = 1, but not an isomorphism for n > 2. Pontrjagin [66]

showed that (in modern terminology)

Ωf r
2 = πn+2(Sn) = πS2 = L2(Z) = Z2 (n > 2) ,

detected by the Arf invariant, with the generator represented by T 2 with an

exotic framing b (cf. Example 11.77 below). 2

6.3 Unoriented and oriented cobordism

Definition 6.22 The unoriented cobordism ring

N∗ =

∞∑
m=0

Nm

is the graded ring with Nm the abelian group of cobordism classes [M ] of closed

m-dimensional manifolds Mm, with addition by disjoint union and multiplication

by cartesian product. 2

The Thom space of the universal k-plane bundle 1k : BO(k) → BO(k) is

denoted by MO(k). The effect on the Thom space of passing from a k-plane

bundle η : X → BO(k) to the stabilisation η ⊕ ε : X → BO(k + 1) is such a

suspension

T (η ⊕ ε) = ΣT (η) .

In particular, the classifying map BO(k)→ BO(k+ 1) for 1k ⊕ ε induces a map

of Thom spaces

T (1k ⊕ ε) = ΣMO(k)→ T (1k+1) = MO(k + 1) ,

defining a spectrum

MO = {ΣMO(k)→MO(k + 1) | k > 0} .

Unoriented Cobordism Theorem 6.23 (Thom [88])

The unoriented cobordism groups are isomorphic to the homotopy groups of the

spectrum MO

Nm = lim−→
k
πm+k(MO(k)) (m > 0) .

Proof For each k > 0 6.10 gives

Bm(Sm+k, BO(k), 1k) = πm+k(MO(k)) .

2
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For every m-dimensional manifold M the disjoint union M ∪M is the bound-

ary of M × I, so that every element of Nm is of exponent 2.

By reducing the geometry to homotopy theory and algebra Thom computed

N∗ to be the polynomial algebra over Z2

N∗ = Z2[xi | i > 1 , i 6= 2j − 1]

with one generator xi in each dimension i 6= 2j − 1, with xi = [RPi] if i is even.

The unoriented cobordism class of an m-dimensional manifold Mm is determined

by the Stiefel-Whitney numbers

wI(M) = 〈w1(M)i1w2(M)i2 . . . wn(M)in , [M ]〉 ∈ Z2

defined for any sequence I = (i1, i2, . . . , in) of integers ij > 0 such that

i1 + 2i2 + . . .+ nin = m ,

with wi(M) = wi(τM ) ∈ Hi(M ;Z2) the ith Stiefel-Whitney class of the tangent

bundle τM : M → BO(m).

Definition 6.24 The oriented cobordism ring

Ω∗ =

∞∑
m=0

Ωm

is the graded ring with Ωm the abelian group of cobordism classes [M ] of closed

oriented m-dimensional manifolds Mm. 2

The Thom space of the universal k-plane bundle 1k : BSO(k)→ BSO(k) is

denoted by MSO(k). As in the unoriented case there is defined a spectrum

MSO = {ΣMSO(k)→MSO(k + 1) | k > 0} .

Oriented Cobordism Theorem 6.25 (Thom [88])

The oriented cobordism groups are isomorphic to the homotopy groups of the

spectrum MSO

Ωm = lim−→
k
πm+k(MSO(k)) (m > 0) .

Proof For each k > 0 6.10 gives

Bm(Sm+k, BSO(k), 1k) = πm+k(MSO(k)) .

2
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Thom showed that

Ω∗ ⊗Q = Q[y4i | i > 1]

with one generator y4i = [CP2i] in dimension 4i for each i > 1. Milnor and Wall

then sharpened the result, proving that Ω∗ only has 2-torsion, and that the ori-

ented cobordism class of an oriented m-dimensional manifold Mm is determined

by the Stiefel-Whitney numbers wI(M) ∈ Z2 and the Pontrjagin numbers

pJ(M) = 〈p1(M)j1p 2(M)j2 . . . pn(M)jn , [M ]〉 ∈ Z

defined for any sequence J = (j1, j2, . . . , jn) of integers jk > 0 such that

4j1 + 8j2 + . . .+ 4njn = m ,

with pj(M) = pj(τM ) ∈ H4j(M) the jth Pontrjagin class of the tangent bundle

τM : M → BO(m). The forgetful maps from framed to oriented cobordism

Ωf r
m → Ωm (m > 1)

are 0, since the Stiefel-Whitney and Pontrjagin numbers of a framed manifold

are 0.

Remark 6.26 The low-dimensional cobordism groups are given by :

m 0 1 2 3 4 5 6 7 8

Nm Z2 0 Z2 0 (Z2)2 Z2 (Z2)3 Z2 (Z2)5

Ωm Z 0 0 0 Z Z2 0 0 Z2

2

6.4 Signature

Definition 6.27 (i) A symmetric form (K,λ) over R is a finite-dimensional

real vector space K together with a bilinear pairing

λ : K ×K → R ; (x, y) 7→ λ(x, y)

such that

λ(x, y) = λ(y, x) ∈ R .

The form is nonsingular if the adjoint linear map

adjoint(λ) : K → K∗ = HomR(K,R) ; x 7→ (y 7→ λ(x, y))

is an isomorphism.

(ii) A morphism of symmetric forms over R
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f : (K,λ)→ (K ′, λ′)

is a linear map f : K → K ′ such that

λ′(f(x), f(y)) = λ(x, y) ∈ R (x, y ∈ K) .

The morphism is an isomorphism if f : K → K ′ is an isomorphism. 2

Diagonal forms are particularly important :

Definition 6.28 Given λi ∈ R (1 6 i 6 n) define the diagonal symmetric form

over R
diag(λ1, λ2, . . . , λn) = (Rn, λ)

with

λ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =

n∑
i=1

λixiyi ∈ R . 2

Spectral Theorem 6.29 For every symmetric form (K,λ) over R there exists

a basis {v1, v2, . . . , vn} of K with

λ(vi, vj) =

{
λi if i = j

0 if i 6= j

for some λi ∈ R, corresponding to an isomorphism

f : diag(λ1, λ2, . . . , λn)→ (K,λ)

with

f : Rn → K ; (x1, x2, . . . , xn) 7→
n∑
i=1

xivi .

Proof For an arbitrary basis {u1, u2, . . . , un} of K choose a basis for each

eigenspace of the symmetric n× n matrix (λ(ui, uj)). Apply the Gram-Schmidt

process to each of these bases, to obtain an orthonormal basis for K consisting

of eigenvectors {v1, v2, . . . , vn}. 2

Definition 6.30 (i) A symmetric form (K,λ) over R is positive definite if

λ(x, x) > 0 (x ∈ K\{0}) ,
in which case it is nonsingular. Similarly for negative definite with λ(x, x) < 0.

(ii) The positive index of a symmetric form (K,λ) over R is

Ind+(K,λ) = max dim(U) > 0 ,

the maximum dimension of a subspace U ⊆ K such that the restricted form

(U, λ|) is positive definite. Similarly for the negative index Ind−(K,λ).

(iii) The signature of a symmetric form (K,λ) over R is

σ(K,λ) = Ind+(K,λ)− Ind−(K,λ) ∈ Z . 2
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Remark 6.31 (i) Nonsingular forms are sometimes called nondegenerate forms.

The index of a symmetric form is usually defined to be the negative index. Sig-

nature used to be called the inertia of a symmetric form, and (confusingly) also

the index.

(ii) An inner product space (K,λ) is a vector space K together with a positive

definite symmetric form λ. The signature of an inner product space is

σ(K,λ) = Ind+(K,λ) = dim(K) . 2

Example 6.32 The diagonal form diag(λ1, λ2, . . . , λn) is such that

Ind±(diag(λ1, λ2, . . . , λn)) = I±

with I+ (resp. I−) the number of strictly positive (resp. negative) λi’s. 2

The indices and signature are isomorphism invariants, so that for any sym-

metric form (K,λ) and any diagonal form diag(λ1, λ2, . . . , λn) isomorphic to

(K,λ) (with n = dimR(K))

Ind±(K,λ) = Ind±(diag(λ1, λ2, . . . , λn)) = I± ,

σ(K,λ) = σ(diag(λ1, λ2, . . . , λn)) = I+ − I− .

Furthermore

Ind+(K,λ) + Ind−(K,λ) = I+ + I− = n− r

where
r = dimR {x ∈ K |λ(x, y) = 0 ∈ R for all y ∈ K}

= |{i |λi = 0}|

with r = 0 if and only if (K,λ) is nonsingular.

Symmetric forms over R are classified by rank and index, according to the

following classic 19th century result.

Sylvester’s Law of Inertia 6.33 Two symmetric forms (K,λ), (K ′, λ′) over

R are isomorphic if and only if

dimR(K) = dimR(K ′) , Ind±(K,λ) = Ind±(K ′, λ′) .

Proof By the Spectral Theorem 6.29 every symmetric form (K,λ) is isomorphic

to diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), with Ind+(K) 1’s, Ind−(K) (−1)’s and

dimR(K)− Ind+(K)− Ind−(K) 0’s. 2
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Definition 6.34 The nonsingular hyperbolic symmetric form over R

H(L) = (L⊕ L∗, λ)

is defined for any finite-dimensional real vector space L by

λ : L⊕ L∗ × L⊕ L∗ → R ; ((x, f), (y, g)) 7→ f(y) + g(x) ,

with

Ind+H(L) = Ind−H(L) = dimR(L) ∈ N , σ(H(L)) = 0 ∈ Z . 2

Proposition 6.35 Two nonsingular symmetric forms (K,λ), (K ′, λ′) over R
are related by an isomorphism

f : (K,λ)⊕H(L)→ (K ′, λ′)⊕H(L′)

for some finite-dimensional real vector spaces L,L′ if and only if

σ(K,λ) = σ(K ′, λ′) ∈ Z .

Proof Immediate from the Spectral Theorem 6.29 and Sylvester’s Law of Iner-

tia 6.33, on noting that for any real numbers λ, µ with µ < 0 < λ there is defined

an isomorphism of symmetric forms
1√
λ

1

2
√
λ

1√−µ
−1

2
√−µ

 : H(R)→ diag(λ, µ) .

2

Definition 6.36 (i) Given a symmetric form (K,λ) over R and a subspace L ⊆
K let

L⊥ = {x ∈ K |λ(x, y) = 0 ∈ R for all y ∈ L} .
(ii) A lagrangian of a nonsingular symmetric form (K,λ) over R is a subspace

L ⊆ K such that

L = L⊥ . 2

Proposition 6.37 The following conditions on a nonsingular symmetric form

(K,λ) over R are equivalent :

(i) (K,λ) is isomorphic to a hyperbolic form,

(ii) σ(K,λ) = 0 ∈ Z,

(iii) (K,λ) admits a lagrangian L.
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Proof (i) ⇐⇒ (ii) Immediate from 6.35.

(i) =⇒ (iii) The hyperbolic form H(L) has lagrangian L.

(iii) =⇒ (i) Choose a direct summand M to L in K. The linear maps

f : M → L∗ ; x 7→ (y 7→ λ(x, y)) ,

g : M
λ|
−→ M∗

(f−1)∗

−−−→ L∗∗ = L ,

h =

(
1 g/2

0 f

)
: K = L⊕M → L⊕ L∗

are such that h : (K,λ) ∼= H(L) is an isomorphism of symmetric forms. 2

Definition 6.38 The intersection form of a closed oriented 4k-dimensional

manifold M4k is the nonsingular symmetric form over R (H2k(M ;R), λ) with

λ : H2k(M ;R)×H2k(M ;R)→ R ; (x, y) 7→ 〈x ∪ y, [M ]〉 .

The signature of M is the signature of the intersection form

σ(M) = σ(H2k(M ;R), λ) ∈ Z . 2

The intersection form (H2k(M ;R), λ) is just the R-coefficient version of the

homology intersection form of Definition 4.11, identifyingH2k(M ;R) = H2k(M ;R)

by Poincaré duality.

Example 6.39 The intersection form of S2k × S2k is hyperbolic (6.34)

(H2k(S2k × S2k;R), λ) = H(R) = (R⊕ R,
(

0 1

1 0

)
) ,

so that the signature is

σ(S2k × S2k) = σ(H(R)) = 0 . 2

Example 6.40 The intersection form of the complex projective space CP2k is

the symmetric form

(H2k(CP2k;R), λ) = (R, 1) ,

and the signature is

σ(CP2k) = σ(R, 1) = 1 . 2

We refer to Hirzebruch [34] and Chapters 15,19 of Milnor and Stasheff [61]

for the definition of the L -genus of an oriented vector bundle η : M → BSO

L(η) = L(p1(η), p2(η), . . .) ∈ H4∗(M ;Q)
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The 4k-dimensional component

Lk(M) = Lk(p1(M), p2(M), . . . , pk(M)) ∈ H4k(M ;Q)

is a polynomial in the Pontrjagin classes of the form

L k(p1, p2, . . . , pk) = skpk + terms with pj for j < k

with

sk =
22k(22k−1 − 1)

(2k)!
Bk

involving the kth Bernoulli number Bk. The L -genus of an oriented manifold

M is defined by

L(M) = L(τM ) = L(p1(M), p2(M), . . .) ∈ H4∗(M ;Q)

with pk(M) = pk(τM ) ∈ H4k(M) the kth Pontrjagin class.

Hirzebruch Signature Theorem 6.41 (1952)

The signature of a closed oriented 4k-dimensional manifold M4k is given by

σ(M) = 〈L k(M), [M ]〉 ∈ Z

Proof The first proof was a direct consequence of Thom’s computation

Ω∗ ⊗Q = Q[y4k | k > 1]

with y4k = [CP2k]. For any n > 1 the Pontrjagin classes of the n-dimensional

complex projective space CPm are given by

pj(CPm) = pj(τCPm) =

(
m+ 1

j

)
∈ H4j(CPm) = Z (0 6 j 6 m/2)

(Milnor and Stasheff [61, p.177]). For m = 2k the evaluation

〈L k(CP2k), [CP2k]〉 = 1 ∈ Z

coincides with the signature of CP2k

σ(CP2k) = σ(H2k(CP2k), λ) = σ(Z, 1) = 1 ∈ Z .

See Hirzebruch [34] and Chapter 19 of [61] for further details. 2
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Example 6.42 The first three L -polynomials are given by

L 1(p1) =
1

3
p1 ,

L 2(p1, p2) =
1

45
(7p 2 − p 2

1 ) ,

L 3(p1, p2, p3) =
1

945
(62p 3 − 13p 2p 1 + 2p 3

1 ) .

and

p1(CP2) = 3 , σ(CP2) = 〈L 1(CP2), [CP2]〉 = 1 ,

p1(CP4) = 5 , p 2(CP4) = 10 , σ(CP4) = 〈L 2(CP4), [CP4]〉 = 1 ,

p1(CP6) = 7 , p 2(CP6) = 21 , p 3(CP6) = 35 ,

σ(CP6) = 〈L 3(CP6), [CP6]〉 = 1 .

2

The signature is also defined for an oriented 4k-dimensional manifold with

boundary (M,∂M), but there is no corresponding expression in terms of the

L -genus L(M) ∈ H4∗(M ;Q). (For one thing, it is not possible to evaluate

Lk(M) ∈ H4k(M ;Q) on the fundamental class [M ] ∈ H4k(M,∂M ;Q), and in

any case H4k(M ;Q) = H0(M,∂M ;Q) = 0 if ∂M and M have the same number

of path components).

Proposition 6.43 The signature of closed oriented 4k-dimensional manifolds

is an oriented cobordism invariant, with

σ(M) = σ(N) ∈ Z

for any oriented (4k + 1)-dimensional cobordism (W ;M,N).

Proof It suffices to prove that σ(∂W ) = 0 for an oriented (4k+ 1)-dimensional

manifold with boundary (W,∂W ). Let

(K,λ) = (H2k(∂W ;R), [∂W ] ∩ −)

be the intersection form of ∂W , with [∂W ] ∈ H4k(∂W ;R). The Poincaré duality

isomorphisms define an isomorphism of exact sequences

. . . // H2k(W ;R)

∼=[W ] ∩ −
��

i∗ // H2k(∂W ;R)

∼=[∂W ] ∩ −
��

// H2k+1(W,∂W ;R)

∼=[W ] ∩ −
��

// . . .

. . . // H2k+1(W,∂W ;R) // H2k(∂W ;R)
i∗ // H2k(W ;R) // . . .
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with i : ∂W → W the inclusion. It follows that the inclusion j : L → K of the

subspace

L = im(i∗ : H2k(W ;R)→ H2k(∂W ;R)) ⊆ K = H2k(∂W ;R)

is such that there is defined an exact sequence

0 // L
j // K

j∗λ // L∗ // 0

and L is a lagrangian (6.36) in (K,λ). By 6.37 j extends to an isomorphism of

symmetric forms

H(L) = (L⊕ L∗,
(

0 1

1 0

)
)→ (K,λ) ,

and the signature of ∂W is

σ(∂W ) = σ(K,λ) = σ(H(L)) = 0 ∈ Z .

2

In particular, the signature defines morphisms on the 4k-dimensional oriented

cobordism group

σ : Ω4k → Z ; [M ] 7→ σ(M) .

Example 6.44 The signature map is an isomorphism

σ : Ω4 → Z ; [M ] 7→ σ(M) ,

with σ(CP2) = 1. 2
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EMBEDDINGS, IMMERSIONS AND SINGULARITIES

The one-one correspondence between algebraic and geometric surgeries below

and in the middle dimension is central to surgery theory. This chapter describes

the algebraic and geometric intersection properties of submanifolds used to es-

tablish this one-one correspondence in subsequent chapters.

Section 7.1 states the Whitney Embedding and Immersion Theorems : every

map of manifolds f : Nn → Mm is arbitrarily close to an embedding if 2n <

m, and arbitrarily close to an immersion if 2n = m. Section 7.2 treats the

algebraic and geometric intersections of immersions, including self-intersections.

Section 7.3 describes the Whitney trick for removing pairs of double points in

manifolds of dimension m > 5. Section 7.4 is a brief account of the Smale-Hirsch

classification theory of immersions. Finally, Section 7.5 describes the unique type

of singularities arising for generic maps f : Nn →M2n−1.

7.1 The Whitney Immersion and Embedding Theorems

Here are the statements :

Whitney Immersion Theorem 7.1 ([97], [99])

For 2n 6 m every map f : Nn → Mm is homotopic to an immersion N # M ,

and for 2n+ 1 6 m any two homotopic immersions are regular homotopic. 2

Whitney Embedding Theorems 7.2 ([97], [99])

(i) For 2n + 1 6 m every map f : Nn → Mm is homotopic to an embedding

N ↪→M , and for 2n+ 2 6 m any two homotopic embeddings are isotopic.

(ii) For n > 3 and π1(M) = {1} every map f : Nn → M2n is homotopic to an

embedding N ↪→M . 2

A map f : Nn → Mm with 2n > m cannot in general be approximated by

embeddings. Example 11.33 gives an explicit map which cannot be approximated,

with m = 2n.

A map f : Nn → Mm with 2n − 1 > m cannot in general be approximated

by immersions. See Section 7.5 below for the unique type of singularity arising

in the case m = 2n− 1.
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The essential difference between immersions and embeddings are the double

points :

Definition 7.3 (i) The ordered double point set of a map f : N → M is

the set

S2(f) = {(x1, x2) ∈ N ×N |x1 6= x2 ∈ N, f(x1) = f(x2) ∈M} .

(ii) The unordered double point set of a map f : N →M is the set

S2[f ] = S2(f)/Z2 ,

with Z2 acting by (x1, x2) 7→ (x2, x1). The projection

S2(f)→ S2[f ] ; (x1, x2) 7→ [x1, x2]

is a double covering map. 2

Proposition 7.4 An embedding N ↪→ M is an immersion N # M with no

double points. 2

If f : Nn #Mm is a generic ‘self-transverse’ immersion of an n-dimensional

manifoldN in anm-dimensional manifoldM then S2(f) is a (2n−m)-dimensional

manifold. Thus for 2n < m a generic immersion is an embedding.

The approximation theorems (7.1,7.2) for maps of manifolds are global ver-

sions of the following results for linear maps of vector spaces.

Let Mm,n(R) be the vector space of m× n matrices (aij)16i6m,16j6n with

coefficients aij ∈ R, with m rows and n columns. The function

Mm,n(R)→ HomR(Rn,Rm) ;

A = (aij) 7→
(
fA : (x1, x2, . . . , xn) 7→ (

n∑
j=1

a1jxj ,
n∑
j=1

a2jxj , . . . ,
n∑
j=1

amjxj)

)
is an isomorphism of vector spaces, such that

fAB = fAfB : Rp → Rn → Rm

for A ∈Mm,n(R), B ∈Mn,p(R). Regarding Mm,n(R) as a differentiable manifold

there is an evident identification

Mm,n(R) = Rmn .

The invertible elements of Mm,m(R) define the general linear group under mul-

tiplication

GLm(R) = Mm,m(R)\det−1(0) ⊂Mm,m(R)

an open m2-dimensional submanifold.
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Proposition 7.5 For k 6 n 6 m the subset Rk ⊂ Mm,n(R) consisting of the

m × n matrices having rank exactly k is an open submanifold of Mm,n(R) of

dimension

dim(Rk) = k(m+ n− k) .

Proof The m× n matrix

Jk =

(
Ik 0

0 0

)
has rank k. An m× n matrix X has rank k if and only if

X = AJkB
−1

for some A ∈ GLm(R), B ∈ GLn(R). Now AJkB
−1 = A′JkB′−1 if and only if

(A′−1A)Jk(B′−1B)−1 = Jk ,

so that Rk is the coset space

Rk = G/H

with
G = GLm(R)×GLn(R) ,

H = {(A,B) ∈ G |AJkB−1 = Jk} .
Invertible matrices

A =

(
A1 A2

A3 A4

)
∈ GLm(R) , B =

(
B1 B2

B3 B4

)
∈ GLn(R)

with A1, B1 ∈Mk,k(R) are such that (A,B) ∈ H if and only if

A1 = B1 ∈ GLk(R) , A3 = 0 ∈Mm−k,k(R) , A4 ∈ GLm−k(R) ,

B2 = 0 ∈Mk,n−k(R) , B4 ∈ GLm−k(R) ,

so that H is the subgroup of G consisting of the pairs of the form

(A,B) = (

(
L M

0 N

)
,

(
L 0

P Q

)
)

with
L ∈ GLk(R) , M ∈Mk,m−k(R) ,

N ∈ GLm−k(R) , P ∈Mn−k,k(R) , Q ∈ GLn−k(R) .

Thus

dim(G) = m2 + n2 ,

dim(H) = k2 + k(m− k) + (m− k)2 + (n− k)k + (n− k)2

= m2 + n2 − k(m+ n− k) ,

and

dim(Rk) = dim(G)− dim(H) = k(m+ n− k) .

2
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Note that k(m+ n− k) is an increasing function of k for k 6 n 6 m, so that

dim(R0) = 0 6 dim (R1) = m+ n− 1 6 . . .

6 dim(Rn−1) = (m+ 1)(n− 1) 6 dim(Rn) = mn .

Example 7.6 (i) If m = 2n then

dim(Rn−2) = 2n2 − 2n− 4 , dim(Rn−1) = (2n+ 1)(n− 1) .

(ii) If m = 2n− 1 then

dim(Rn−2) = 2n2 − 3n− 2 , dim(Rn−1) = 2n(n− 1) . 2

Here is a sketch proof of the Whitney Immersion Theorem (7.1) :

Proposition 7.7 If 2n 6 m every map f : Nn →Mm is arbitrarily close to an

immersion f ′ : N #M .

Sketch proof Arbitrarily close means that given a metric d on M and ε > 0

there is an immersion f ′ : N #M such that

d(f(x), g(x)) < ε for all x ∈ N .

First, it is possible to approximate f arbitrarily closely by a C∞ map, which will

also be called f . Near each point of N it can be assumed that local coordinates

chosen, so that f can be regarded as a differentiable map f : Rn → Rm. The

differential of f is a differentiable map

df : Rn →Mm,n(R) = R0 ∪R1 ∪ . . . ∪Rn ; x 7→ (y 7→ df(x)(y))

which is arbitrarily close to a map F : Rn → Mm,n(R) which is transverse at

each of the submanifolds Rk ⊂Mm,n(R) (0 6 k 6 n− 1) with

dimF−1(Rk) = n− (mn− dim(Rk))

6 n− (mn− dim(Rn−1))

= n−mn+ (n− 1)(m+ 1) = 2n−m− 1 < 0 .

Thus df is arbitrarily close to a map F : Rn →Mm,n(R) with

F (Rn) ⊆Mm,n(R)\(R0 ∪R1 ∪ . . . ∪Rn−1) = Rn

(i.e. each F (x) : Rn → Rm is injective). Any map F with F (Rn) ⊆ Rn is the

differential of an immersion Rn → Rm. Also, the set of immersions is open in

the Cr-topology (for any r > 1) on the set of differentiable functions Rn → Rm.

Hence, using standard pasting arguments the result follows. 2

Here is a sketch proof of the Whitney Embedding Theorem (7.2) (i) below

the middle dimension :
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Proposition 7.8 If 2n+ 1 6 m every immersion f : Nn #Mm is arbitrarily

close to an embedding f ′ : N ↪→M .

Sketch proof The diagonal ∆(M) ⊂M ×M is an m-dimensional submanifold

of the 2m-dimensional manifold M ×M , and

im(f × f : N ×N →M ×M) ⊂M ×M

is a union of submanifolds of dimension 6 2n. As m + 2n < 2m an arbitrarily

small modification of f will avoid ∆(M). 2

Definition 7.9 A double point x = (x1, x2) ∈ S2(f) of an immersion f : Nn #
M2n is transverse if the linear map of tangent spaces

(df(x1) df(x2)) : τN (x1)⊕ τN (x2)→ τM (f(x))

is an isomorphism. 2

The triple point set of a map f : N →M is defined by

S3(f) = {(x1, x2, x3) ∈ N×N×N |xi 6= xj for i 6= j, f(x1) = f(x2) = f(x3) ∈M} .

Definition 7.10 An immersion f : Nn # M2n is self-transverse if it has no

triple points, and only a finite number of transverse double points. 2

Proposition 7.11 Every immersion f : Nn # M2n is arbitrarily close to a

self-transverse immersion.

Proof The triple point set S3(f) of an immersion f : Nn #Mm is generically

(3n− 2m)-dimensional, and 3n− 2m < 0 in our case m = 2n.

By general position arguments it can be assumed that

im(f × f : N ×N #M ×M) ∩∆(M)

is a set of dimension 0, so that S2(f) must be discrete. If there exists a double

point which is not transverse then an arbitrarily small modification of f will

either remove the double point or change the map to one for which this rank

condition holds. 2

See Theorems 2.12, 2.13 of Hirsch [33] for more detailed proofs of the Whitney

Immersion and Embedding Theorems.
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The figure 8 immersion S1 # S2 has the following high-dimensional general-

isation to immersions with a single double point :

Proposition 7.12 For each n > 1 and ε = ±1 there exists a null-homotopic

self-transverse immersion f εn : Sn # S2n with an ordered double point xε ∈
S2(f εn) such that

I(xε) = ε , S2[f εn] = {[xε]} ,
and oriented normal bundle

νfεn = − ετSn : Sn → BSO(n) .

Proof For n = 1, take f+
1 : S1 # S2 to be the figure 8 immersion, and let

f−1 = f+
1 r : S1 # S2 with

r : S1 → S1 ; (cos θ, sin θ) 7→ (cos θ,−sin θ) .

For n > 2 use the following construction of immersions Sn # R2n, which may

be composed with the standard embedding R2n ↪→ S2n. Start with

Dn
1 = {(x1, . . . , xn, 0, . . . , 0) ∈ R2n |

n∑
i=1

x2
i 6 1} ,

Dn
2 = {(0, . . . , 0, y1, . . . , yn) ∈ R2n |

n∑
i=1

y2
i 6 1} .

The intersections

S2n−1 ∩Dn
1 = Sn−1

1 , S2n−1 ∩Dn
2 = Sn−1

2

are linked spheres in S2n−1. For 0 6 t 6 1 let

φt =

(
cos(πt/2)In sin(πt/2)In

−sin(πt/2)In cos(πt/2)In

)
: R2n → R2n .

The embeddings

φ̄t : Sn−1 ↪→ R2n ; x 7→
√

1 + sin2(πt) · φt(x) (0 6 t 6 1)

define an isotopy between φ̄0(S2n−1) = S2n−1
1 and φ̄1(S2n−1) = S2n−1

2 in the

complement of the unit ball in R2n. The map
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f+
n : Sn = Dn×{0, 1}∪Sn−1×I → R2n ;


(x1, . . . , xn, 0) 7→ (x1, . . . , xn, 0, . . . , 0)

(y1, . . . , yn, 1) 7→ (0, . . . , 0, y1, . . . , yn)

(z, t) 7→ φ̄t(z)

is the desired immersion of Sn in R2n. To obtain the immersion f−n with a double

point of complementary index modify φt to

φ′t = µtφt where µt =


In−1 0 0 0

0 cos(πt) sin(πt) 0

0 −sin(πt) cos(πt) 0

0 0 0 In−1

 .

2

7.2 Algebraic and geometric intersections

The homology intersection pairing (4.66) of an oriented cover (M̃, π, w) of an

m-dimensional manifold M

λ : Hn(M̃)×Hm−n(M̃)→ Z[π]

will now be related to the geometric intersections of transverse submanifolds and

immersed submanifolds. The two most important cases are :

(i) the identity cover, with M̃ = M , π = {1},
(ii) the universal cover, with π = π1(M), w = w(M).

Definition 7.13 A π-trivial map f : Nn → Mm is a map from an oriented

manifold N such that the composite

π1(N)
f∗ // π1(M) // π

is trivial, so that the pullback cover Ñ = f∗M̃ of N is trivial, together with a

choice of π-equivariant lift f̃ : Ñ = π ×N → M̃ of f . 2

A π-trivial map f : Nn →Mm represents a homology class

f̃∗[N ] ∈ Hn(M̃)

which will usually be denoted [N ] ∈ Hn(M̃). The normal bundle νf : N →
BO(m − n) of a π-trivial immersion f : Nn → Mm is oriented, since τN is

oriented (by hypothesis),

τN ⊕ νf = f∗τM : M → BO(m)

and
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w(νf ) : π1(N)
f∗ //

0 ))

π1(M)

��

w(M)
// Z2

π

77 .

Definition 7.14 The algebraic intersection of π-trivial maps f1 : Nn1
1 →

Mn1+n2 , f2 : Nn2
2 →Mn1+n2 is

λalg(N1, N2) = λ([N1], [N2]) ∈ Z[π] . 2

In terms of the Z[π]-module Umkehr chain maps (4.67)

λalg(N1, N2) = (f !
1 ⊗ f !

2 )∆[M ] ∈ H0(C(Ñ1)t ⊗Z[π] C(Ñ2)) = Z[π] ,

with C(Ñ1)t as defined in the proof of 4.58 (except that we are now working

with the cellular chain complexes C rather than the singular chain complexes S)

and

(fi)
! : C(M̃)→ C(Ñi)∗−m+ni (i = 1, 2) .

In 7.22 below the algebraic intersection λalg(N1, N2) of transverse immersions

will be identified with the geometric intersection.

Example 7.15 Let η : N → BSO(n) be an oriented n-plane bundle over an

oriented connected n-dimensional manifold N . The total pair of the fibre bundle

(Dn, Sn−1)→ (D(η), S(η))→ N

is an oriented 2n-dimensional manifold with boundary

(M,∂M) = (D(η), S(η)) .

The zero section of η is an embedding

f : N ↪→M = D(η) ; x 7→ (x, 0) ,

which is a homotopy equivalence with an Umkehr chain equivalence

f ! : C(M,∂M) ' C(M)2n−∗ f∗
−−−−−→ C(N)2n−∗ ' C(N)∗−n

and

λalg(N,N) = (f ! ⊗ f !)∆(M,∂M)[M ] ∈ H0(N ×N) = Z

with [M ] ∈ H2n(M,∂M) the fundamental class. The Umkehr chain equivalence

is just the Thom chain equivalence

f ! = Uη ∩ − : Ċ(T (η)) = C(M,∂M)
' // C(N)∗−n
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with a commutative diagram

H2n(M,∂M)

∼=f !

��

∆(M,∂M) // H2n(M ×M,M × ∂M ∪ ∂M ×M)

∼=f ! ⊗ f !

��
Hn(N)

e(η) ∩ −
// H0(N) ∼=

∆N // H0(N ×N)

The algebraic intersection of f : N →M with itself is therefore the Euler number

of η

λalg(N,N) = ∆N (e(η) ∩ [N ]) = χ(η) ∈ H0(N ×N) = Z ,

the image of the Euler class e(η) ∈ Hn(N) under the Poincaré duality isomor-

phism

[N ] ∩ − : Hn(N)
∼= // H0(N) = Z . 2

Example 7.16 For any k > 1 define the embedding of complex projective spaces

N2k = CPk ↪→M4k = CP2k ; [z0, z1, . . . , zk] 7→ [z0, z1, . . . , zk, 0, . . . , 0]

with [z0, z1, . . . , zk] ⊂ Ck+1 the 1-dimensional subspace spanned by (z0, z1, . . . , zk) ∈
Ck+1. The normal bundle

νCPk↪→CP2k = kη : CPk → BSO(2k)

is the Whitney sum of k copies of the canonical (complex) line bundle

νCPk↪→CPk+1 = η : CPk → BSO(2) = CP∞

with S(η) = S2k+1, and

[N ] = 1 ∈ H2k(M) = Z , λ(N,N) = χ(kη) = 1 ∈ Z . 2

Definition 7.17 (i) The double point set of maps fi : Ni → M (i = 1, 2) is

defined by

S2(f1, f2) = {(x1, x2) ∈ N1 ×N2 | f1(x1) = f2(x2) ∈M}

= (f1 × f2)−1(∆(M))

with

∆(M) = {(x, x) |x ∈M} ⊂M ×M
the diagonal subspace.

(ii) A double point x = (x1, x2) ∈ S2(f1, f2) of immersions f1 : Nn1
1 #Mn1+n2 ,

f2 : Nn2
1 #Mn1+n2 is transverse if the linear map

df(x) = (df1(x1) df2(x2)) : τN1(x1)⊕ τN2(x2)→ τM (f(x))

is an isomorphism.

(iii) Immersions fi : Nni
i # Mn1+n2 (i = 1, 2) have transverse intersection

(or are transverse) if each double point is transverse and S2(f1, f2) is finite. 2
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At a transverse double point x = (x1, x2) ∈ S2(f1, f2) of π-trivial immersions

f1 : Nn1
1 # Mn1+n2 , f2 : Nn2

2 # Mn1+n2 let g(x) ∈ π be the unique covering

translation M̃ → M̃ such that

f̃2(x2) = g(x)f̃1(x1) ∈ M̃ .

The lifted immersions g(x)f̃1 : N1 # M̃ , f̃2 : N2 # M̃ have a transverse double

point

x̃ = (x1, x2) ∈ S2(g(x)f̃1, f̃2)

and there is defined an isomorphism of oriented m-dimensional vector spaces

df̃(x) = (d(g(x)f̃1) df̃2) : τN1(x1)⊕ τN2(x2)→ τ
M̃

(f̃1(x1)) .

Definition 7.18 The equivariant index I(x) ∈ Z[π] of a transverse double

point x = (x1, x2) ∈ S2(f1, f2) is

I(x) = w(x)g(x) ∈ {±π} ⊂ Z[π]

with

w(x) =

{
+1 if df̃(x) preserves orientations

−1 otherwise .
2

Remark 7.19 (i) The definition of the double point set in 7.17 also applies in

the case f1 = f2 = f : N →M . In this case

S2(f, f) = ∆(N) ∪ S2(f) (disjoint union)

with S2(f) the ordered double point set of 7.3. The definition of the equivariant

index I(x) ∈ Z[π] in 7.18 applies just as well to a transverse ordered double point

x = (x1, x2) ∈ S2(f) of a π-trivial immersion f : Nn #M2n.

(ii) The effect on the equivariant index of a change of order in the double point

is given by

I(x2, x1) = (−1)n1n2I(x1, x2) ∈ Z[π]

with Z[π]→ Z[π]; a 7→ a the w-twisted involution (4.55), since there is defined a

commutative diagram of isomorphisms of oriented m-dimensional vector spaces

τN1
(x1)⊕ τN2

(x2)
( df̃1 d(g(x)−1f̃2) )

//(
0 1

1 0

)
��

τ
M̃

(f̃1(x1))

dg(x)

��
τN2

(x2)⊕ τN1
(x1)

( df̃2 d(g(x)f̃1) )
// τ
M̃

(f̃2(x2)) .

(iii) If f̃ ′i : Ni # M̃ (i = 1, 2) are other lifts of fi let hi ∈ π be the unique

elements such that
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f̃ ′i(y) = hif̃i(y) ∈ M̃ for all y ∈ N .

The effect of changing the lifts is given by

I ′(x) = h2I(x)w(h1)h−1
1 ∈ Z[π] . 2

Definition 7.20 The geometric intersection of transverse π-trivial immer-

sions f1 : Nn1 #Mn1+n2 , f2 : Nn2
2 #Mn1+n2 is

λgeo(N1, N2) =
∑

x∈S2(f1,f2)

I(x) ∈ Z[π] .

Likewise for a self-transverse π-trivial immersion f : Nn #M2n

λgeo(N,N) =
∑

x∈S2(f)

I(x) ∈ Z[π] . 2

For any immersion f : Nn #Mm there exists a differentiable function

e : M → Rp = Dp\Sp−1 (p large)

such that the immersion

f ′ : N #M ×Dp ; x 7→ (f(x), e(x))

is an embedding approximating f , with a regular homotopy to the immersion

f × 0 : N #M ×Dp ; x 7→ (f(x), 0)

and normal bundle

νf ′ = νf×0 = νf ⊕ εp : N → BO(m− n+ p) .

Definition 7.21 (i) The stable π-equivariant geometric Umkehr map of

an immersion f : Nn #Mm

F : ΣpM̃+ → ΣpT (νf̃ )

is defined by collapsing the complement of E(νf̃ ′) ⊂ M̃ ×Dp

F : (M̃ ×Dp)/(M̃ × Sp−1) = ΣpM̃+

→ (M̃ ×Dp)/((M̃ ×Dp)\E(νf̃ ′)) = T (νf̃ ′) = ΣpT (νf̃ )

with M̃+ = M̃ ∪{pt.}. The geometric Umkehr map F induces the π-equivariant

homology Umkehr map

F∗ = f ′! = f ! : Ḣ∗+p(Σ
pM̃+) = H∗(M̃)→ Ḣ∗+p(T (νf̃ ′)) = H∗−m+n(Ñ) .
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(ii) For an embedding f : N ↪→ M take p = 0 in (i) to obtain the unstable

π-equivariant geometric Umkehr map

F = projection : M̃+ → M̃/(M̃\E(νf̃ )) = T (νf̃ )

which is just the π-equivariant map given by the Pontrjagin-Thom construction

(6.8) for the embedding f̃ : Ñ ↪→ M̃ . 2

Proposition 7.22 The algebraic and geometric intersections of transverse π-

trivial immersions fi : Nn1
1 #Mn1+n2 , f2 : Nn2

2 #Mn1+n2 coincide

λalg(N1, N2) = λgeo(N1, N2) ∈ Z[π] .

Proof Approximate the immersions fi by embeddings

f ′i : Ni ↪→M ×Dpi ; xi 7→ (fi(xi), ei(xi)) (pi large) ,

which determine geometric Umkehr maps for fi

Fi : ΣpiM̃+ → ΣpiT (νf̃i) (i = 1, 2) .

Let p = p1 + p2. The embedding

f ′ : N = S2(f1, f2) ↪→M ×Dp = M ×Dp1 ×Dp2 ;

x = (x1, x2) 7→ (f(x), e1(x1), e2(x2))

approximates f , and determines a π-equivariant geometric Umkehr map F :

ΣpM̃+ → ΣpT (νf̃ ) inducing the Umkehr Z[π]-module chain map f ! : C(M̃) →
C(Ñ)∗−m+n. The Umkehr Z[π]-module chain maps

f !
i : C(M̃)→ C(Ñi)∗+ni−m (i = 1, 2)

are induced by stable π-equivariant geometric Umkehr maps

Fi : (M̃ ×Dpi)/ (M̃ × Spi−1) = ΣpiM̃+ →
(M̃ ×Dpi\E(νf̃ ′i

))/(M̃ × Spi−1) = ΣpiT (νf̃i) .

The commutative square of geometric Umkehr and diagonal maps

ΣpM+
Σp∆ //

F

��

Σp1M̃+ ∧π Σp2M̃+

F1 ∧ F2

��
ΣpT (νf )

Σp∆ // Σp1T (νf̃1) ∧π Σp2T (νf̃2)

induces a commutative square of morphisms in homology



ALGEBRAIC AND GEOMETRIC INTERSECTIONS 155

H∗(M ;Zw)
∆ //

f !

��

H∗(C(M̃)t ⊗Z[π] C(M̃))

f !
1 ⊗ f !

2

��
H∗−m(N ;Zw)

∆12 // H∗−m(C(Ñ1)t ⊗Z[π] C(Ñ2))

with

∆12 : N = Ñ/π = S2(f1, f2) ↪→ Ñ1 ×π Ñ2

the inclusion. (Terminology: If a group π acts on spaces X,Y then

X ×π Y = (X × Y )/{(x, y) ∼ (gx, gy) | g ∈ π, x ∈ X, y ∈ Y } .

If a group π acts on pointed spaces X,Y by base point preserving maps then

X ∧π Y = (X ∧ Y )/{(x, y) ∼ (gx, gy) | g ∈ π, x ∈ X, y ∈ Y } .

The smash product of pointed spaces X,Y is the pointed space

X ∧ Y = (X × Y )/(X × {y0} ∪ {x0} × Y ) ,

with x0 ∈ X, y0 ∈ Y the base points.) The evaluation of the fundamental class

[M ] ∈ Hm(M ;Zw) both ways round the square gives

λalg(N1, N2) = (f !
1 ⊗ f !

2)∆[M ] = ∆12f
![M ] = ∆12[N ]

= λgeo(N1, N2) ∈ Z[π] .

2

Example 7.23 For any oriented manifolds Nn1
1 , Nn2

2 and points x1 ∈ N1, x2 ∈
N2 the submanifolds

Nn1
1 = N1 × {x2} , Nn2

2 = {x1} ×N2 ⊆Mn1+n2 = N1 ×N2

are transverse with a single point of intersection

(N1 × {x2}) ∩ ({x1} ×N2) = {(x1, x2)} ⊆ N1 ×N2 ,

and 7.22 applies with

λalg(N1, N2) = λgeo(N1, N2) = 1 ∈ Z . 2

Proposition 7.24 For any π-trivial immersions of manifolds f1 : Nn1
1 #Mn1+n2 ,

f2 : Nn2
2 # Mn1+n2 there exists a regular homotopy f2 ' f ′2 : N2 = N ′2 → M

such that f1, f
′
2 are transverse, with

λalg(N1, N2) = λalg(N1, N
′
2) = λgeo(N1, N

′
2) ∈ Z[π] .

If f1, f2 are embeddings the regular homotopy can be chosen to be an isotopy.
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Proof Adapt Corollary II.15.6 of Bredon [10] (which deals with embeddings)

to immersions. 2

Proposition 7.25 (i) The algebraic self-intersection of a π-trivial embedding

f : Nn ↪→M2n is the Euler number (5.44) of the normal n-plane bundle νN↪→M :

N → BSO(n)

λalg(N,N) = χ(νN↪→M ) ∈ Z ↪→ Z[π] .

(ii) For any oriented n-plane bundle η : Nn → BSO(n) over an n-dimensional

manifold N the zero section in the Dn-bundle

N ↪→ D(η) ; x 7→ (x, 0)

is isotopic to a submanifold N ′ ⊂ D(η) intersecting N transversely in χ(η) points

(counted algebraically), so that the algebraic self-intersection of N in D(η) is

given by

λalg(N,N) = λgeo(N,N ′) = χ(η) ∈ Z .

Proof (i) Use the Tubular Neighbourhood Theorem (5.50) to embed the total

space of the normal bundle νN↪→M : N → BSO(n) as a codimension 0 subman-

ifold E(νN↪→M ) ⊆M , and apply 7.15.

(ii) Apply 7.22 (with π = {1}), 7.24 and (i), noting that isotopic embeddings

have isomorphic normal bundles. 2

Example 7.26 For any π-trivial immersion f : Nn #M2n take

f1 = f2 = f : N1 = N2 = N →M

in 7.24, to obtain a regular homotopic immersion f ′ : N # M such that f and

f ′ are transverse, with

λalg(N,N) = λalg(N,N ′) = λgeo(N,N ′) ∈ Z[π] . 2

7.3 The Whitney trick

Whitney trick for removing double points 7.27 ([99])

(i) Let f1 : Nn1
1 ↪→ Mm, f2 : Nn2

2 ↪→ Mm be π1(M)-trivial embeddings with

n1 + n2 = m and N1, N2 connected, such that

either n1, n2 > 3,

or n1 = 2, n2 > 3 with π1(M) ∼= π1(M\N1).
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Given two transverse double points

x = (x1, x2) , y = (y1, y2) ∈ S2(f1, f2)

such that

I(x) = − I(y) ∈ Z[π1(M)] .

There exists an isotopy of f1 to an embedding f ′1 : N1 ↪→ M with double point

set

S2(f ′1, f2) = S2(f1, f2)\{[x], [y]} .
(ii) Let f : Nn # M2n be a π1(M)-trivial immersion with n > 3, with N

connected. Given two transverse ordered double points

x = (x1, x2) , y = (y1, y2) ∈ S2(f)

such that

I(x) = − I(y) ∈ Z[π1(M)] , [x] 6= [y] ∈ S2[f ]

there exists a regular homotopy of f to an immersion f ′ : Nn # M2n with

unordered double point set

S2[f ′] = S2[f ]\{[x], [y]} .

Proof See Theorem 6.6 of Milnor [57] for case (i), generalising the removal of

transverse double points of curves in the plane by sliding over the closed area

bounded by the portions of the curves between the double points.

The condition I(x) = −I(y) means that

w(x) = − w(y) ∈ {±1} , g(x) = g(y) ∈ π1(M) ,

and the dimension conditions ensure the existence of a ‘Whitney disc’ D2 ⊆M .

The proof of case (ii) is essentially the same.

The following proof (of (ii)) is due to Jim Milgram, and is a bundle-theoretic

interpretation of the original construction ([99]).

Choose differentiable maps

γi : I = [0, 1]→ N (i = 1, 2)

with endpoints

γi(0) = xi , γi(1) = yi ,
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such that both curves avoid the double points of f except at their endpoints.

Consequently, the map

ω : S1 = I/{0 ∼ 1} →M2n ; t 7→
{
fγ1(2t) if 0 6 t 6 1/2

fγ2(2(1− t)) if 1/2 6 t 6 1

is an embedding which is differentiable except at two points. Consider the pull-

back ω∗τM : S1 → BO(m) of the tangent bundle τM : M → BO(m). Let

g = g(x) = g(y) ∈ π1(M)

and lift ω to an embedding in the universal cover M̃ of M

ω̃ : S1 = I/{0 ∼ 1} → M̃ ; t 7→
{
gf̃γ1(2t) if 0 6 t 6 1/2

f̃γ2(2(1− t)) if 1/2 6 t 6 1

such that

ω : S1
ω̃
→ M̃ →M .

Now M̃ is simply connected, so that both ω̃ and ω are null-homotopic, and the

pullback bundle

ω̃∗τ
M̃

= ω∗τM : S1 → BO(2n)

is trivial. Choose a metric onMm so that at the double point x = (x1, x2) ∈ S2(f)

the subspaces

df(x1)τN (x1)n , df(x2)τN (x2)n ⊆ τM (f(x))2n

are orthogonal, and similarly at the double point y ∈ S2(f). This gives a splitting

of the orientable 2n-plane bundle

ω∗τM = α1 ⊕ α2 : S1 → BO(2n)

as a Whitney sum of nonorientable bundles

α1 = τN |γ1 ∪ νf |γ2 , α2 = νf |γ1 ∪ τN |γ2 : S1 → BO(n) .

The condition I(x) = −I(y) is exactly what is needed to ensure that

αi ∼= µ⊕ εn−1

with µ the nonorientable line bundle over S1.

Next, extend the 1-dimensional tangent section along γ1 to a Möbius band

section β1 ↪→ α1 and the 1-dimensional tangent section on γ2 to a 1-dimensional

Möbius band section β2 ↪→ α2, defining non-trivial line bundles β1, β2 : S1 →
BO(1) (with β1

∼= β2
∼= µ) such that

α1 = β1 ⊕ εn−1 , α2 = β2 ⊕ εn−1 : S1 → BO(n) .

Moreover

β1 ⊕ β2 = ε2 : S1 → BO(2) ,

since β1, β2 are perpendicular at every point. This defines, using the Tubular

Neighbourhood Theorem (5.50), an embedding D2×S1 ↪→M2n extending ω(S1)
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which we can use to construct a differentiable embedding D1 × S1 ↪→ M2n

containing ω(S1) in its interior and contained in the image of D2 × S1. We

regard this D1 × S1 as a closed collar neighborhood of the boundary in the unit

ball D2 ⊂ R2, and we now want to extend this embedding to an embedding

D2 ⊂M2n.

Lemma 7.28 Let f : Nn #Mm be an immersion with image V = f(N) ⊆M .

If m > 5 and m− n > 3 then

π1(M\V ) = π1(M) .

Proof The morphism π1(M\V ) → π1(M) induced by inclusion is surjective,

since every map S1 →M can be moved away from V by general position. In order

to prove that the morphism is injective consider an element x ∈ ker(π1(M\V )→
π1(M)), which may be represented by a commutative square

S1 i //

��

M\V

��
D2

j // M

with i an embedding. Since m > 5 j is homotopic to an embedding (leaving the

embedding i fixed). Now ensure that V ∩ j(D2) = ∅. By general position move

j(D2) away from V by an arbitrarily small perturbation leaving j an embedding,

and leaving i alone on S1. The result is an embedded j(D2) ⊂ M\V with

∂(j(D2)) = i(S1), so that x = 1 ∈ π1(M\V ). 2

Returning to the proof of 7.27, apply 7.28 to obtain a differentiably embedded

disk D2 ⊆ M\f(N) with ∂(D2) one of the two boundary components of the

embedded D1×S1 above. It can even be arranged that this disk together with the

S1×D1 gives an embedding D2 ↪→M including γ in its interior and intersecting

f(N) only in a small extension of γ beyond the corner points.

The obstruction to extending the splitting νD2↪→M |γ = εn−1 ⊕ εn−1 to the

entire normal bundle of D2 is an element in π1(O(2(n − 1))) = Z2. Moreover,

π1(O(n−1)) maps onto this group since n > 3. Thus the framing can be changed

on one of the two εn−1’s over S1 to extend the framing across D2.

Finally, leave the immersion alone near γ1 in N and change it near γ2 using

the isotopy given on p. 74 of Milnor [57]. This defines a regular homotopy of

f : N # M to an immersion without this pair of unordered double points,

completing the proof of 7.27. 2

The Whitney trick in the embedding case (i) is the key ingredient in the

handle cancellation of the (m + 1)-dimensional h- and s-Cobordism Theorems

(m > 5) – see Chapter 8.
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The Whitney trick in the immersion case (ii) is the essential geometric ingre-

dient of the surgery classification theory of manifolds of dimension m > 5.

Remark 7.29 In certain cases it is also possible to perform the Whitney trick

for m = 4, and so extend the theory to 4-dimensional manifolds. But this is

much harder – see Freedman [25], Freedman and Quinn [26]. 2

In order to kill an element x ∈ πn(M) by surgery on a 2n-dimensional man-

ifold M2n it is necessary to represent x by an embedding Sn ↪→ M2n with

trivial normal bundle. By Proposition 7.11 it is possible to represent x by a self-

transverse immersion Sn #M2n. In order to further deform such an immersion

to an embedding it is necessary to remove the double points.

The Whitney trick gives the geometric realizability of algebraic intersections :

Corollary 7.30 Let f1 : Nn1
1 ↪→Mn1+n2 , f2 : Nn2

2 ↪→Mn1+n2 be π1(M)-trivial

embeddings with algebraic intersection

λalg(N1, N2) =
∑

g∈π1(M)

agg ∈ Z[π1(M)] (ag ∈ Z) .

If the dimension hypotheses of Theorem 7.27 are satisfied (either n1 > 3, n2 > 3

or n1 = 2, n2 > 3, π1(M\f1(N1)) = π1(M)) there is an isotopy of f2 to an

embedding f ′2 : N2 = N ′2 ↪→ M such that f1, f
′
2 are transverse and S2(f1, f

′
2) =

N1 ∩N ′2 has exactly
∑

g∈π1(M)

|ag| points.

Proof By 7.24 it may be assumed that f1, f2 intersect transversely, so that by

7.22

λalg(N1, N2) = λgeo(N1, N2) ∈ Z[π1(M)]

and ∑
x∈S2(f1,f2)

I(x) =
∑

g∈π1(M)

agg ∈ Z[π1(M)] .

For each g ∈ π1(M)

|{x ∈ S2(f1, f2) | g(x) = g}| = |ag|+ 2bg > 0

for some bg > 0. There are bg pairs of algebraically cancelling double points,

which can be geometrically cancelled by 7.27 (i). 2

The Whitney trick is necessary for the proof of the middle-dimensional Em-

bedding Theorem 7.2 (ii) :



THE SMALE-HIRSCH CLASSIFICATION OF IMMERSIONS 161

Corollary 7.31 If n > 3 and π1(M) = {1} every map f : Nn → M2n is

homotopic to an embedding.

Proof By 7.11 it may be assumed that f is a self-transverse immersion. Define

the self-intersection number of f by algebraically counting the unordered

double points

µ(f) =
∑

x∈S2[f ]

I(x) ∈ Q(−1)n(Z) = Z/{1− (−1)n} =

{
Z if n is even

Z2 if n is odd .

(See Chapter 11 for a more extensive account of the self-intersections of an

immersion Nn # M2n). Let ε ∈ {±1} be the sign of −µ(f) for n even, and

ε = −1 for n odd. The connected sum of f and µ(f) copies of the standard

single double point immersion f εn : Sn # S2n (7.12) is an immersion

f ′ = f#µ(f)f εn : N = N#Sn →M = M#S2n

which is homotopic to f with

µ(f ′) = 0 ∈ Q(−1)n(Z) .

The unordered double points of f ′ can be paired off in algebraically cancelling

pairs. These can be cancelled by 7.27 (ii), so that f ′ is regular homotopic to an

immersion f ′′ : N #M with no double points, i.e. an embedding. 2

The self-intersections of immersions f : Nn # M2n in the non-simply-

connected case π1(M) 6= {1} will be considered in Chapter 11.

7.4 The Smale-Hirsch classification of immersions

The Theorem identifies the regular homotopy classes of immersions Nn # Mm

for n < m with the homotopy classes of injective bundle maps τN → τM . See

Smale [81] and Hirsch [32] for the original sources, and Adachi [1] for a more

recent account of immersion theory.

Definition 7.32 (i) For any m-dimensional manifold M and n 6 m the n-

frame bundle Fn(M) is the Stiefel n-frame bundle (5.24) of the tangent bundle

τM
Vm,n → Fn(M) = Vn(τM )→M

with total space

Vn(τM ) =
⋃
x∈M

Vn(τM (x))

and fibre the Stiefel manifold of orthonormal n-frames in Rm
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Vm,n = Vn(Rm) = O(m)/O(m− n) .

In particular, for m = n this is the principal O(m)-bundle of m-frames in τM

Vm,m = O(m)→ Fm(M)→M .

(ii) For any m-dimensional manifold M and n-dimensional manifold N with

n 6 m the frame bundle F (N,M) is the fibre bundle

Fn(M)→ F (N,M) = Fn(N)×O(n) Fn(M)→ Fn(N)/O(n) = N . 2

Example 7.33 For any n > 1 there is a natural identification

Fn(Sn) = O(n+ 1) .

An element (x, a) ∈ Fn(Sn) is given by x ∈ Sn together with an orthonormal

n-frame a = (a1, a2, . . . , an) of

τSn(x) = span(x)⊥ ⊆ Rn+1 ,

which can be identified with an orthonormal (n+ 1)-frame (a1, a2, . . . , an, x) of

τSn(x)⊕ span(x) = Rn+1 ,

and hence with an element of O(n+ 1). 2

Proposition 7.34 Let n 6 m.

(i) For any m-dimensional manifold M there is defined a homotopy commutative

braid of fibration sequences

Fm(M)

##

��
M

τM
##

O(m)

;;

##

Fn(M)

;;

##

BO(m)

Vm,n

;;

>>
BO(m− n)

;;

(ii) For any n-dimensional manifold N there is defined a fibre bundle

Vm,n → Vm,n ×O(n) Fn(N)→ N

which fits into a homotopy commutative braid of fibration sequences
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Fn(N)

##

��
N

τN
##

O(n)

;;

##

Vm,n ×O(n) Fn(N)

;;

##

BO(n)

Vm,n

;;

??
Gn(Rm)

;;

with Gn(Rm) = Vm,n/O(n) the Grassmann manifold (5.22) of n-dimensional

subspaces of Rm.

(iii) For any m-dimensional manifold M and n-dimensional manifold N there is

defined a homotopy commutative braid of fibration sequences

Fn(M)

''

$$
M

Vm,n

77

''

F (N,M)

77

''
Vm,n ×O(n) Fn(N)

77

:: N

2

Smale-Hirsch Immersion Classification Theorem 7.35 ([81], [32])

Let Mm, Nn be manifolds, with 1 6 n < m. The following sets of equivalence

classes are in one-one correspondence :

(i) the regular homotopy classes of immersions f : N #M ,

(ii) the homotopy classes of injective bundle maps τN → τM ,

(iii) the homotopy classes of sections of the frame bundle Fn(M)→ F (N,M)
p
→N ,

i.e. maps s : N → F (N,M) such that ps = 1 : N → N .

Sketch proof. In fact, only the correspondences will be stated.

An element [x, y, a, b] ∈ F (N,M) is an O(n)-equivalence of quadruples

x ∈M , y ∈ N , a ∈ Vn(τM (x)) , b ∈ Vn(τN (y))

with ω ∈ O(n) acting by

ω(x, y, a, b) = (x, y, ω(a), ω(b)) .

Define vector bundles over F (N,M)
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α : F (N,M)→ N
τN
→ BO(n) ,

β : F (N,M)→ BO(m− n) ,

γ : F (N,M)→ BO(m)

with total spaces
E(α) =

⋃
[x,y,a,b]∈F (N,M)

span(a) ,

E(β) =
⋃

[x,y,a,b]∈F (N,M)

span(a)⊥ ,

E(γ) =
⋃

[x,y,a,b]∈F (N,M)

τM (x)

and such that
α⊕ β = γ : F (N,M)→ BO(m) ,

α : F (N,M)→ N
τN
→ BO(n) .

(i) ⇐⇒ (ii) The differential of an immersion f : N → M is an injective bundle

map df : τN → τM .

(i) =⇒ (iii) An immersion f : N #M determines the section

s : N → F (N,M) ; y 7→ [f(y), y, df(y)(b), b]

of the frame bundle, for an arbitrary b ∈ Vn(τN (y)). The pullbacks of α, β, γ

along s are then such that

s∗α = τN : N → BO(n) ,

s∗β = νf : N → BO(m− n) ,

s∗γ = f∗τM : N → BO(m) .

(iii) =⇒ (i) A section s : N → F (N,M) determines an immersion f : N # M

given up to regular homotopy by

f : N
s // F (N,M) // M

with a (homotopy) commutative diagram

N

f

++

s

&&

τN × νf

��

F (N,M)

α× β

��

// M

τM

��
BO(n)×BO(m− n)

⊕ // BO(m) .

2
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The Immersion Classification Theorem (7.35) relates the regular homotopy

groups of immersions Sn → Mm for n 6 m − 2 to the homotopy groups of M

and of the stable Stiefel space Vm−n.

We shall also need the regular homotopy groups of framed immersions :

Definition 7.36 The n-dimensional framed regular homotopy group I f rn (M)

is the Z[π1(M)]-module of regular homotopy classes of framed immersions f :

Sn ×Dm−n #Mm, with addition by connected sum. 2

Definition 7.37 The stable Stiefel space is defined for d > 0 to be

Vd =
⋃
k

Vd+k,k

the space of orthonormal k-frames in Rd+k (k large). 2

Lemma 7.38 The stable Stiefel space Vd is (d−1)-connected, fits into a fibration

Vd → BO(d)→ BO ,

and

πj(Vd) = πj(Vd+k,k) (j 6 d+ k − 2) .

Proof By 5.25 and 5.33 the unstable Stiefel manifolds Vd+k,k are (d − 1)-

connected and fit into commutative braids of fibrations

Vd+k,k

$$

!!
BO(d)

$$

!!
BO(d+ k + 1)

Vd+k+1,k+1

::

$$

BO(d+ k)

::

Sd+k

::

2

Proposition 7.39 (i) For n 6 m − 2 the regular homotopy groups In(M),

I f rn (M) fit into commutative braids of exact sequences
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πn(Vm−n)

%%

""
πn(BO(m− n))

%%

##
I f rn−1(M)

In(M)
ν

99

%%

πn(BO)

99

%%
I f rn (M)

99

<<
πn(M)

−νM
99

<<
πn−1(Vm−n)

with

πn(Vm−n) = In(Sm)→ In(M) ; (g : Sn # Sm) 7→ (g : Sn #M#Sm = M) .

(ii) For 2n+ 1 6 m πn(Vm−n) = 0 and

In(M) = πn(M)

with every element of In(M) represented by an embedding Sn ↪→M . For 2n+2 6
m In(M) = πn(M) is the group of isotopy classes of embeddings Sn ↪→M .

Proof (i) By the Whitney Immersion Theorem (7.1) for every map g : Sn →M

there exists a map h : Sn → Rk (k large) such that g × h : Sn → M × Rk is an

embedding, with the normal bundle

νg×h : Sn → BO(m− n+ k)

such that

τSn ⊕ νg×h = g∗τM ⊕ εk : Sn → BO(m+ k) .

By the Smale-Hirsch Immersion Classification Theorem (7.35) the regular ho-

motopy classes of immersions g′ : Sn # M homotopic to g are in one-one

correspondence with the reductions of νg×h : Sn → BO(m − n + k) to an

(m − n)-plane bundle ν = νg′ : Sn → BO(m − n). The stabilisation map

BO(m− n)→ BO(m− n+ k) fits into a fibration (as in 5.25)

Vm−n+k,k → BO(m− n)→ BO(m− n+ k)

so there is defined an exact sequence

. . .→ πn(Vm−n+k,k)→ In(M)→ πn(M)→ πn−1(Vm−n+k,k)→ . . .

which can be written as

. . .→ πn(Vm−n)→ In(M)→ πn(M)→ πn−1(Vm−n)→ . . . .

Similarly for I f rn (M).

(ii) From 5.33 Vm−n is (m− n− 1)-connected, and 2n+ 1 6 m, so that there is

an exact sequence

πn(Vm−n) = 0→ In(M)→ πn(M)→ πn−1(Vm−n) = 0 .

The connection with embeddings is given by the Whitney Embedding Theorem

(7.2). 2
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Example 7.40 For M = Sm, n 6 m− 2 Proposition 7.39 gives

In(Sm) = πn(Vm−n) = πn+1(BO,BO(m− n)) ,

I f rn (Sm) = πn+1(BO(m)) = πn+1(BO) .

In particular

In(Sm) = 0 if 2n+ 1 6 m

and

In(S2n) = πn+1(BO,BO(n)) = Q(−1)n(Z) =

{
Z if n ≡ 0 (mod 2)

Z2 if n ≡ 1 (mod 2)
(5.83) .

2

7.5 Singularities

In Chapter 11 we shall be considering the self-intersections of immersed n-

manifolds in 2n-manifolds, in order to decide which n-dimensional homology

classes can be killed by surgery. In order to compare the self-intersections of

homotopic immersions we shall need to consider maps of the type f : Nn+1 →
M2n+1. In these dimensions the general position arguments used to deform f

into an immersion (7.1) do not apply, and f has generic singularities. These were

first described by Whitney [100]. (This section was written by Jim Milgram).

By the dimension count in 7.6 a map f : Nn+1 →M2n+1 can be deformed by

an arbitrarily small modification to a map which intersects the singular set only

in isolated points, and there intersects regularly (so it has rank n and the two

tangent planes together span the tangent space of M2n+1,n+1(R) at the point).

Note that changing local coordinates in Nn+1 and M2n+1 affects the description

of the singular point via the faithful action of GL2n+1(R) × GLn+1(R) on the

2n(n+ 1)-dimensional submanifold Rn ⊂M2n+1,n+1(R) of the (2n+ 1)× (n+ 1)

matrices of rank n. Hence it can be assumed that the intersection is at the matrix(
In 0

0 0

)
.

Lemma 7.41 The tangent space τRn(J) at the (2n+ 1)× (n+ 1) matrix

J =

(
In 0

0 0

)
can be identified with the subspace of M2n+1,n+1(R) consisting of all matrices of

the form

(
A B

C 0

)
where A is n× n, B is n× 1, and C is (n+ 1)× n.
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Proof An infinitesimal transformation (I2n+1+∆ , In+1+∆′) acts on

(
In 0

0 0

)
by sending it to

(
In + ∆1 −∆′1 −∆′2

∆3 0

)
. From this the lemma is immediate.

2

Taking account of the fact that the two tangent planes span τRn(J) (and

which can even be assumed to be orthogonal in the usual metric), there are

obtained two generic forms for the map near the singular point differing only by

an orientation :

Definition 7.42 The generic singularities

f+
n , f−n : Rn+1 → R2n+1

are given by

f+
n (x1, x2, . . . , xn, xn+1)

= (x1, x2, . . . , xn, x
2
n+1, xn+1xn, xn+1xn−1, . . . , xn+1x1) ,

f−n (x1, x2, . . . , xn, xn+1)

= (x1, x2, . . . , xn, x
2
n+1,−xn+1xn, xn+1xn−1, . . . , xn+1x1) .

2

Remark 7.43 The double point locus of f±n is the xn+1-axis, where

f±n (0, . . . , 0, xn+1) = f±n (0, . . . , 0,−xn+1) .

Moreover, if N(x) =
n+1∑
i=1

x2
i , then

N(f±n (x)) = N(x)− x2
n+1(1−N(x)) .

It follows that the unit sphere is taken to the unit sphere under f±n and there is a

single double point immersion. More generally, it can be checked that for all n the

indices of the immersions are (−1)n+1 for f+
n , and (−1)n for f−n . Additionally,

for each sphere Snr of radius r < 1, f±n (Snr ) is an immersed sphere with a single

double point, in a surface contained in the ball of radius r in R2n+1. 2

Next, consider a general differentiable map f : Nn+1 →M2n+1, with n > 1,

and Nn+1 compact. By working as in Proposition 7.11 it may be assumed that f

has no triple points, and the singularities are generic, looking locally like either

f+
n or f−n , in appropriate local coordinate systems. Moreover, if Nn+1 has a

boundary, it can be assumed that f is an embedding on the boundary. The

double point locus is the set of all the double points of f in M2n+1, which can
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be assumed to consist of a series of differentiable curves, either closed or with

endpoints. The singularities must all occur as endpoints of double point curves,

and conversely, every endpoint must be a singularity.

At each end assign an index according to the index of the double point on

restricting to spheres near the singularity, as above. Moreover, if n > 2, then draw

non-intersecting paths disjoint from the double point locus in im(f) between

singular points of + and − types, and modify the map in a neighbourhood of

these paths to replace the pair of singularities by a path of double points joining

their images.

A neighbourhood T of the path consists of the unit ball near each singularity,

and a tube D2n× I joining the two balls. The intersection of ∂T with im(f) is a

Dn immersed with a single double point on the upper hemisphere of each sphere,

and Sn−1 × I along the boundary of the tube. Now, give a new extension of f

along the interior of T by making it be the single double point immersion of

Dn × t at each level D2n × t of the tube, and filling in appropriately on the

upper and lower balls. This modification has the effect of removing the pair

of singularities, and replacing them by a path of double points. In particular,

this shows that all double point paths in the image which begin and end at

singularities can be replaced by non-singular double point paths. But since the

boundary was assumed to be embedded this shows that the original map could

in fact be deformed to an immersion.

Slightly more generally :

Whitney Singularity Theorem 7.44 ([100])

If f : (Nn+1, ∂N)→ (M2n+1, ∂M) is a map with n > 2 and f |∂N an embedding,

then f is homotopic to an immersion leaving the boundary fixed. Additionally,

if f |∂N is merely an immersion with k index +1 and s index −1 double points,

then f is homotopic rel ∂N to a map (also denoted by f) which is an immersion

except at precisely |k − s| interior points where it has a generic singularity, and

each singularity has the same index. 2
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WHITEHEAD TORSION

Algebraic K-theory deals with modules and their automorphisms, while alge-

braic L-theory deals with quadratic forms and their automorphisms. Whitehead

torsion is an algebraic K-theory invariant comparing the cell structures of ho-

motopy equivalent finite CW complexes, while the surgery obstruction is an

algebraic L-theory invariant of the handlebody structure of the kernel of a nor-

mal map. In fact, there are many formal similarities between the applications of

algebraic K- and L-theory to manifolds, and the applications of Whitehead tor-

sion to manifold structures are precursors to the applications of surgery theory.

This chapter outlines the proofs of the h- and s-Cobordism Theorems stated

in Chapter 1, which use Whitehead torsion to study the possible handle de-

compositions of an h-cobordism (Wm+1;M,M ′). There are no handles precisely

when (W ;M,M ′) is diffeomorphic to M × (I; {0}, {1}). The Whitehead torsion

τ = τ(M ↪→ W ) ∈ Wh(π1(W )) is an algebraic K-theory invariant such that

τ = 0 if (and for m > 5 only if) there exists a decomposition with no handles.

The vanishing τ = 0 was the first systematic condition for deciding if a homotopy

equivalence M →M ′ is homotopic to a diffeomorphism.

Section 8.1 describes the algebraic properties of the Whitehead group, and

constructs the Whitehead torsion of a homotopy equivalence. Section 8.2 de-

scribes the proofs of the h- and s-Cobordism Theorems, which realize geometri-

cally the algebraically allowed handle cancellations.

8.1 The Whitehead group

See Milnor [58] and Cohen [19] for more detailed accounts, and Rosenberg [78]

for a general introduction to algebraic K-theory.

Let A be an associative ring with 1. As in Section 4.4 regard an m×n matrix

(φij) with entries φij ∈ A as an A-module morphism

φ : An → Am ; (x1, x2, . . . , xn) 7→ (

n∑
j=1

xjφ1j ,

n∑
j=1

xjφ2j , . . . ,

n∑
j=1

xjφmj) .

The A-module isomorphism

Mm,n(A)→ HomA(An, Am) ; (φij) 7→ φ



THE WHITEHEAD GROUP 171

will be used as an identification. A morphism f : L → K of based f.g. free

A-modules is determined by the m× n matrix φ = (φij) of the coefficients

f(cj) =

m∑
i=1

φijbi ∈ K (1 6 j 6 n)

with (b1, b2, . . . , bm) the basis of K and (c1, c2, . . . , cn) the basis of L.

Let A• ↪→ A be the multiplicative group of units in the ring A.

Definition 8.1 (i) The nth general linear group of A

GLn(A) = Mn,n(A)• ↪→Mn,n(A)

is the multiplicative group of units in the ring of n × n matrices in A. The

injections

Mn,n(A)→Mn+1,n+1(A) ; φ 7→
(
φ 0

0 1

)
preserve matrix multiplication, and restrict to injections of groups GLn(A) →
GLn+1(A).

(ii) The infinite general linear group of A is the union

GL(A) =

∞⋃
n=1

GLn(A) . 2

Whitehead Lemma 8.2 The commutator subgroup of the infinite general lin-

ear group

E(A) = [GL(A), GL(A)] / GL(A)

is the normal subgroup generated by the elementary matrices

(
1 a

0 1

)
.

Proof See Proposition 2.1.4 of Rosenberg [78]. 2

Definition 8.3 (i) The torsion group K1(A) is the abelian group

K1(A) = GL(A)/E(A) .

(ii) The reduced torsion group of A is the abelian group

K̃1(A) = K1(A)/{τ(−1)} . 2

In dealing with Whitehead torsion it is convenient to assume that the ring

A is such that Am is isomorphic to An if and only if m = n. (This is the case if

A = Z[π] is a group ring). The rank of a f.g. free A-module is then well-defined,

and the matrix of an isomorphism f : L → K of based f.g. free A-modules of

rank n is an element φ ∈ GLn(A).
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Example 8.4 (i) For a commutative ring A the inclusion A• → K1(A) is split

by the determinant map

det : K1(A)→ A• ; τ(φ) 7→ det(φ) ,

and the torsion group of A splits as

K1(A) = A• ⊕ SK1(A)

with

SK1(A) = ker(det : K1(A)→ A•) .

(ii) If A is a field then det : K1(A)→ A• is an isomorphism and

SK1(A) = 0 . 2

Definition 8.5 The torsion of an isomorphism f : L → K of based f.g. free

A-modules of rank n is the torsion of the corresponding invertible matrix φ ∈
GLn(A)

τ(f) = [φ] ∈ K1(A) .

The isomorphism is simple if τ(f) = 0 ∈ K1(A). 2

The geometric applications of K1(A) make use of :

Definition 8.6 The Whitehead group of a group π is the abelian group

Wh(π) = K1(Z[π])/{τ(±g) | g ∈ π} . 2

Example 8.7 (i) The Whitehead group is trivial

Wh(π) = 0

in the following cases :

(a) π = {1} is trivial,

(b) π = π1(M) is the fundamental group of a surface M = M(g) or N(g) (Section

4.3),

(c) π = Zm is a free abelian group, for any m > 1.

(ii) The Whitehead group version of the Novikov conjecture is that Wh(π) = 0

if π = π1(M) is the fundamental group of a compact m-dimensional manifold

M with universal cover M̃ = Rm (as in (b) above with M̃(g) = ˜N(g + 1) = R2

(g > 1), and (c) with M = Tm, M̃m = Rm). The conjecture has been verified in

many cases – see Ferry, Ranicki and Rosenberg [24] for a survey of results. 2
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Example 8.8 (i) The Whitehead group Wh(π) of a finite group π is finitely

generated, with rank r(π) − q(π) the difference between the number r(π) of

irreducible real representations of π and the number q(π) of irreducible rational

representations of π (Bass [6]). More explicitly, r(π) is the number of conjugacy

classes of unordered pairs {g, g−1} in π, and q(π) is the number of conjugacy

classes of cyclic subgroups of π.

(ii) For a finite abelian group π the determinant is a split surjection

det : K1(Z[π])→ Z[π]• .

(iii) The Whitehead group Wh(Zm) of a cyclic group Zm is trivial for m =

2, 3, 4, 6, and is a free abelian group of rank > 1 form 6= 2, 3, 4, 6. (See Proposition

8.37 below for the precise formula). In particular, Wh(Z5) = Z with generator

τ(1− t+ t2).

The following properties of contractible finite chain complexes are necessary

for the definition of torsion.

Lemma 8.9 Let C be a contractible finite based f.g. free A-module chain com-

plex.

(i) For any chain contraction Γ : 0 ' 1 : C → C the A-module morphism

d+Γ =


d 0 0 . . .

Γ d 0 . . .

0 Γ d . . .
...

...
...

 : Codd = C1⊕C3⊕C5 . . .→ Ceven = C0⊕C2⊕C4 . . .

is an isomorphism of based f.g. free A-modules, so that τ(d + Γ) ∈ K1(A) is

defined.

(ii) If Γ,Γ′ : 0 ' 1 : C → C are two chain contractions then

τ(d+ Γ) = τ(d+ Γ′) ∈ K1(A) .

Proof (i) The inverse is given by

(d+ Γ)−1 =


1 0 0 . . .

Γ2 1 0 . . .

0 Γ2 1 . . .
...

...
...


−1

Γ d 0 . . .

0 Γ d . . .

0 0 Γ . . .
...

...
...

 : Ceven → Codd .

(ii) The A-module morphisms

∆i = (Γ′ − Γ)Γ : Ci → Ci+2

are such that
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(d+ Γ′) = (1 + ∆even)(d+ Γ)(1 + ∆odd)
−1 : Codd → Ceven

with

τ(1 + ∆even) = τ(1 + ∆odd) = 0 ∈ K1(A) .

2

Definition 8.10 The torsion of a contractible finite chain complex C of based

f.g. free A-modules is

τ(C) = τ(d+ Γ : Codd → Ceven) ∈ K1(A)

for any chain contraction Γ : 0 ' 1 : C → C. 2

Torsion is such that

τ(f ⊕ f ′) = τ(f) + τ(f ′) ,

τ(gf) = τ(f) + τ(g) ∈ K1(A)

for any isomorphisms f : L → K, f ′ : L′ → K ′, g : K → J of based f.g. free

A-modules. Also, for any contractible finite chain complexes C,D of based f.g.

free A-modules

τ(C ⊕D) = τ(C) + τ(D) ∈ K̃1(A) .

Proposition 8.11 The reduced torsion τ(C) ∈ K̃1(A) of a contractible finite

chain complex C of based f.g. free A-modules is such that τ(C) = 0 if and only

if C is simple isomorphic to a direct sum of elementary complexes

. . . // 0 // A
1 // A // 0 // . . . . 2

The torsion of a chain equivalence is defined to be the torsion of the algebraic

mapping cone :

Definition 8.12 (i) The torsion of a chain equivalence f : C → D of finite

chain complexes of based f.g. free A-modules is

τ(f) = τ(C (f)) ∈ K1(A) .

(ii) The Whitehead torsion of a homotopy equivalence f : X → Y of finite

CW complexes is the torsion of the induced chain equivalence f̃ : C(X̃)→ C(Ỹ )

of the cellular chain complexes

τ(f) = τ(C (f̃)) ∈Wh(π1(X)) .

The homotopy equivalence is simple if τ(f) = 0 ∈Wh(π1(X)). 2
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Example 8.13 (i) A diffeomorphism f : Mm → Nm is a simple homotopy

equivalence. A complete proof requires the verification that any two handle de-

compositions are related by a sequence of elementary modifications – this uses

the triangulability of differentiable manifolds and the combinatorial invariance

of Whitehead torsion.

(ii) It follows from (i) that a homotopy equivalence of closed manifolds which is

not simple cannot be homotopic to a diffeomorphism. 2

8.2 The h- and s-Cobordism Theorems

This section contains a brief account of the h- and s-Cobordism Theorems stated

in Chapter 1. See Milnor [57], [58], Kervaire [37] for further details.

By Theorem 2.22 every cobordism (W ;M,M ′) has a handle decomposition

W = M × I ∪ hi0 ∪ hi1 ∪ . . . ∪ hik

which determines a CW structure on W relative to M with one i-cell for each

i-handle. The Z-coefficient handle chain complex C(W,M) (3.33) will now be

generalised to a Z[π1(W )]-coefficient handle chain complex, and the differentials

will be interpreted in terms of intersections of the core spheres. The handle

decomposition expresses W as a union of a finite sequence

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

of adjoining elementary cobordisms (Wj ;Mj−1,Mj) with

Wj = Mj−1 × I ∪ hij , hij = Dij ×Dm+1−ij

such that

0 6 i1 6 i2 6 . . . 6 ik 6 m+ 1 , M0 = M , Mk = M .

We shall call Wj an ij-handle, although strictly speaking it is hij which is the

ij-handle. For each i = 0, 1, . . . ,m + 1 let (W (i);M,M(i)) be the cobordism

defined by the union of all the i′-handles with i′ 6 i

W (i) =
⋃
ij6i

Wj .

Regard all the (i + 1)-handles Wj as being attached simultaneously at an em-

bedding ⋃
Si ×Dm−i ↪→M(i) ,

so that

W (i+ 1) = W (i) ∪
⋃
Di+1 ×Dm−i .
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It is also possible to reverse the i-handlesWj′ , and regard them as dual (m+1−i)-
handles W k−j′ of (W ;M ′,M) attached simultaneously at an embedding⋃

Di × Sm−i ↪→M(i)

such that the cores {0} × Sm−i ⊂ M(i) of these handles intersect the cores

Si × {0} ⊂M(i) of the (i+ 1)-handles Wj transversely.

Definition 8.14 The handle chain complex C(W̃ , M̃) of an (m+1)-dimensional

cobordism (W ;M,M ′) with a handle decomposition

W = M × I ∪ hi0 ∪ hi1 ∪ . . . ∪ hik

is the cellular Z[π1(W )]-module chain complex of the relative CW pair C(W̃ , M̃)

with W̃ the universal cover of W , M̃ ↪→ W̃ the induced cover of M ↪→W , with

π1(W ) i-cells for each i-handle hi = Di ×Dm+1−i. 2

Example 8.15 The handle chain complex of RPm = h0 ∪h1 ∪ . . .∪hm (2.25) is

C(R̃P
m

) : Cm = Z[Z2]
1 + (−1)mT

// Cm−1 = Z[Z2] // . . .

// C2 = Z[Z2]
1 + T // C1 = Z[Z2]

1− T // C0 = Z[Z2]

with R̃P
m

= Sm. 2

The differentials in the handle chain complex are determined by the algebraic

intersections of the handles of successive index. The embeddings of the cores

Si ↪→ M(i) are π1(W )-trivial, since they extend to maps Di+1 → W . (For

i 6= 0, 1 Si is simply-connected, anyway).

Definition 8.16 The algebraic intersection of an (i + 1)-handle Wj and an

i-handle Wj′ in an (m+1)-dimensional cobordism (W ;M,M ′) is the intersection

of the core Si × {0} ↪→M(i)m of Wj and the core {0} × Sm−i ↪→M(i)m of the

(m+ 1− i)-handle W j′ of (W ;M ′,M) dual to Wj′

λ(Wj ,Wj′) = λ(Si, Sm−i) ∈ Z[π1(W )] .

In view of 7.22 there is no need to distinguish between the algebraic and geo-

metric intersections herei� 1) W (i) M (i) W (i + 1) M (i+ 1)Di �Dm+1�i Di+1 �Dm�iSi�1 �Dm+1�i Di � Sm�iSi �Dm�i Di+1 � Sm�i�1
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2

Proposition 8.17 (i) The homotopy theoretic effect of attaching an i-handle to

an (m+ 1)-dimensional manifold with boundary (W,∂W ) is that of attaching an

i-cell, that is

W ′ = W ∪Di ×Dm−i+1 ' W ∪Di .

(ii) A handle decomposition of a cobordism

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

as a union of k adjacent elementary cobordisms determines a relative CW struc-

ture on the pair X = (W,M)

W ' M ∪Di1 ∪Di2 ∪ . . . ∪Dik

with ij the index of (Wj ;Mj−1,Mj). The differentials in the cellular Z[π1(W )]-

module chain complex C = C(W̃ , M̃) are given by the algebraic intersections of

the handles of adjoining index

d : Ci+1 = Hi+1(X̃(i+1), X̃(i)) = Z[π1(W )]bi+1

→ Ci = Hi(X̃
(i), X̃(i−1)) = Z[π1(W )]bi ; [Wj′ ] 7→

∑
ij=i

λ(Wj ,Wj′)[Wj ] .

(iii) Let (W ;M,M ′) be an (m+ 1)-dimensional cobordism. Given a Morse func-

tion f : W → I and a corresponding handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

let f ′ = 1−f : W → I be the opposite Morse function, corresponding to the dual

handle decomposition

(W ′;M ′,M) = (W ′1;M ′0,M
′
1) ∪ (W ′2;M ′1,M

′
2) ∪ . . . ∪ (W ′k;M ′k−1,M

′
k)

with

W ′ = −W , W ′i = −Wk−i , M ′i = Mk−i (0 6 i 6 k)

where −W denotes W with the opposite orientation on the universal cover W̃ .

The relative cellular Z[π1(W )]-module chain complexes of (W,M), (W,M ′) are

related by

C(W̃ , M̃ ′) = C(W̃ , M̃)m+1−∗ .

Proof (i) The inclusion

(Di, Si−1)× {0} ↪→ (W ′,W )

is a relative homotopy equivalence.

(ii) By (i) attaching an i-handle has the homotopy theoretic effect of attaching
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an i-cell.

(iii) The dual of an ij-handle Wj is the (m+ 1− ij)-handle W k−j . The algebraic

intersection of an ij-handle Wi and an ij′ -handle Wj with ij′ = ij + 1 is related

to the algebraic intersection of the dual (m+ 1− ij)-handle W k−j and the dual

(m+ 1− ij)-handle W k−j′ by

λ(Wj ,Wj′) = λ(W k−j ,W k−j′) ∈ Z[π1(W )] .

2

Recall that an h-cobordism (W ;M,M ′) is a cobordism such that the inclu-

sions M ↪→ W , M ′ ↪→ W are homotopy equivalences, and that an h-cobordism

is trivial if there exists a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1})

which is the identity on M . The s-Cobordism Theorem asserts that for m > 5

an (m+ 1)-dimensional h-cobordism (W ;M,M ′) is trivial if and only if the con-

tractible based f.g. free Z[π1(W )]-module chain complex C(W̃ , M̃) is such that

the bases can be modified by elementary operations to be such that the differ-

entials send basis elements to basis elements. The h-Cobordism Theorem (1.9)

states that for m > 5 every (m + 1)-dimensional h-cobordism (W ;M,M ′) with

π1(W ) = {1} is trivial. The s-Cobordism Theorem (1.11) is the generalisation

of the h-Cobordism Theorem to non-simply-connected h-cobordisms.

Definition 8.18 The torsion of an h-cobordism (W ;M,M ′) is

τ(W ;M,M ′) = τ(M ↪→W ) ∈Wh(π1(W )) . 2

Proposition 8.19 The torsion of an h-cobordism (W ;M,M ′) is the torsion

τ(W ;M,M ′) = τ(C(W̃ , M̃)) ∈Wh(π1(W ))

of the contractible cellular Z[π1(W )]-module chain complex C = C(W̃ , M̃) de-

termined by any handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk) ,

with W̃ , M̃ the universal covers of W,M , and Ci = Z[π1(W )]bi the based f.g. free

Z[π1(W )]-module of rank bi = the number of i-handles. 2

Definition 8.20 An s-cobordism is an h-cobordism (W ;M,M ′) such that

τ(W ;M,M ′) = 0 ∈Wh(π1(W )) . 2
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Proposition 8.21 (i) A trivial h-cobordism is an s-cobordism.

(ii) An h-cobordism is trivial if and only if it admits the empty handle decompo-

sition.

Proof (i) A trivial h-cobordism (W ;M,M ′) admits the empty handle decom-

position, with cellular chain complex C(W̃ , M̃) = 0.

(ii) Trivial. 2

The s-Cobordism Theorem is the converse of 8.21 (i) in dimensions > 6 : an

s-cobordism is a trivial h-cobordism.

Proposition 8.22 Let m > 5, and let M be a closed m-dimensional manifold

with fundamental group π1(M) = π. For every element τ ∈ Wh(π) there exists

an h-cobordism (W ;M,M ′) with τ(W ;M,M ′) = τ ∈Wh(π).

Proof Represent τ ∈ Wh(π) by A ∈ GLk(Z[π]), and let (W ;M,M ′) be the

(m+ 1)-dimensional h-cobordism with k 2-handles and k 3-handles attached to

the 2-handles using A

W = M × I ∪
⋃
k

D2 ×Dm−1 ∪A
⋃
k

D3 ×Dm−2 .

The condition m > 5 is required to realize the prescribed algebraic intersections

in A by geometric intersections in

M(2) = (M\
⋃
k

S1 ×Dm−1) ∪
⋃
k

D2 × Sm−2 ,

using the non-simply-connected Whitney trick as in 7.30. 2

Definition 8.23 A cobordism (W ;M,M ′) has an (i, i+ 1)-index handle de-

composition if it has a handle decomposition involving handles of index i, i+ 1

only, so that

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wj ;Mj−1,Mj)

∪ (Wj+1;Mj ,Mj+1) ∪ . . . ∪ (Wk;Mk−1,Mk)

with W1,W2, . . . ,Wj elementary cobordisms of index i and Wj+1,Wj+2, . . . ,Wk

elementary cobordisms of index i+ 1, for some j with 0 6 j 6 k. 2

Here is a picture of a cobordism with an (i, i+1)-index handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2)

consisting of an elementary cobordism W1 of index i and an elementary cobor-

dism W2 of index i+ 1.
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The following handle cancellation result is the geometric step in the proofs

of the h- and s-Cobordism Theorems :

Handle Cancellation Lemma 8.24 Let (W ;M,M ′) be an (m + 1)-dimen-

sional cobordism with an (i, i+ 1)-index handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2)

involving a handle W1 of index i and a handle W2 of index i + 1. If the core

of the attaching framed i-embedding Si ×Dm−i ↪→M1 of the (i+ 1)-handle W2

and the core of the attaching framed (m− i)-embedding Di×Sm−i ↪→M1 of the

(m− i+ 1)-handle W 1 on M1 × I dual to the i-handle W1 on M0 × I intersect

transversely with a single double point

(Si × {0}) ∩ ({0} × Sm−i) = {pt.} ⊂M1

then (W ;M,M ′) is a trivial h-cobordism with a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1}) .

Proof See Milnor [57] and Kosinski [42,VI.7]. 2

Example 8.25 The letter S is a 1-dimensional cobordism, such that vertical

projection is a Morse function with a critical point of index 0 and a critical point

of index 1, so that S has a handle decomposition with a 0-handle and a 1-handle.

The handles satisfy the hypothesis of 8.24, so that S is diffeomorphic to the unit

interval I. 2

Example 8.26 (i) For any i 6 m regard Sm as

Sm = ∂(Di ×Dm−i+1) = Si−1 ×Dm−i+1 ∪Di × Sm−i

as in 1.3 (ii), and define (m + 1)-dimensional elementary cobordisms of index

i, i+ 1

(W1;M0,M1) = (Sm × I ∪Di ×Dm−i+1;Sm, Si × Sm−i) ,
(W2;M1,M2) = (Si × Sm−i × I ∪Di+1 ×Dm−i;Si × Sm−i, Sm) .
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The cores of the attaching embeddings of the (i + 1)-handle W2 and the dual

(m− i+ 1)-handle W 1 intersect transversely with a single intersection point

Si × {0} ∩ {0} × Sm−i = {pt.} ↪→M1 = Si × Sm−i

and there is defined a diffeomorphism

(W1 ∪W2;M0,M2) ∼= Sm × (I; {0}, {1}i �Dm+1�i Di+1 �Dm�iSi�1 �Dm+1�i Di � Sm�iSi �Dm�i Di+1 � Sm�i�1
(ii) For m = 0, i = 0 the cancellation of a 0-handle on S0 × I and a 1-handle is

given by

•

•

•

•

•

• • •

M0 = S0 W1 M1 = S0 × S0 W2 M2 = S0

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................
..............................................

............................
..................

...........
.......
.........
...............

........................
.....................................

....................................................................
..............................................................................



.............................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................

(iii) For m = 1, i = 1 the cancellation of a 1-handle on S1 × I and a 2-handle is

given by

S1 W1 S1 × S0 W2 S1

.......

.......

.......
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...................................................................................................................................................................................................................................................................................

(iv) For m = 2, i = 1 the cancellation of a 1-handle on S2× I and a 2-handle can

be viewed as follows. Embed the solid torus S1 ×D2 in the interior of D3, and

embed a smaller copy of D3 inside S1 × D2. The space between the two D3’s
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is a union of a 1-handle on S2 × I and a cancelling 2-handle, which is a trivial

h-cobordism diffeomorphic to the product S2 × (I; {0}, {1}). 2

Translating the Handle Cancellation Lemma 8.24 into the language of surgery :

Corollary 8.27 Let (W1;M0,M1) be the trace of an (i − 1)-surgery on an m-

dimensional manifold M = M0 removing the framed (i − 1)-embedding Si−1 ×
Dm−i+1 ↪→M . Let (W2;M1,M2) be the trace of an i-surgery on M1 removing a

framed i-embedding Si ×Dm−i ↪→M1. If the core of Si ×Dm−i ↪→M1 and the

core of Di × Sm−i ↪→ M1 intersect transversely with a single intersection point

then the union

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2)

is a trivial h-cobordism, with a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1}) . 2

Definition 8.28 A π1-cobordism is a cobordism (W ;M,M ′) such that the

inclusions M →W , M ′ →W induce isomorphisms

π1(M) ∼= π1(W ) , π1(M ′) ∼= π1(W ) . 2

Example 8.29 (i) An (m+1)-dimensional cobordism (W ;M,M ′) with a handle

decomposition involving only handles of index > 3 and 6 m−2 is a π1-cobordism.

(ii) An h-cobordism is a π1-cobordism. 2

Proposition 8.30 An (m+ 1)-dimensional π1-cobordism (Wm+1;M,M ′) is an

h-cobordism if and only if the cellular Z[π1(W )]-module chain complex C(W̃ , M̃)

is contractible, with W̃ , M̃ the universal covers of W,M .

Proof By J.H.C.Whitehead’s Theorem (3.6) the inclusion M ↪→W is a homo-

topy equivalence if and only if the chain map C(M̃) → C(W̃ ) is a Z[π1(W )]-

module chain equivalence, which is the case if and only if C(W̃ , M̃) is con-

tractible. By Poincaré duality (4.4) there is a chain equivalence

C(W̃ , M̃ ′)m+1−∗ ' C(W̃ , M̃) ,

so that M ↪→W is a homotopy equivalence if and only if M ′ ↪→W is a homotopy

equivalence. 2

The first step in the proofs of the h- and s-Cobordism Theorems is to arrange

an (i, i+ 1)-index handle decomposition :
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Proposition 8.31 For m > 5 every (m+1)-dimensional h-cobordism (W ;M,M ′)
admits an (i, i+ 1)-index handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

for any i with 2 6 i 6 m− 2.

Proof Let W̃ , M̃ be the universal covers of W,M , and let

π1(M) = π1(W ) = π .

The cellular chain complex of C(W̃ , M̃) is a contractible Z[π]-module chain com-

plex

C(W̃ , M̃) = C : Cm+1 → Cm → . . .→ C0 ,

with Ci = Z[π]bi the based f.g. free Z[π]-module generated by the bi handles of

index i.

The proof that for any i 6 m − 2 there exists a handle decomposition for

(W ;M,M ′) with handles of index > i proceeds by cancelling handles of in-

creasing index, as follows.

Assume inductively that (W ;M,M ′) only has handles of index > j, so that

Ci = 0 for i < j and d : Cj+1 → Cj is onto. Choose a splitting Z[π]-module

morphism Γ : Cj → Cj+1, so that

dΓ = 1 : Cj → Cj ,

and let C ′, C ′′ be the contractible based f.g. free Z[π]-module chain complexes

defined by

C ′ : . . .→ Cj+4

d
→ Cj+3

(
d

0

)
−−−−−→ Cj+2 ⊕ Cj(

d Γ

0 −1

)
−−−−−−−→ Cj+1 ⊕ Cj

(d 1 )−−−−−→ Cj → 0→ . . . ,

C ′′ : . . .→ Cj+4

d
→ Cj+3(

d

0

)
−−−−−→ Cj+2 ⊕ Cj

(d Γ)−−−−−→ Cj+1 → 0→ . . .

with C ′i = 0 for i < j and C ′′i = 0 for i 6 j. If j 6 m − 3 then by the Whitney

trick (7.27) it is possible to realize C ′ by a handle decomposition of (W ;M,M ′)
with bj+1 + bj handles of index j + 1 and bj+2 + bj handles of index j + 2. The

bj handles of index j + 1 cancel with the bj handles of index j (by 8.24, using

m > 5), so that (W ;M,M ′) has a handle decomposition realizing C ′′.
Thus for any i 6 m−2 there exists a decomposition for (W ;M,M ′) with handles

of index > i only. The proof that there exists a decomposition for (W ;M,M ′)
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with handles of index 6 i+ 1 now follows by duality : the handles of index j in

(W ;M,M ′) are the handles of index (m+ 1− j) in (−W ;M ′,M).

In fact, for any chain contraction Γ : 0 ' 1 : C → C there exists an (i, i + 1)-

index handle decomposition of (W ;M,M ′) with c i-handles and c (i+1)-handles,

where

c =
∑
r

bi+2r =
∑
r

bi+2r+1 ,

and cellular chain complex

. . .→ 0→ Z[π]c =
⊕
r

Ci+2r+1

d+ Γ
−−−−−→ Z[π]c =

⊕
r

Ci+2r → 0→ . . .

(cf. Definition 8.10). 2

Proposition 8.32 An (m + 1)-dimensional π1-cobordism (W ;M,M ′) with an

(i, i+ 1)-index handle decomposition

(W ;M,M ′) = (W1;M0,M1) ∪ (W2;M1,M2) ∪ . . . ∪ (Wk;Mk−1,Mk)

is an h-cobordism if and only if the number of i-handles is equal to the number of

(i+ 1)-handles, say c, and the c× c matrix of intersection numbers with entries

in Z[π]

λ = (λ(Wj ,Wk+c)) ∈Mc,c(Z[π1(W )])

is invertible, with Wj (1 6 j 6 c) running over all the i-handles and Wk+c

(1 6 k 6 c) running over all the (i+ 1)-handles.

Proof This is a special case of 8.30, with

C(W̃ , M̃) : . . . // 0 // Z[π1(W )]c
λ // Z[π1(W )]c // 0 // . . . .

2

The s-Cobordism and h-Cobordism Theorems (1.9, 1.11) are now stated again,

and their proofs are outlined :

s-Cobordism Theorem 8.33 (Barden-Mazur-Stallings)

An (m+1)-dimensional h-cobordism (Wm+1;M,M ′) with m > 5 is trivial if and

only if it is an s-cobordism.

Proof A trivial h-cobordism is an s-cobordism (8.21).

Conversely, suppose that (W ;M,M ′) is an s-cobordism, so that by 8.31 there
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exists an (i, i + 1)-index handle decomposition for some i with 2 6 i 6 m − 2,

with 2c handles, and intersection matrix λ ∈ GLc(Z[π1(W )]) such that

τ(W ;M,M ′) = τ(λ) = 0 ∈Wh(π1(W )) .

For some b > 0 there exist elementary matrices

E1, E2, . . . , Ek ∈ GLb+c(Z[π1(W )])

such that

λ⊕ 1b = E1E2 . . . Ek ∈ GLb+c(Z[π1(W )]) .

It is possible to realize this identity by adding b trivially cancelling i- and (i+1)-

handles, and to rearrange the handles in such a way that the new intersection

matrix λ′ ∈ GLb+c(Z[π1(W )]) of the i- and (i + 1)-handles is diagonal with

entries ±g ∈ π1(W ). Apply the Whitney trick (7.27) to realize these algebraic

intersections geometrically : each of the (b+ c) pairs of i- and (i+ 1)-handles is

such that the core and the core of the dual handle intersect transversely in a single

point, and so may be cancelled (8.24) leaving the empty handle decomposition

of a trivial h-cobordism. 2

h-Cobordism Theorem 8.34 (Smale [83])

An (m+ 1)-dimensional h-cobordism (Wm+1;M,M ′) with m > 5 and π1(M) =

{1} is trivial.

Proof This is the special case π1 = {1} of the s-Cobordism Theorem, noting

that Wh({1}) = 0. 2

8.3 Lens spaces

Lens spaces are 3-dimensional manifolds which provided the first examples of

a divergence between the homotopy and diffeomorphism classifications of man-

ifolds. See Milnor [58], deRham et al. [20] and Cohen [19] for a more detailed

exposition.

The classification of lens spaces depends on the computation of the White-

head group Wh(Zm) : indeed, this application was one of the original motiva-

tions for the development of Whitehead torsion. See Chapter 14E of Wall [92]

for the surgery classification in the PL category of the high-dimensional ‘fake

lens spaces’, which are manifolds with cyclic fundamental group and universal

cover a sphere of dimension > 5. This led to the classification of free actions of

finite groups on high-dimensional spheres (Madsen, Thomas and Wall [46]), one

of the early triumphs of non-simply-connected surgery theory.
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Write

Zm = 〈t | tm〉 , N =
m−1∑
i=0

ti ∈ Z[Zm] ,

Am = Z[Zm] , Bm = Q[Zm] , Rm = Bm/(N) .

The determinant map det : K1(Λ)→ Λ• is an isomorphism for each of the rings

Λ = Am, Bm,Q, Rm. Define the augmentation

ε : Am → Z ;
∑
i

nit
i 7→

∑
i

ni

and similarly for ε : Bm → Q. Use the ring isomorphism

Bm → Q×Rm ; x 7→ (ε(x), x−Nε(x)/m)

to identify

Bm = Q×Rm .

Definition 8.35 The Whitehead group of Rm is

Wh(Rm) = R•m/{q(t−N/m)n | q ∈ Q•, n ∈ Z} . 2

The computation of Wh(Zm) uses the inclusion Am → Bm = Q × Rm and

the composite

K1(Am) = A•m → K1(Bm) = B•m = Q• ×R•m → K1(Rm) = R•m .

It turns out that Wh(Rm) is a free abelian group detected by Reidemeister

torsion, and that Wh(Zm) → Wh(Rm) is an injection with the image detected

by certain congruences.

Every unit r ∈ Z•m determines a unit

u(r) = tr − 1 +N/m ∈ B•m
with inverse

u(r)−1 =

m∑
i=1

itr(i−1)/m+ (1−m)N/2m ∈ B•m ,

and such that

u(−r) = t−r(2N/m− 1)u(r) ∈ B•m .

The unit u(r) is determined by the identity

u(r) = tr − 1 ∈ R•m .

Let φ(m) = |Z•m| be the Euler function counting the number of positive integers

< m coprime to m, and let

1 = r1 < r2 < . . . < rk (k = φ(m)/2)

be the enumeration of the integers r coprime to m with 1 ≤ r ≤ [m/2].
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Proposition 8.36 Every unit u ∈ B•m has a unique factorisation

u = tn(pN/m+ q(1−N/m))u(r1)a1u(r2)a2 . . . u(rk)ak ∈ B•m

with n ∈ Z, p, q ∈ Q•, ai ∈ Z. The Reidemeister torsion function

∆ : Wh(Rm)→ Zk ;

u = (tr1 − 1)a1(tr2 − 1)a2 . . . (trk − 1)ak 7→ ∆(u) = (a1, a2, . . . , ak)

is an isomorphism.

Proof The essential ingredient is the Franz independence lemma. 2

Proposition 8.37 (i) The units of Am = Z[Zm] are of the type ±tnu (n ∈ Z),

with u ∈ A•m the unique unit determined by the equations

u
∏
ai<0

(tri − 1)−ai = ±
∏
aj>0

(trj − 1)aj ∈ Am

for a k-tuple (a1, a2, . . . , ak) ∈ Zk satisfying

(a) a1 + a2 + . . .+ ak = 0 ∈ Z
(b) (r1)a1(r2)a2 . . . (rk)ak ≡ ±1 (modm).

The sign ± in (b) is such that

ε(u) = ± 1 ∈ Z• = {±1} .

(ii) The Whitehead group Wh(Zm) of the cyclic group Zm is free abelian of rank

[m/2] + 1 − δ(m), with δ(m) the number of divisors of m. The Reidemeister

torsion map

∆ : Wh(Zm) = Z[m/2]+1−δ(m) →Wh(Rm) = Zk

is an injection onto the subgroup of Zk consisting of the elements (a1, a2, . . . , ak) ∈
Zk satisfying the conditions (a) and (b) of (i).

Proof See Milnor [58, §12]. 2

Example 8.38 (i) If m > 3 is prime then

δ(m) = 2 , φ(m) = m− 1 , k = (m− 1)/2 , rj = j

and

Wh(Zm) = Z(m−3)/2 , Wh(Rm) = Z(m−1)/2 .
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(ii) For m = 5 the unit u = 1− t+ t2 ∈ Z[Z5] is a generator of Wh(Z5) = Z with

u = t2(−1 + 2N/5)(t− 1 +N/5)2(t2 − 1 +N/5)−2 ,

∆(u) = (2,−2) ∈ im(Wh(Z5)) ↪→Wh(R5) = Z2 .

2

Given an invertible 2× 2 matrix with entries in Z

M =

(
a b

c d

)
∈ GL2(Z)

use complex multiplication in S1 = {z ∈ C | |z| ≤ 1} to define a diffeomorphism

fM : S1 × S1 → S1 × S1 ; (x, y) 7→ (xayb, xcyd)

inducing

(fM )∗ = M : H1(S1 × S1) = Z⊕ Z→ H1(S1 × S1) = Z⊕ Z ;

(x, y) 7→ (ax+ by, cx+ dy) .

The identification space

L = S1 ×D2 ∪M S1 ×D2

is obtained by glueing together two copies of the solid torus S1 ×D2 along the

boundary using the diffeomorphism M : ∂(S1 ×D2) = S1 × S1 → S1 × S1.

Definition 8.39 The lens space L(m,n) is the closed oriented 3-dimensional

manifold defined for coprime integers m,n > 0 to be the identification space

L(m,n) = S1 ×D2 ∪M S1 ×D2

with M =

(
p m

q n

)
∈ GL2(Z) for any p, q ∈ Z such that np−mq = 1. 2

Proposition 8.40 (i) The oriented diffeomorphism class of L(m,n) depends

only on the class of M under the equivalence relation

M ∼ AMB for A =

(
1 0

a 1

)
, B =

(
1 0

b 1

)
∈ GL2(Z)

with a, b ∈ Z. In particular, there is an orientation-preserving diffeomorphism

L(m,n) ∼= L(m, am+ n)

for any a ∈ Z.

(ii) L(m,−n) is L(m,n) with the opposite orientation.

(iii) L(m,n) is parallelisable, i.e. the tangent bundle τL(m,n) : L(m,n)→ BO(3)

is trivial. 2
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Example 8.41 (i) L(0, 1) = S2 × S1.

(ii) L(1, n) = S3.

(iii) L(2, 1) = SO(3) = RP3, the tangent S1-bundle of S2. 2

Proposition 8.42 For m > 2

L(m,n) = S3/Zm

is the quotient of the free Zm-action on the 3-sphere

S3 = {(z1, z2) ∈ C 2 | |z1|2 + |z2|2 = 1}

generated by

t : S3 → S3 ; (z1, z2) 7→ (z1ω, z2ω
n)

with ω = exp(2πi/m). The fundamental group is

π1(L(m,n)) = Zm = 〈t | tm〉 .

The cellular Am-module chain complex of the universal cover L̃(m,n) = S3 is

given by

C(L̃(m,n)) : . . . // 0 // Am
tn − 1// Am

N // Am
t− 1 // Am

with N = 1 + t+ t2 + . . .+ tm−1 ∈ Am. 2

For the remainder of Section 8.3 it is assumed that m > 2.

Definition 8.43 The Reidemeister torsion of a lens space L(m,n) with re-

spect to a particular choice of generator t ∈ π1(L(m,n)) = Zm is the torsion

of the induced contractible based f.g. free Rm-module chain complex Rm ⊗Am
C(L̃(m,n))

∆t(L(m,n)) = τ(Rm ⊗Am C(L̃(m,n)))

= (tn − 1)(t− 1) ∈Wh(Rm) = Zk (k = φ(m)/2) .

2

It is clear that m = m′ is a necessary condition for lens spaces L(m,n),

L(m′, n′) to be homotopy equivalent.

Proposition 8.44 The following conditions on two lens spaces L(m,n), L(m,n′)
are equivalent :

(i) L(m,n), L(m,n′) are homotopy equivalent,
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(ii) there exist units u ∈ A•m, r ∈ Z•m such that

u(tn
′r − 1)(tr − 1) = (tn − 1)(t− 1) ∈ Bm ,

(iii) n ≡ ±n′r2 (modm) for some r ∈ Z•m,

(iv) for some generators t ∈ π1(L(m,n)) = Zm, t′ ∈ π1(L(m,n′)) = Zm

∆t(L(m,n))−∆t′(L(m,n′)) ∈ im(Wh(Zm)→Wh(Rm)) .

If L(m,n), L(m,n′) satisfy these conditions there is a unique homotopy class of

homotopy equivalences h : L(m,n′)→ L(m,n) with

h∗(t
′) = tr ∈ π1(L(m,n)) = Zm

and

τ(h) = ∆t(L(m,n))−∆t′(L(m,n′)) = τ(u)

= τ((tn − 1)(t− 1)(tn
′r − 1)−1(tr − 1)−1) ∈ im(Wh(Zm)→Wh(Rm)) .

The homotopy equivalence h preserves orientations if and only if

n ≡ n′r2 (modm) ,

i.e. if ε(u) = +1 ∈ Z•.

Proof (i) =⇒ (ii) Given a homotopy equivalence h : L(m,n′)→ L(m,n) choose

generators

t ∈ π1(L(m,n)) = Zm , t′ ∈ π1(L(m,n′)) = Zm ,

so that h∗(t′) = tr ∈ Zm for some r ∈ Z•m. Regarding t, t′ as generating covering

translations
t : L̃(m,n) = S3 → L̃(m,n) = S3 ,

t′ : L̃(m,n′) = S3 → L̃(m,n′) = S3

it is possible to lift h to a homotopy equivalence

h̃ : L̃(m,n′) = S3 → L̃(m,n) = S3

such that

h̃t′ = trh̃ : S3 → S3 .

The induced cellular Am-module chain map is given by

h∗C(L̃(m,n′)) : 0

h̃
��

// Am
tn
′r − 1 //

u

��

Am
N //

Nr
��

Am
tr − 1 //

Nr
��

Am

1

��
C(L̃(m,n)) : 0 // Am

tn − 1 // Am
N // Am

t− 1 // Am
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with

Nr = 1 + t+ . . .+ tr−1 ∈ Am
and u ∈ A•m the unique unit such that

u(tn − 1)(t− 1) = (tn
′r − 1)(tr − 1) ∈ Bm .

(ii) ⇐⇒ (iii) ⇐⇒ (iv) Immediate from 8.37

(iii) =⇒ (i) See Cohen [19, §29] for the explicit construction of a homotopy equiv-

alence h : L(m,n′)→ L(m,n) realizing every n ≡ ±n′r2 (modm). 2

Example 8.45 The lens spaces L(5, 1), L(5, 2) are not homotopy equivalent,

even though they have isomorphic homotopy, homology and cohomology groups;

L(5, 1), L(5, 2) have different Reidemeister torsions ∆ (8.36) and different ho-

mology linking pairings (12.44) on H1(L(5, 1)) = H1(L(5, 2)) = Z5 . 2

Proposition 8.46 The following conditions on two lens spaces L(m,n), L(m,n′)
are equivalent :

(i) L(m,n), L(m,n′) are diffeomorphic,

(ii) L(m,n), L(m,n′) are simple homotopy equivalent,

(iii) L(m,n), L(m,n′) are oriented h-cobordant,

(iv) n ≡ ±n′r2 (modm) with r ≡ 1 or n (modm),

(v) for some generators t ∈ π1(L(m,n)) = Zm, t′ ∈ π1(L(m,n′)) = Zm

∆t′(L(m,n′)) = ∆t(L(m,n)) ∈Wh(Rm) .

If L(m,n), L(m,n′) satisfy these conditions there is a diffeomorphism

h : L(m,n′)→ L(m,n)

such that h∗(t′) = tr ∈ π1(L(m,n)). The diffeomorphism h preserves orientations

if and only if n ≡ n′r2 (modm). 2

Example 8.47 (i) The lens spaces L(7, 1) and L(7, 2) are homotopy equivalent

but not diffeomorphic. The Reidemeister torsions are

∆t(L(7, 1)) = (t− 1)2 , ∆t(L(7, 2)) = (t− 1)(t2 − 1) ,

so that there exists an orientation-preserving homotopy equivalence h : L(7, 1)→
L(7, 2) with h∗(t) = t3. The torsion of h is non-zero

τ(h) = (t− 1)(t2 − 1)(t3 − 1)−2 6= 0 ∈ im(Wh(Z7)→Wh(R7)) ,

so that h is not homotopic to a diffeomorphism. (In general, it is not possible

to deduce that manifolds M,N are not diffeomorphic just because a particular
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homotopy equivalence M → N is not homotopic to a diffeomorphism).

(ii) The lens spaces L(7, 1) and L(7, 2) are homotopy equivalent but not h-

cobordant. Milnor [54] showed that the homotopy equivalence

h× 1 : L(7, 1)× S4 → L(7, 2)× S4

is realized by a non-trivial 8-dimensional h-cobordism

(W 8;L(7, 1)× S4, L(7, 2)× S4)

(with torsion τ(h)) such that the boundary components L(7, 1)×S4, L(7, 2)×S4

are not diffeomorphic. 2



9

POINCARÉ COMPLEXES AND SPHERICAL FIBRATIONS

This chapter describes the homotopy theoretic analogues of manifolds and

vector bundles, namely Poincaré complexes and spherical fibrations. An m-

dimensional Poincaré complexX is a space with the universal coefficient Poincaré

duality properties of an m-dimensional manifold. Any space which is homotopy

equivalent to a manifold is a Poincaré complex. Surgery theory investigates the

extent to which a Poincaré complex is homotopy equivalent to a manifold.

A spherical fibration is a fibration of the type

Sk−1 → E → B

such as the sphere bundle of a k-plane bundle over B. In general, spherical

fibrations do not come from vector bundles, and Poincaré complexes are not

homotopy equivalent to manifolds.

A Poincaré complex X is homotopy equivalent to a manifold if and only if :

(i) there exists a manifold M with a degree 1 normal map (f, b) : Mm → X,

(ii) there exists (f, b) as in (i) with a sequence of surgeries on M such that the

trace (Wm+1;Mm,M ′m) is the domain of a degree 1 normal bordism

((F,B); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × (I; {0}, {1})

with f ′ : M ′ → X a homotopy equivalence.

The Browder-Novikov theory shows that for any dimension m the bordism

classes of degree 1 normal maps (f, b) as in (i) are in natural one-one correspon-

dence with the vector bundle structures (if any!) on the Spivak normal fibration

X. The surgery obstruction theory for deciding if a degree 1 normal map (f, b)

is in fact normal bordant to a homotopy equivalence as in (ii) will be developed

in Chapters 11,12.

Sections 9.1, 9.2 give the basic properties of Poincaré complexes and spherical

fibrations. Section 9.3 describes the Spivak normal fibration νX of a Poincaré

complex X, the homotopy theoretic analogue of the stable normal bundle of

a manifold. Section 9.4 describes the Browder-Novikov theory for deciding if a

Poincaré complex X admits a degree 1 normal map.
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9.1 Geometric Poincaré complexes

Definition 9.1 An m-dimensional geometric Poincaré complex X is a

finite CW complex with an orientation character w(X) : π1(X) → Z2 and

with a fundamental class homology class [X] ∈ Hm(X;Zw(X)) such that the

cap products are isomorphisms

[X] ∩ − : H∗(X̃)→ Hm−∗(X̃) ,

with X̃ the universal cover of X. 2

Example 9.2 (i) An m-dimensional manifold M is an m-dimensional geometric

Poincaré complex, by the Poincaré Duality Theorem (4.4).

(ii) If (M+, ∂M+), (M−, ∂M−) are m-dimensional manifolds with boundary and

h : ∂M+ → ∂M− is a homotopy equivalence then the identification space


..................................................................................................................................................................................................................................@M� h
// @M+ M+M�

X = M� [hM+
is an m-dimensional geometric Poincaré complex X. 2

Example 9.3 Browder [11] proved that a finite H-space is a geometric Poincaré

complex. This was the example which motivated the development of Poincaré

complexes as a tool for classifying manifold structures in homotopy theory. 2

Definition 9.4 The signature of a 4k-dimensional oriented geometric Poincaré

complex X is the signature of the R-coefficient homology intersection form

σ(X) = σ(H2k(X;R), λ) ∈ Z ,

exactly as for a manifold (6.38). 2

Remark 9.5 The following results were obtained by Browder [12], prior to the

development of the general theory for deciding if a geometric Poincaré complex

X is homotopy equivalent to a manifold.
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An m-dimensional geometric Poincaré complex X with π1(X) = {1} is

homotopy equivalent to a manifold if and only if there exist a vector bundle

η : X → BSO(j) (j large) and a map ρ : Sm+j → T (η) such that the composite

πm+j(T (η))
Hurewicz // Ḣm+j(T (η))

[Uη] ∩ −
// Hm(X)

sends ρ to the fundamental class [X] ∈ Hm(X), with Uη ∈ Ḣj(T (η)) the Thom

class, and for even m subject to the additional condition :

(i) in the case m = 4k the signature of X is given by the formula in the

Hirzebruch Signature Theorem (6.41)

σ(X) = 〈L k(−η), [X]〉 ∈ Z

with η playing the role of the stable normal bundle,

(ii) in the case m = 4k + 2 the Z2-valued Arf invariant (11.60 below) of the

self-intersection quadratic form µ : K2k+1(M ;Z2)→ Z2 on

K2k+1(M ;Z2) = ker(f∗ : H2k+1(M ;Z2)→ H2k+1(X;Z2))

is 0.

The proof that such η, ρ determine a manifold in the homotopy type of M pro-

ceeded by making ρ transverse regular at the zero section X ↪→ T (η) to obtain

a degree 1 map

f = ρ| : M4k = ρ−1(X)→ X

and a bundle map b : νM → η (i.e. a ‘normal map’ (f, b)) which can always

be made a homotopy equivalence by surgeries on M for odd m, with a surgery

obstruction as in (ii) for even m. 2

Example 9.6 It follows from the Hirzebruch Signature Theorem (6.41) that for

a degree d cover M̃ of an oriented 4k-dimensional manifold M

σ(M̃) = dσ(M) ∈ Z .

Wall [91] constructed 4-dimensional geometric Poincaré complexes of the form

X = D0 ∪D1 ∪
⋃
10

D2 ∪D3 ∪D4

with π1(X) = Zp (p prime), and

σ(X̃) 6= pσ(X) ∈ Z

with X̃ the universal cover. Such X are not homotopy equivalent to manifolds.

2
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Example 9.7 Eckmann and Linnell [22] proved that every 2-dimensional geo-

metric Poincaré complex is homotopy equivalent to a surface. 2

See Wall [91] for the basic homotopy theoretic properties of geometric Poincaré

complexes. Chapter 19 of Ranicki [71] and Klein [40] are general surveys of their

properties.

Proposition 9.8 Given an m-dimensional geometric Poincaré complex X and

an oriented cover (X̃, π, w) there are defined Poincaré duality Z[π]-module iso-

morphisms

[X] ∩ − : H∗(X̃)→ Hm−∗(X̃) .

Proof Let X be the universal cover of X. A chain map C → D of finite chain

complexes of projective A-modules is a chain equivalence if and only if it induces

isomorphisms H∗(C) ∼= H∗(D) in homology, for any ring A. Cap product with

an m-cycle [X] representing the fundamental class [X] ∈ Hm(X;Zw(X)) defines

a Z[π1(X)]-module chain map

[X] ∩ − : C(X)m−∗ → C(X)

which induces the Poincaré duality isomorphisms in homology, and is thus a

chain equivalence. The morphism of rings with involution Z[π1(X)] → Z[π] is

such that

Z[π]⊗Z[π1(X)] C(X) = C(X̃)

and the Z[π1(X)]-module chain equivalence [X]∩− : C(X)m−∗ → C(X) induces

a Z[π]-module chain equivalence [X] ∩ − : C(X̃)m−∗ → C(X̃). 2

Corollary 9.9 An m-dimensional geometric Poincaré complex X has univer-

sal coefficient Poincaré duality, such that for any Z[π1(X)]-module Λ there are

defined Poincaré duality isomorphisms

[X] ∩ − : Hm−∗(X; Λ)→ H∗(X; Λ) .

Proof Let X be the universal cover of X, and apply Λ ⊗Z[π1(X)] − to the

Z[π1(X)]-module chain equivalence

[X] ∩ − : C(X)m−∗ → C(X)

to obtain a Z-module chain equivalence

1⊗ [X] ∩ − : Λ⊗Z[π1(X)] C(X)m−∗ = C(X; Λ)m−∗

→ Λ⊗Z[π1(X)] C(X) = C(X; Λ) .

2
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Example 9.10 Let (M1, ∂M1), (M2, ∂M2) be m-dimensional manifolds with

boundary, and let f : ∂M1 → ∂M2 be a homotopy equivalence of the boundaries.

The identification space

X = M1 ∪f −M2

is an m-dimensional geometric Poincaré complex. If f is homotopic to a diffeo-

morphism then X is homotopy equivalent to an m-dimensional manifold. 2

Given anm-dimensional geometric Poincaré complexX let−X denote them-

dimensional geometric Poincaré complex with the same underlying CW complex

and orientation character, and

[−X] = − [X] ∈ Hm(X;Zw(X)) .

Definition 9.11 (i) An m-dimensional geometric Poincaré pair is a finite

CW pair (X, ∂X ↪→ X) with an orientation character w(X) : π1(X) → Z2 and

with a fundamental homology class

[X] ∈ Hm(X, ∂X;Zw(X))

such that the cap products are Z[π1(X)]-module isomorphisms

[X] ∩ − : H∗(X̃)→ Hm−∗(X̃, ∂X̃)

with X̃ the universal cover of X and ∂X̃ ↪→ X̃ the corresponding cover of ∂X,

and such that ∂X is an (m− 1)-dimensional geometric Poincaré complex with

w(∂X) : π1(∂X)→ π1(X)
w(X)
→ Z2 ,

[∂X] = ∂[X] ∈ Hm−1(∂X;Zw(∂X)) .

(ii) A geometric Poincaré cobordism (X; ∂0X, ∂1X) is a geometric Poincaré

pair (X, ∂X) such that the boundary is a disjoint union

∂X = ∂0X ∪ −∂1X . 2

Example 9.12 An m-dimensional manifold with boundary (M,∂M) is an m-

dimensional geometric Poincaré pair with the orientation character w(M) =

w1(νM ) of the stable normal bundle νM : M → BO. 2

Example 9.13 The mapping cylinder of a homotopy equivalence f : X ' Y of

m-dimensional geometric Poincaré complexes

Z = (X × I ∪ Y )/{(x, 1) ∼ f(x) |x ∈ X}

defines an (m + 1)-dimensional geometric Poincaré cobordism (Z;X,Y ). If X

and Y are m-dimensional manifolds and f is homotopic to a diffeomorphism

then (Z;X,Y ) is homotopy equivalent rel ∂ to an (m+ 1)-dimensional manifold

h-cobordism (Wm+1;X,Y ). 2
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A connected m-dimensional manifold M has a handle decomposition with

one 0-handle and one m-handle

M = h0 ∪
⋃
h1 ∪ . . . ∪

⋃
hm−1 ∪ hm .

The following analogue for geometric Poincaré complexes will be useful in dealing

with surgery obstructions in Chapters 10,11,12 below.

Proposition 9.14 Every connected m-dimensional geometric Poincaré complex

X is homotopy equivalent to one of the type X0 ∪ Dm for a connected m-

dimensional geometric Poincaré pair (X0, S
m−1).

Proof This is the Poincaré Disc Theorem of Wall [91] (Thm. 2.4). 2

9.2 Spherical fibrations

Fibrations F → E → B with the fibre F a sphere are to geometric Poincaré

complexes as vector bundles are to manifolds.

Definition 9.15 (i) A (k− 1)-spherical fibration α over a space X is a fibra-

tion sequence

Sk−1 → S(α)→ X ,

in which case there is defined a fibration of pairs

(Dk, Sk−1)→ (D(α), S(α))→ X

with D(α) the mapping cylinder (3.22)

D(α) = M(S(α)→ X) .

(ii) A fibre homotopy equivalence α ' β of (k − 1)-spherical fibrations over

X is a homotopy equivalence S(α) ' S(β) which is compatible up to homotopy

with the maps to X.

(iii) A (k − 1)-spherical fibration α over X is trivial if it is fibre homotopy

equivalent to the (k − 1)-spherical fibration εk with

(D(εk), S(εk)) = X × (Dk, Sk−1) .

(iv) A fibre homotopy trivialisation of a (k − 1)-spherical fibration α is a

fibre homotopy equivalence α ' εk. 2
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Example 9.16 The sphere bundle of a k-plane bundle η over a space X is the

(k − 1)-spherical fibration Jη over X with

S(Jη) = S(η) ⊂ E(η)

the subset of vectors of length 1 (with respect to some metric). Isomorphic vec-

tor bundles over the same space X have fibre homotopy equivalent spherical

fibrations. 2

A vector bundle over a finite CW complex X is obtained by glueing together

trivial vector bundles U ×Rk over some neighbourhoods U ⊆ X which cover X,

using compatible vector bundle isomorphisms on overlaps. Similarly, a spherical

fibration over X is obtained by glueing together trivial fibrations U ×Sk−1 over

some neighbourhoods U ⊆ X which cover X, using compatible fiber-preserving

homotopy equivalences on overlaps.

Fibration Classification Theorem 9.17 (Stasheff [85])

The fibre homotopy classes of (k − 1)-spherical fibrations over a finite CW

complex X are in one-one correspondence with the homotopy classes of maps

X → BG(k) to the classifying space BG(k) of the monoid G(k) of homotopy

equivalences Sk−1 → Sk−1. 2

See Chapter 3 of Madsen and Milgram [45] for an account of spherical fibra-

tions and their classifying spaces.

Proposition 9.18 (i) The trivial (k − 1)-spherical fibration εk is classified by

the trivial map ∗ : X → BG(k).

(ii) Every spherical fibration α : X → BG(k) has a stable inverse, a spherical

fibration −α : X → BG(j) (j large) such that

α⊕−α = εj+k : X → BG(j + k) .

(iii) A (k−1)-spherical fibration α can be fibre homotopy trivialised if and only if

the classifying map α : X → BG(k) is null-homotopic, with the choices of fibre

homotopy trivialisation b : α ' εk classified by [X,G(k)].

Proof By analogy with 5.29. 2

The standard vector bundle operations have analogues for spherical fibra-

tions :
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Definition 9.19 (i) The pullback of a spherical fibration α : X → BG(k)

along a map f : Y → X is the spherical fibration f∗α : Y → BG(k) with

S(f∗α) = {(x, y) ∈ S(α)× Y | [x] = f(y) ∈ X} .
(ii) The product of spherical fibrations α : X → BG(j), β : Y → BG(k) is the

spherical fibration α× β : X × Y → BG(j + k) with

(D(α× β), S(α× β)) = (D(α)×D(β), D(α)× S(β) ∪ S(α)×D(β)) .

(iii) The Whitney sum of spherical fibrations

α : X → BG(j) , β : X → BG(k)

is the spherical fibration

α⊕ β = ∆∗(α× β) : X → BG(j + k)

with

∆ : X → X ×X ; x 7→ (x, x) ,

so that

S(α⊕ β) = {(x, y) ∈ S(α)×D(β) ∪D(α)× S(β) | [x] = [y] ∈ X} .
(iv) A section of a (k−1)-spherical fibration α : X → BG(k) is a fibre homotopy

equivalence α ' α′ ⊕ ε for a (k − 2)-spherical fibration α′ : X → BG(k − 1).

(v) A stable fibre homotopy equivalence α 's β between spherical fibrations

α : X → BG(j), β : X → BG(k) is a fibre homotopy equivalence

α⊕ εp ' β ⊕ εq : X → BG(n)

with p, q, n such that j + p = k + q = n.

(vi) A stable spherical fibration over X is an equivalence class of spherical

fibrations α over X, subject to the equivalence relation

α ∼ β if there exists a stable fibre homotopy equivalence α 's β . 2

For any ` > 1 the `-fold loop space Ω`S` of pointed maps S` → S` has one

component for each integer, with degree defining a bijection

π0(Ω`S`)→ Z ; (f : S` → S`) 7→ deg(f) .

For any d ∈ Z let (Ω`S`)d be the component of degree d pointed maps S` → S`.

The components are all homotopy equivalent, and the higher homotopy groups

are just the homotopy groups of spheres

πn((Ω`S`)d) = πn+`(S
`) (n > 1) .

For any k > 1 the monoid of pointed homotopy equivalences Sk−1 → Sk−1

F (k) = (Ωk−1Sk−1)1 ∪ (Ωk−1Sk−1)−1

is related to the monoid G(k) of homotopy equivalences Sk−1 → Sk−1 by a

fibration

F (k)→ G(k)→ Sk−1 .
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Proposition 9.20 (i) The fibre homotopy classes of (k− 1)-spherical fibrations

with a section over a finite CW complex X are in one-one correspondence with

the homotopy classes of maps X → BF (k) to the classifying space BF (k) of

F (k). Moreover, BF (k) is the total space of the universal (k−1)-spherical fibra-

tion 1k : BG(k)→ BG(k)

Sk−1 → BF (k)→ BG(k) .

The homotopy groups of BF (k) are given by

πn(BF (k)) = πn−1(F (k)) =

{
πn+k−2(Sk−1) if n > 1

Z2 if n = 1 .

(ii) The passage from k-plane bundles to (k − 1)-spherical fibrations defines a

map

J : BO(k)→ BG(k) ; η 7→ Jη .

Let J also denote the composite

J : BO(k)
J // BG(k) // BF (k + 1)

with

BG(k)→ BF (k + 1) ; α 7→ α⊕ ε .
The induced morphism of homotopy groups is the J-homomorphism (5.80)

J : πn(BO(k)) = πn−1(O(k))→ πn(BF (k + 1)) = πn+k−1(Sk) (n > 1) .

(iii) The sphere bundle of the universal k-plane bundle over BO(k) is the pullback

of the universal (k−1)-spherical fibration over BG(k) along J : BO(k)→ BG(k).

The mapping fibres

G(k)/O(k) = F(J : BO(k)→ BG(k)) ,

F (k)/O(k − 1) = F(J : BO(k − 1)→ BF (k))

are homotopy equivalent, and fit into a commutative braid of fibrations

Sk−1

((

%%
BF (k)

((
BO(k − 1)

J 66

((

BG(k)

F (k)/O(k − 1) ' G(k)/O(k)

66

99
BO(k)

J 66

inducing a commutative braid of exact sequences
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πn(Sk−1)

$$

##
πn(BF (k))

$$

##
πn−1(G(k)/O(k))

πn(BO(k − 1))

J
::

$$

πn(BG(k))

::

$$
πn(G(k)/O(k))

::

;;
πn(BO(k))

J
::

;;
πn−1(Sk−1)

(iv) Stabilisation α 7→ α⊕ ε defines maps

. . .→ BG(k)→ BF (k + 1)→ BG(k + 1)→ BF (k + 2)→ . . .

such that the direct limits

BF = lim−→
k
BF (k) , BG = lim−→

k
BG(k)

are homotopy equivalent

BF ' BG .

The homotopy groups of the stable classifying spaces are given by

πn(BF ) = πn(BG) =

{
lim−→
k
πn+k−2(Sk−1) = πSn−1 if n > 1

Z2 if n = 1 .

The space BG classifies stable spherical fibrations; the passage from stable vector

bundles to stable spherical fibrations defines a map J : BO → BG inducing the

stable J-homomorphism

J : π∗(BO) = π∗−1(O)→ π∗(BG) = πS∗−1 (∗ > 1) . 2

The direct limit

G/O = lim−→
k
G(k)/O(k)

is the mapping fibre of J : BO → BG, so that there is defined a fibration (up to

homotopy)

G/O → BO
J
→ BG

inducing a long exact sequence

. . .→ πn(G/O)→ πn(BO)
J
→ πn(BG)→ πn−1(G/O)→ . . . .
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Proposition 9.21 (i) For a finite CW complex X the homotopy classes of maps

X → G/O are in one-one correspondence with the equivalence classes of pairs

( a stable vector bundle η over X , a fibre homotopy trivialisation of Jη ) .

(ii) A stable spherical fibration α : X → BG over a finite CW complex X admits

a bundle reduction if and only if the classifying map α : X → BG lifts (up to

homotopy) to a map α̃ : X → BO, and the different such reductions are classified

by the maps X → G/O. 2

Remark 9.22 The homotopy groups π∗(BO) are infinite for ∗ ≡ 0 (mod4)

(namely Z), whereas the homotopy groups π∗(BG) are finite. The low-dimensional

homotopy groups are given in the following table.

n 1 2 3 4 5 6 7 8 9 10

πn(G/O) 0 Z2 0 Z 0 Z2 0 Z⊕ Z2 (Z2)2 Z2 ⊕ Z3

πn(BO) Z2 Z2 0 Z 0 0 0 Z Z2 Z2

πn(BG) Z2 Z2 Z2 Z24 0 0 Z2 Z240 (Z2)2 (Z2)3

2

It is possible to extend the fibration sequence G/O → BO → BG to the right

G/O → BO → BG→ B(G/O)

(Boardman and Vogt [7]), so that a stable spherical fibration α : X → BG

admits a bundle reduction if and only if the composite

t(α) : X
α // BG // B(G/O)

is null-homotopic.

Definition 9.23 The Thom space of a (k − 1)-spherical fibration α : X →
BG(k) is the pointed space given by the mapping cone (3.22) of the projection

S(α)→ X

T (α) = C(S(α)→ X) . 2

Proposition 9.24 The Thom space T (η) of a k-plane bundle η : X → BO(k)

is pointed homotopy equivalent to the Thom space T (Jη) of the sphere bundle

Jη : X → BG(k)

T (η) ' T (Jη) .



204 POINCARÉ COMPLEXES AND SPHERICAL FIBRATIONS

Proof The zero section is a homotopy equivalence X → D(η), so that

T (Jη) = C(S(Jη)→ X)

' C(S(η)→ D(η)) ' D(η)/S(η) = T (η) .

2

Example 9.25 (i) The Thom space of the (k − 1)-spherical fibration over Sn

classified by

ω ∈ πn(BG(k)) = πn−1(G(k))

with image

[ω] ∈ πn(BF (k + 1)) = πn−1(F (k + 1)) =

{
πn+k−1(Sk) if n > 1

Z2 if n = 1

is given up to homotopy equivalence by

T (ω) = Sk ∪[ω] D
n+k .

If n = 1 then

T (ω) =

{
Sk ∨ Sk+1 if ω = εk is trivial

Sk ∪2 D
k+1 = Σk−1(RP2) if ω = µ⊕ εk−1 is nontrivial.

(ii) The Thom space of the k-plane bundle over Sn (n > 1) classified by

ω ∈ πn(BO(k)) = πn−1(O(k))

is given up to homotopy equivalence by

T (ω) = Sk ∪[Jω] D
n+k ,

with Jω ∈ πn(BG(k)) classifying the sphere bundle and

[Jω] ∈ im(J) ⊆ πn(BF (k + 1)) = πn+k−1(Sk)

the image of ω under the J-homomorphism J : πn−1(O(k)) → πn+k−1(Sk)

(5.80). 2

Definition 9.26 The orientation character of a (k − 1)-spherical fibration

α : X → BG(k) is the first Stiefel-Whitney class w1(α) ∈ H1(X;Z2) regarded

as a group morphism

w1(α) : π1(X)→ Z2 = {±1} . 2

Proposition 9.27 (i) The orientation character of α : X → BG(k) is such

that w1(α) = 0 if and only if α can be oriented, i.e. if the homotopy equivalences

Sk−1 → Sk−1 on overlapping product neighbourhoods preserve orientations.
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(ii) The classifying space BSG(k) for oriented (k − 1)-spherical fibrations is the

double cover of BG(k) classified by the first Stiefel-Whitney class

w1(1k) = 1 ∈ H1(BG(k);Z2) = Z2

of the universal (k − 1)-spherical fibration 1k : BG(k)→ BG(k). 2

By analogy with the Thom Isomorphism Theorem (5.42) for oriented vector

bundles :

Fibration Thom Isomorphism 9.28 An oriented (k − 1)-spherical fibration

α : X → BSG(k) has a Thom class Uα ∈ Ḣk(T (α)) such that the cap and cup

products define isomorphisms

Uα ∩ − : Ḣ∗(T (α))→ H∗−k(X) ,

Uα ∪ − : H∗(X)→ Ḣ∗+k(T (α)) .

Proof The Thom space T (α) has the structure of a CW complex with one

0-cell (at the base point) and one (n+ k)-cell for each n-cell of X, and

Uα = ± 1 ∈ Ḣk(T (α)) = Z .

2

Again, there is a twisted version in the nonorientable case :

Twisted Fibration Thom Isomorphism 9.29 A (k − 1)-spherical fibration

α : X → BG(k) with orientation character w = w1(α) ∈ H1(X;Z2) has a w-

twisted Thom class Uα ∈ Ḣk(T (α);Zw) which is unique up to sign, such that the

cap and cup products define isomorphisms

Uα ∩ − : Ḣ∗(T (α))→ H∗−k(X;Zw) ,

Uα ∪ − : H∗(X)→ Ḣ∗+k(T (α);Zw) .

2

9.3 The Spivak normal fibration

The Spivak normal fibration of an m-dimensional geometric Poincaré complex

X is a stable spherical fibration νX : X → BG, which is the homotopy theoretic

analogue of the stable normal bundle νM : M → BO of a manifold M . The

first stage of the surgery programme for deciding if X is homotopy equivalent
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to a manifold is to decide if there exists a degree 1 normal map (f, b) : M → X

from an m-dimensional manifold Mm. Such a normal map is called a ‘normal

invariant’ for X, and exists if and only if νX : X → BG admits a vector bundle

reduction ν̃X : X → BO.

A finite m-dimensional simplicial complex K admits an embedding K ↪→
Sm+k for k > m+1, by the simplicial complex version of the Whitney Embedding

Theorem (1.7). Every finite CW complex X is homotopy equivalent to a finite

simplicial complex K, by the simplicial approximation theorem. It follows that

X can be embedded in SN , for a sufficiently large N , with a closed regular

neighbourhood Y ⊆ SN containing X as a deformation retract and such that Y

is an N -dimensional manifold with boundary ∂Y . (Here, closed is in the sense

of topology, not as a manifold). The image of the fundamental class [SN ] = 1 ∈
HN (SN ) = Z under the projection

ρ : SN → SN/(SN\Y ) = Y/∂Y

is the fundamental class of (Y, ∂Y )

ρ∗[S
N ] = [Y ] ∈ ḢN (Y/∂Y ) = HN (Y, ∂Y ) .

If X is an m-dimensional manifold then (Y, ∂Y ) is the (Dk, Sk−1)-bundle over X

determined by the normal k-plane bundle νX↪→SN : X → BO(k) with k = N−m.

Definition 9.30 A Spivak normal structure (νX , ρX) for an m-dimensional

geometric Poincaré complex X is a (k − 1)-spherical fibration νX : X → BG(k)

together with a map ρX : Sm+k → T (νX) such that the orientation character of

X is the orientation character of νX

w(X) = w1(νX) : π1(X)→ Z2 ,

and the fundamental class of X is given by

[X] = UνX ∩ h∗(ρX) ∈ Hm(X;Zw(X))

with
h∗ = Hurewicz map : πSm+k(T (νX))→ Ḣm+k(T (νX)) ,

UνX ∩ − = Thom iso. : Ḣm+k(T (νX))→ Hm(X;Zw) .

The stable spherical fibration νX : X → BG is the Spivak normal fibration

of X. 2

Theorem 9.31 (i) A finite CW complex X is an m-dimensional geometric

Poincaré complex if and only if for any closed regular neighbourhood (Y, ∂Y ) of

an embedding X ↪→ Sm+k (k large) the mapping fibre of the inclusion ∂Y → Y

is a homotopy (k − 1)-sphere.
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(ii) For an m-dimensional geometric Poincaré complex X an embedding X ↪→
Sm+k with closed regular neighbourhood (Y, ∂Y ) determines a Spivak normal

structure (νX , ρX) with

Sk−1 → S(νX) = ∂Y → Y ' X ,

ρX = projection : Sm+k → Y/∂Y = T (νX) .

(iii) Any two Spivak normal structures (ν, ρ), (ν′, ρ′) on an m-dimensional ge-

ometric Poincaré complex X are related by a stable fibre homotopy equivalence

c : ν ' ν′ such that

T (c)∗(ρ) = ρ′ ∈ πSm+k′(T (ν′)) .

Proof Let (Y, ∂Y ) be a closed regular neighbourhood of an embedding X ↪→
SN (N large). Write

π = π1(X) = π1(Y ) = π1(∂Y ) ,

and let X̃, Ỹ , ∂Ỹ be the universal covers of X,Y, ∂Y . The reduced cohomology

of the quotient space Ỹ /∂Ỹ is isomorphic to the homology of X̃, with

Ḣ∗(Ỹ /∂Ỹ ) = H∗(Ỹ , ∂Ỹ ) = HN−∗(Ỹ ) = HN−∗(X̃) .

Let w : π → Z2 be an orientation character. The following conditions are equiv-

alent :

(i) the mapping fibre

F = F(∂Y → Y )

is homotopy equivalent to Sk−1, defining a spherical fibration

νX : X ' Y → BG(k)

with orientation character w1(νX) = w,

(ii) there exists a Thom class U ∈ Ḣk(Y/∂Y ;Zw) such that the cup products

U ∪ − : H∗(Ỹ )→ Ḣ∗+k(Ỹ /∂Ỹ )

are isomorphisms (using involutions on Z[π] which differ by w to define

H∗(Ỹ ) and Ḣ∗+k(Ỹ /∂Ỹ )),

(iii) there exists a fundamental class [X] ∈ Hm(X;Zw) such that the cap prod-

ucts

[X] ∩ − : Hm−∗(X̃)→ H∗(X̃)

are isomorphisms,

(iv) there exists νX : X → BG(k) such that

(Y, ∂Y ) ' (D(νX), S(νX))

with w = w1(νX).
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If these conditions are satisfied the Thom class UνX ∈ Ḣk(T (νX);Zw) (w =

w1(νX)) corresponds to the fundamental class [X] ∈ Hm(X;Zw), the Thom

isomorphisms for νX correspond to the Poincaré duality isomorphisms for X,

with a commutative diagram of isomorphisms

Hn(X̃) ∼= Hn(Ỹ )

[X] ∩ −
∼=

  

UνX ∪ −
∼=

// Ḣn+k(T (ν̃X)) ∼= Hn+k(Ỹ , ∂Ỹ )

[Y ] ∩ −
∼=

zz
Hm−n(X̃) ∼= Hm−n(Ỹ )

The Spivak normal structure (νX , ρX) is given by νX with

ρX : SN → SN/cl.(SN\Y ) = Y/∂Y = T (νX) .

See Atiyah [5], Spivak [84], Wall [91], Browder [15], Ranicki [69] for further

details. 2

There is also a relative version :

Proposition 9.32 An m-dimensional geometric Poincaré pair (X, ∂X) carries

an equivalence class of relative Spivak normal structures

( νX : X → BG(k) , (ρX , ρ∂X) : (Dm+k, Sm+k−1)→ (T (νX), T (ν∂X)) )

with
ν∂X : ∂X → X

νX
→ BG(k) ,

[X] = UνX ∩ h∗(ρX , ρ∂X) ∈ Hm(X, ∂X;Zw) .

2

Although a homotopy equivalence of manifolds need not preserve the normal

bundles it does preserve the Spivak normal fibrations. This is a special case of :

Corollary 9.33 A homotopy equivalence of geometric Poincaré complexes pre-

serves the Spivak normal fibrations.

Proof The mapping cylinder of a homotopy equivalence X ' Y of m-dimen-

sional geometric Poincaré complexes defines an (m + 1)-dimensional geometric

Poincaré cobordism (Z;X,Y ) (9.11) with Spivak normal fibration

νZ ' νX : Z = M(X → Y ) ' X → BG .

2
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9.4 Browder-Novikov theory

The isomorphism class of the stable normal bundle νM : M → BO of an m-

dimensional manifold Mm is a diffeomorphism invariant but not a homotopy in-

variant. If g : M ′m →Mm is a homotopy equivalence of m-dimensional manifolds

then the stable bundles νM ′ , g
∗νM : M ′ → BO are fibre homotopy equivalent,

but not in general isomorphic. (See Example 13.26 for the construction of a homo-

topy equivalence g with νM ′ not isomorphic to g∗νM ). Thus the Stiefel-Whitney

classes are the same, but the Pontrjagin classes may be different. Similarly for

the characteristic numbers, so that homotopy equivalent oriented manifolds M ,

M ′ are unoriented cobordant but not necessarily oriented cobordant.

In order for a homotopy equivalence of manifolds Mm ' M ′m to be homo-

topic to a diffeomorphism it is therefore necessary that it preserve the normal

bundles. This condition is necessary but not sufficient : the homotopy equivalence

M 'W 'M ′ determined by an h-cobordism (Wm+1;Mm,M ′m) preserves nor-

mal bundles, but if the h-cobordism is not diffeomorphic to M × (I; {0}, {1})
there may not exist a homotopy to diffeomorphism.

In the applications of cobordism theory to the problem of deciding if a space

X is homotopy equivalent to a manifold it is convenient to consider maps f :

M → X such that the stable normal bundle νM : M → BO is the pullback along

f of a stable bundle η : X → BO.

Definition 9.34 (i) An m-dimensional normal map

(f, b) : (M,νM )→ (X, η)

is a map f : M → X from an m-dimensional manifold M to a CW complex X

together with a stable pullback bundle map b : νM → η over f , with νM : M →
BO the stable normal bundle of M and η : X → BO a stable bundle over X.

(ii) A normal bordism is a normal map

((F,B); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × (I; {0}, {1})

from a cobordism (Wm+1;Mm,M ′m). 2

Proposition 9.35 Let X be a space with a k-plane bundle η : X → BO(k). The

normal bordism classes of m-dimensional normal maps (f, b) : (M,νM )→ (X, η)

are in bijective correspondence with the elements of the stable homotopy group

πSm+k(T (η)) = lim−→
j
πm+j+k(Σ jT (η)) .
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Proof Immediate from the identifications

Bm(Sm+j+k, X, η ⊕ εj) = πm+j+k(T (η ⊕ εj)) (j > 0)

given by 6.10, and T (η ⊕ εj) = Σ jT (η). 2

We shall be mainly concerned with normal maps (f, b) : M → X from mani-

folds M to Poincaré complexes which are of degree 1. Degree is defined by :

Definition 9.36 The degree of a map f : M → X of connected m-dimensional

geometric Poincaré complexes such that f∗w(X) = w(M) ∈ H1(M ;Z2) is the

integer deg(f) ∈ Z such that

f∗[M ] = deg(f)[X] ∈ Hm(X;Zw) = Z . 2

Definition 9.37 A normal homotopy equivalence is a normal map (f, b) :

(M,νM )→ (X, η) such that f : M → X is a homotopy equivalence.

2

A normal homotopy equivalence has degree 1.

Surgery obstruction theory investigates the extent to which a normal map is

bordant to a normal homotopy equivalence. Browder and Novikov applied the

Spivak normal structure and the transversality construction of normal maps to

the existence and uniqueness of manifold structures in the homotopy type of a

geometric Poincaré complex, dealing with the following questions :

When is an m-dimensional geometric Poincaré complex homotopy equivalent to

an m-dimensional manifold?

When is a homotopy equivalence of m-dimensional manifolds h-cobordant to a

diffeomorphism?

In both cases there is a two-stage obstruction theory, with a homotopy-theoretic

primary obstruction and a surgery-theoretic secondary obstruction.

A geometric Poincaré complex X has a Whitehead torsion

τ(X) = τ([X] ∩ − : C(X̃)m−∗ → C(X̃)) ∈Wh(π1(X)) .

A manifold M has τ(M) = 0, so that there is also a version of surgery theory

for answering the questions :

When is an m-dimensional geometric Poincaré complex X with τ(X) = 0 simple

homotopy equivalent to an m-dimensional manifold?
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When is a simple homotopy equivalence of m-dimensional manifolds s-cobordant

to a diffeomorphism?

By the s-Cobordism Theorem (8.33) for m > 5 the last question is equivalent

to asking if the simple homotopy equivalence is homotopic to a diffeomorphism.

The version of surgery theory taking into account Whitehead torsion will be

considered (briefly) in Chapter 13.

By the results quoted in Section 9.2, the obstruction to a bundle reduction

of the Spivak normal fibration νX : X → BG of a geometric Poincaré complex

X is the homotopy class of a map t(νX) : X → B(G/O).

Proposition 9.38 An m-dimensional geometric Poincaré complex X is homo-

topy equivalent to an m-dimensional manifold if and only if there exists a null-

homotopy t(νX) ' {∗} : X → B(G/O) such that the corresponding bordism class

of degree 1 normal maps (f, b) : Mm → X contains a homotopy equivalence. 2

For m > 5 a degree 1 normal map (f, b) : Mm → X is bordant to a homotopy

equivalence if and only if the surgery obstruction σ∗(f, b) ∈ Lm(Z[π1(X)]) to be

defined in Chapter 11 (m even) and Chapter 12 (m odd) is σ∗(f, b) = 0.

The criterion of 9.38 for the existence of a manifold structure in a homotopy

type also applies in the relative case :

Corollary 9.39 Let (X, ∂X) be an m-dimensional geometric Poincaré pair.

(i) (X, ∂X) is homotopy equivalent to an m-dimensional manifold with boundary

if and only if there exists a null-homotopy t(νX) ' {∗} : X → B(G/O) such that

the corresponding bordism class of degree 1 normal maps (f, b) : (Mm, ∂M) →
(X, ∂X) contains a homotopy equivalence.

(ii) If ∂X is already an (m − 1)-dimensional manifold, then (X, ∂X) is rel ∂

homotopy equivalent to an m-dimensional manifold with boundary if and only

if there exists a null-homotopy t(νX) ' {∗} : X/∂X → B(G/O) such that the

corresponding rel ∂ bordism class of degree 1 normal maps (f, b) : (Mm, ∂M)→
(X, ∂X) contains a homotopy equivalence. 2

A normal invariant is a realization of the Spivak normal structure by a vector

bundle :

Definition 9.40 (i) A normal invariant (η, ρ) for an m-dimensional geometric

Poincaré complex X is a vector bundle η : X → BO(k) (k large) with orientation

character w1(η) = w(X) ∈ H1(X;Z2), together with a map ρ : Sm+k → T (η) to

the Thom space of η such that
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Uη ∩ h∗(ρ) = [X] ∈ Hm(X;Zw(X)) .

(ii) An equivalence of normal invariants (η, ρ), (η′, ρ′) on an m-dimensional

geometric Poincaré complex X is a stable bundle isomorphism c : η ' η′ such

that

T (c)∗(ρ) = ρ′ ∈ πSm+k′(T (η′)) .

(iii) The normal structure set T (X) of an m-dimensional geometric Poincaré

complex X is the set of equivalence classes of normal invariants. 2

Example 9.41 Any embedding M ↪→ Sm+k of an m-dimensional manifold Mm

with tubular neighbourhood (Y, ∂Y ) determines a normal invariant (η, ρ) with

η = νM↪→Sm+k : M → BO(k) ,

(Dk, Sk−1)→ (D(η), S(η)) = (Y, ∂Y )→M ,

ρ = projection : Sm+k → Y/∂Y = T (η) .

Any two such embeddings determine equivalent normal invariants. The Spivak

normal fibration of M is the stable sphere bundle JνM : M → BG of the stable

normal bundle νM : M → BO. 2

When does a geometric Poincaré complex admit a normal invariant ?

Browder-Novikov Normal Invariant Theorem 9.42 ([14], [63])

The following conditions on an m-dimensional geometric Poincaré complex X

are equivalent :

(i) The normal structure set T (X) is non-empty, i.e. X admits a normal invari-

ant.

(ii) There exists a degree 1 normal map (f, b) : Mm → X.

(iii) The Spivak normal fibration νX : X → BG admits a bundle reduction

η : X → BO.

(iv) The composite

t(νX) : X
νX // BG // B(G/O)

is null-homotopic.

Proof (i) =⇒ (ii), (iii) =⇒ (ii) Given a normal invariant (η, ρ) on X make

ρ : Sm+k → T (η) transverse at the zero section X ↪→ T (η), obtaining a degree 1

normal map

(f, b) : Mm = ρ−1(X)→ X .

(ii) =⇒ (i) Given a degree 1 normal map (f, b) : M → X with b : νM → η use an

embedding Mm ↪→ Sm+k of an m-dimensional manifold M to define a normal

invariant (νM , ρM ), with
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νM = νM↪→Sm+k : M → BO(k) ,

ρM = proj. : Sm+k → Sm+k/(Sm+k\D(νM )) = T (νM ) .

Define a normal invariant (η, ρ) on X by

ρ = T (b)ρM : Sm+k ρM // T (νM )
T (b)

// T (η) .

(ii) =⇒ (iii) For any normal invariant (η, ρ) of X the sphere bundle Jη : X → BG

is the Spivak normal fibration νX , by 9.42.

(iii) ⇐⇒ (iv) The fibration sequence BO → BG → B(G/O) induces an exact

sequence of pointed sets

[X,BO]→ [X,BG]→ [X,B(G/O)] .

2

Thus the first obstruction to an m-dimensional geometric Poincaré complex

X being homotopy equivalent to a manifold is the homotopy class of the com-

posite

t(νX) : X
νX // BG // B(G/O) .

Proposition 9.43 Let X be an m-dimensional geometric Poincaré complex which

admits a normal invariant.

(i) The normal structure set T (X) is in natural bijective correspondence with

the set of normal bordism classes of degree 1 normal maps (f, b) : M → X for

varying reductions η : X → BO of the Spivak normal fibration νX : X → BG.

(ii) The normal structure set T (X) is in unnatural bijective correspondence with

the set [X,G/O] of fibre homotopy trivialised stable vector bundles over X.

Proof (i) Immediate from the transversality construction of a normal map

(f, b) : M → X from a normal invariant (η, ρ), with M = ρ−1(X).

(ii) An element (α, β) ∈ [X,G/O] is a vector bundle α : X → BO(j) (j large)

together with a fibre homotopy trivialisation β : Jα ' {∗} : X → BG(j). Given

a normal invariant (η : X → BO(k), ρ : Sm+k → T (η)) define a normal invariant

(η′, ρ′) by

η′ = η ⊕ α : X → BO(j + k) ,

ρ′ : Sm+j+k
Σjρ
−−−→ ΣjT (η) = T (η ⊕ εj)

1⊕T (β)−1

−−−−−→ T (η′) .

The construction defines a bijection

ιη,ρ : [X,G/O]→ T (X) ; (α, β) 7→ (η′, ρ′) .

The bijection is unnatural in that it depends on the choice of normal invariant

(η, ρ). 2
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Example 9.44 See Milnor [50] for the original identification

T (Sm) = πm(G/O) . 2

Example 9.45 The Spivak normal fibration νM : M → BG of a manifold

M has a canonical vector bundle reduction, namely the stable normal bundle

ν̃M : M → BO, and the normal structure set T (M) is in natural bijective

correspondence with [M,G/O]. The bijective correspondence

T (M)→ [M,G/O] ; ((f, b) : N →M) 7→ (α, β)

is defined by sending a normal map (f, b) : N → M to the fibre homotopy

trivialised stable vector bundle (α, β) over M with b : ν̃N → ν̃M ⊕ α. 2

Example 9.46 The following construction exhibits a geometric Poincaré com-

plex X without a normal invariant, i.e. such that the Spivak normal fibration

νX : X → BG is not reducible to a vector bundle ν̃X : X → BO. A fortiori X is

not homotopy equivalent to a manifold. The construction uses the fact that the

total space of a fibration

F → E → B

with the base B an m-dimensional geometric Poincaré complex and the fibre F

an n-dimensional geometric Poincaré complex is an (m + n)-dimensional geo-

metric Poincaré complex E (Gottlieb [28]). In particular, the total space of an

n-spherical fibration ω : Sm → BG(n + 1) over Sm is an (m + n)-dimensional

geometric Poincaré complex S(ω)

Sn → S(ω)→ Sm .

If ω admits a section, say

ω = ω1 ⊕ ε : Sm → BF (n+ 1)

for some ω1 : Sm → BG(n), the total space S(ω) has a cell structure

S(ω) = (Sm ∨ Sn) ∪[ιm,ιn]+θ(ω) D
m+n ,

with [ιm, ιn] ∈ πm+n−1(Sm ∨ Sn) the Whitehead product of ιm ∈ πm(Sm) and

ιn ∈ πn(Sn) (the attaching map of the top cell in S(εn+1) = Sm × Sn) and

θ(ω) = adjoint of ω : Sm+n−1 → Sn .

The Thom space of ω has a cell structure

T (ω) = Sn+1 ∪Σθ(ω) D
m+n+1 .

The Spivak normal fibration of S(ω) is classified by
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νS(ω) : S(ω) // Sm
−ω // BF (k) (k large) ,

and the Thom space of νS(ω) has the cell structure

T (νS(ω)) = (Sk ∪Σθ(−ω) D
m+k) ∨ Sn+k ∨ Sm+n+k .

In the special case

m = 3 , n = 2 , ω = 1 ∈ π3(BF (3)) = π4(S2) = Z2

there is obtained a 5-dimensional geometric Poincaré complex X = S(ω) such

that the Spivak normal fibration νX : X → BG does not have a vector bundle

reduction – see Gitler and Stasheff [27] and Madsen and Milgram [45, p.33]. In

this case the composite

t(νX) : X
νX // BG // B(G/O)

does not admit a null-homotopy. 2

Next, consider the uniqueness of manifold structures in a homotopy type.

Proposition 9.47 A homotopy equivalence f : M ′ → M of m-dimensional

manifolds determines a fibre homotopy trivialisation

t(f) : J(νM − (f−1)∗(νM ′)) ' {∗} : M → BG

of the stable bundle

νM − (f−1)∗(νM ′) = νM ⊕ (−(f−1)∗(νM ′)) : M → BO .

The classifying map t(f) : M → G/O is null-homotopic if and only if there exists

an extension of f to a degree 1 normal bordism

((F,B); 1, (f, b)) : (Wm+1;Mm,M ′m)→M × (I; {0}, {1}) .

Proof Let
(νM : M → BO(k), ρM : Sm+k → T (νM )) ,

(νM ′ : M ′ → BO(k), ρM ′ : Sm+k → T (νM ′))

be the normal invariants determined by embeddings M , M ′ ↪→ Sm+k. The fibre

homotopy trivialisation t(f) of J(νM − (f−1)∗(νM ′)) : M → BG is defined by

the unique map of stable spherical fibrations a : JνM ′ → JνM over f : M ′ 'M
such that

T (a)∗(ρM ′) = ρM ∈ πSm+k(T (νM ))

given by 9.31 (iii). There exists an extension of f to a degree 1 normal map

(f, b) : M ′ →M if and only if there exists a null-homotopy
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νM − (f−1)∗(νM ′) ' {∗} : M → BO ,

with the bordism class given by 9.43 to be

(f, b) = T (b)∗(ρM ′) ∈ im(πSm+k(T (νM ))→ T (M)) = im([M,G]→ [M,G/O]) .

The following conditions on (f, b) are equivalent :

(i) (f, b) = (1, 1) ∈ T (M) ,

(ii) T (b)∗(ρM ′) = ρM ∈ πSm+k(T (νM )) ,

(iii) Jb ' a : JνM ′ → JνM .

There exists an extension (f, b) satisfying these conditions if and only if there

exists a null-homotopy t(f) ' {∗} : M → G/O. 2

The necessary and sufficient condition t(f) ' {∗} : M → G/O for a homotopy

equivalence f : M ′m 'Mm ofm-dimensional manifolds to be bordant to 1 : M '
M is non-trivial – see the classification of exotic spheres in Section 13.3.

Assuming t(f) ' {∗} : M → G/O the next stage of the surgery programme

to decide if a homotopy equivalence f : M ′m 'Mm of m-dimensional manifolds

is homotopic to a diffeomorphism is to investigate the extent to which a degree

1 normal bordism

(F,B) : (W ;M,M ′)→M × (I; {0}, {1})

determined by a choice of null-homotopy t(f) ' {∗} is bordant rel ∂ to a homo-

topy equivalence (F ′, B′) : (W ′;M,M ′) 'M × (I; {0}, {1}).

Proposition 9.48 A homotopy equivalence f : M ′m ' Mm of m-dimensional

manifolds is h-cobordant to a diffeomorphism if and and only if there exists a

null-homotopy t(f) ' {∗} : M → G/O such that the corresponding rel ∂ bordism

class of degree 1 normal maps

((F,B); 1, (f, b)) : (Wm+1;Mm,M ′m)→M × (I; {0}, {1})

contains a homotopy equivalence. 2

For m > 5 the degree 1 normal map (F,B) : (W ;M,M ′)→M × (I; {0}, {1})
in 9.48 is bordant to a homotopy equivalence rel ∂ if and only if the rel ∂ surgery

obstruction σ∗(F,B) ∈ Lm+1(Z[π1(M)]) defined in Chapters 11 and 12 is σ∗(F,B) =

0.

The formal similarity between the criteria of 9.38 and 9.48 for the existence

and uniqueness of manifold structures in homotopy types has a straightforward
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explanation. The mapping cylinder of a homotopy equivalence f : M ′m ' Mm

of m-dimensional manifolds defines an (m + 1)-dimensional geometric Poincaré

bordism (W ;M,M ′) with Spivak normal fibration

νW ' JνM : W ' M → BG .

Now f is h-cobordant to a diffeomorphism if and only if (W ;M,M ′) is rel ∂ homo-

topy equivalent to an (m+ 1)-dimensional manifold cobordism (Wm+1;M,M ′),
which is necessarily an h-cobordism. The primary obstruction t(f) : M → G/O

for f to be h-cobordant to a diffeomorphism is identified with the primary ob-

struction

t(νW ) : W/∂W ' ΣM → B(G/O)

for (W,∂W ) to be rel ∂ homotopy equivalent to an (m+1)-dimensional manifold

with boundary

t(f) = t(νW ) ∈ [ΣM,B(G/O)] = [M,G/O] .

If this primary obstruction vanishes there exists a degree 1 normal map

(F,B) : (W ′;M,M ′)→M × (I; {0}, {1})
with f | = id. : M → M , F | = f : M ′ → M . The secondary obstruction is the

rel ∂ surgery obstruction σ∗(F,B) ∈ Lm+1(Z[π1(M)]) to the existence of a rel ∂

normal bordism of (F,B) to a homotopy equivalence.

The main result of surgery obstruction theory is that for m > 5 an m-

dimensional degree 1 normal map (f, b) : M → X is bordant to a homotopy

equivalence if and only if an algebraic L-theory obstruction

σ∗(f, b) ∈ Lm(Z[π1(X)])

is 0. There are two distinct ways of obtaining the surgery obstruction :

(i) The original method of Wall [90],[92], using geometric surgery below the mid-

dle dimension. In Chapter 10 it will be shown that for m = 2n (resp. 2n+1)

(f, b) is bordant to an n-connected degree 1 normal map (f ′, b′) : M ′ → X,

with Ki(M
′) = 0 for i 6= n (resp. n, n + 1). The L-group L2n(A) (resp.

L2n+1(A)) of a ring with involution A is the Witt group of nonsingu-

lar (−1)n-quadratic forms (resp. formations), which will be described in

Chapter 11 (resp. 12). The surgery obstruction

σ∗(f, b) = σ∗(f
′, b′) ∈ Lm(Z[π1(X)])

is the class of the form (resp. formation) associated to the kernel Poincaré

duality K∗(M ′) ∼= Km−∗(M ′).

(ii) The chain complex method of Ranicki [69],[76] in which the surgery ob-

struction σ∗(f, b) ∈ Lm(Z[π1(X)]) is obtained directly from the chain level

version of the kernel Poincaré duality K∗(M) ∼= Km−∗(M), without pre-

liminary geometric surgeries below the middle dimension.
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SURGERY ON MAPS

An m-dimensional normal map (f, b) : M → X is an m-dimensional manifold

Mm together with a map f : M → X and a bundle map b : νM → η from a

stable normal bundle of M to a vector bundle η over X.

Section 10.1 extends the notion of surgery on a manifold to surgery on a

normal map. An n-surgery on a normal map (f, b) : M → X killing x ∈ πn+1(f)

starts with an embedding Sn×Dm−n ↪→M such that (f, b) extends to a normal

map

((F,B); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × (I; {0}, {1}) ,
with (W ;M,M ′) the trace of the n-surgery on M removing Sn ×Dm−n ↪→ M

and killing ∂x ∈ πn(M). The main result of this chapter is Theorem 10.30 : if

m = 2n or 2n+ 1 it is possible to kill the homotopy groups π∗(f) for ∗ 6 n, and

(f, b) is normal bordant to an n-connected normal map.

Which elements x ∈ πn+1(f) can be killed by an n-surgery on anm-dimensional

normal map (f, b) : Mm → X ? By definition, x is a homotopy class of commu-

tative squares

Sn
g //

��

Mm

f

��

φ

Dn+1 h // X

and x can be killed by surgery on (f, b) precisely when there exists a rep-

resentative with g : Sn ↪→ M an embedding such that the normal bundle

νg : Sn → BO(m−n) can be framed compatibly with the bundle map b : νM → η.

There are two distinct ways of proceeding :

(i) First embeddings then framings.

The “b-framing obstruction” of any representative φ with g : Sn # M an

immersion is an element

νb(φ) ∈ πn+1(BO,BO(m− n))

measuring the extent to which the normal bundle νg : Sn → BO(m−n) can

be framed in a way compatible with the stable framing of νg determined
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by b : νM → η and h : Dn+1 → X. The element x ∈ πn+1(f) can be killed

by an n-surgery on (f, b) if and only if it has a representative φ with g

an embedding and b-framing obstruction νb(φ) = 0. This is the method

favoured by Kervaire and Milnor [38] and Browder [14]. It is particularly

effective in the simply-connected case π1(M) = π1(X) = {1} for 2n 6 m

with m > 5, since by the Whitney Embedding Theorem (7.2) every element

x ∈ πn+1(f) has a representative φ with g an embedding.

(ii) First framings then embeddings.

By the Smale-Hirsch Immersion Classification Theorem (7.35) it is possible

for n 6 m−2 to represent each x ∈ πn+1(f) by a diagram φ with g : Sn #
Mm an immersion such that νg : Sn → BO(m− n) is framed in a manner

compatible with b (so that νb(φ) = 0). Any two such representatives are

regular homotopic. Section 10.2 gives the basic properties of the regular

homotopy groups of immersions and their applications to surgery theory.

An element x ∈ πn+1(f) can be killed by an n-surgery on (f, b) if and only

if there exists such a representative φ with g : Sn ↪→ Mm an embedding.

This is the method favoured by Wall [92]. It is more elaborate than (i), but

it is better suited to the classification of the effects of the surgeries.

The kernel Z[π1(X)]-modules of a map f : M → X

K∗(M) = H∗+1(f̃ : M̃ → X̃)

are defined in Section 10.3, with X̃ the universal cover of X and M̃ = f∗X̃ the

pullback cover of M . A map f of CW complexes is a homotopy equivalence if

and only if f∗ : π1(M)→ π1(X) is an isomorphism and K∗(M) = 0.

Given anm-dimensional degree 1 normal map (f, b) : Mm → X we should like

(if possible) to construct a bordant degree 1 normal map (f∞, b∞) : M∞ → X

which is a homotopy equivalence, with K∗(M∞) = 0. The standard operating

procedure of surgery theory is to try and kill the successive kernel homology

modules Ki(M) for i = 0, 1, 2, . . . by surgeries on (f, b), to obtain a sequence of

bordant degree 1 normal maps (fi, bi) : Mi → X which are i-connected, with

Kj(Mi) = 0 for j < i. Start with

(f0, b0) = (f, b) : M0 = M → X .

Assume inductively that (f0, b0), (f1, b1), . . . , (fi, bi) have already been con-

structed. At this stage we have the question:

Is it possible to kill Ki(Mi) by surgery, to obtain a bordant (i + 1)-connected

degree 1 normal map (fi+1, bi+1) : Mi+1 → X?

In Section 10.4 the Whitney Embedding Theorem (7.1) will be used to prove

that for 2i+ 1 6 m every element x ∈ πi+1(fi) can be killed by an n-surgery. In
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Section 10.5 it will be proved that πi+1(fi) is a f.g. Z[π1(X)]-module, and that

for 2i + 2 6 m (fi, bi) is bordant to an (i + 1)-connected degree 1 normal map

(fi+1, bi+1) : Mi+1 → X.

Thus for an m-dimensional degree 1 normal map (f, b) : M → X with m = 2n

or 2n+ 1 there is a bordant n-connected degree 1 normal map (fn, bn) : Mn →
X. However, there is a surgery obstruction (to be defined in Chapters 11 and

12) to killing Kn(Mn) to obtain a bordant (n + 1)-connected degree 1 normal

map (fn+1, bn+1) : Mn+1 → X, which takes value in the surgery obstruction

group Lm(Z[π1(X)]). If the surgery obstruction is 0 then (fn+1, bn+1) can be

constructed. Now (fn+1, bn+1) is a homotopy equivalence by the Theorem of

J.H.C. Whitehead (3.6) and Poincaré duality, so that we can set

(fn+1, bn+1) = (fn+2, bn+2) = . . . = (f∞, b∞) .

For a 2n-dimensional normal map (f, b) : M2n → X it is possible to represent

every element x ∈ πn+1(f) by a framed n-immersion φ in (f, b), by the Whitney

Immersion Theorem (7.1). However, in general x is not represented by a framed

n-embedding, so that x cannot be killed by an n-surgery on (f, b). For n > 3

it is possible to represent x by a framed n-embedding if and only if a certain

self-intersection obstruction µ(x) in a quotient of Z[π1(M)] is 0. The surgery

obstruction of an n-connected 2n-dimensional normal map (f, b) is due to the

fact that φ may not be represented by a framed n-embedding. See Chapter 11

for the self-intersection form µ and the 2n-dimensional surgery obstruction.

For a (2n + 1)-dimensional normal map (f, b) : M2n+1 → X with n > 2 it

is possible to represent every element x ∈ πn+1(f) by a framed n-embedding φ

in (f, b). The Wall surgery obstruction of an n-connected (2n + 1)-dimensional

normal map (f, b) is due to the fact that even though it is possible to kill every

element x ∈ πn+1(f) = Kn(M) by an n-surgery on (f, b) there are many ways

of doing so, none of which need reduce the size of Kn(M). See Chapter 12 for

the (2n+ 1)-dimensional surgery obstruction.

10.1 Surgery on normal maps

Recall from Definition 2.4 that an n-embedding in an m-dimensional manifold

M is an embedding g : Sn ↪→M .

Definition 10.1 LetMm be anm-dimensional manifold with a map f : M → X

to a space X.

(i) An n-immersion in M is an immersion

g : Sn #M .

(ii) A framed n-immersion in M is an immersion
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g : Sn ×Dm−n #M .

(iii) An n-immersion φ in f is a commutative square

Sn
g //

��

M

f

��

φ

Dn+1 h // X

with g : Sn # M an n-immersion in M . An n-embedding in f is an n-

immersion φ with g an n-embedding in M .

(iv) A framed n-immersion Φ in f is a commutative square

Sn ×Dm−n g //

��

M

f

��

Φ

Dn+1 ×Dm−n h // X

with g : Sn×Dm−n #M a framed n-immersion in M . A framed n-embedding

in f is a framed n-immersion φ with g an embedding.

(v) The core of a framed n-immersion Φ is the n-immersion φ defined by the

restrictions g, h of g, h. Similarly for n-embeddings.

(vi) The n-surgery on f removing a framed n-embedding Φ is the operation

of n-surgery on M removing g : Sn ×Dm−n ↪→M with effect

M ′ = cl.(M\g(Sn ×Dm−n)) ∪Dn+1 × Sm−n−1

together with the extension of f to a trace bordism

(F ; f, f ′) : (W ;M,M ′)→ X × (I; {0}, {1})

given by

F = f × 1 ∪ h : W = M × I ∪g Dn+1 ×Dm−n → X × I .

The n-surgery kills the homotopy class of the core

x = [φ] = (h, g) ∈ πn+1(f) . 2

The homotopy theoretic effect in dimensions 6 n + 1 of an n-surgery on a

map is given by :
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Proposition 10.2 The relative homotopy groups in the trace of an n-surgery

on an m-dimensional map f : M → X

(F ; f, f ′) : (Wm+1;Mm,M ′m)→ X × (I; {0}, {1})

killing x ∈ πn+1(f) are such that

πi(F ) =

{
πi(f) if i 6 n

πn+1(f)/〈x〉 if i = n+ 1 ,

with 〈x〉 ⊆ πn+1(f) the Z[π1(X)]-module generated by x. Also, F is the trace of

the dual (m− n− 1)-surgery on f ′ : M ′ → X killing an element x′ ∈ πm−n(f ′),
so that

πj(F ) =

{
πj(f

′) if j 6 m− n− 1

πm−n(f ′)/〈x′〉 if j = m− n .

Proof The elements

x = [φ] = (h, g) ∈ πn+1(f) , x′ = [φ′] = (h′, g′) ∈ πm−n(f ′)

are represented by the core n-embedding and the dual core (m−n−1)-embedding

Sn
g //

��

M

f

��

φ

Dn+1 h // X

,

Sm−n−1
g′ //

��

M ′

f ′

��

φ′

Dm−n h′ // X

with

F ' f ∪ h ' f ′ ∪ h′ : W ' M ∪g Dn+1 ' M ′ ∪g′ Dm−n → X .

2

Corollary 10.3 For 2n + 2 6 m an n-connected map f : Mm → X can be

made (n + 1)-connected by n-surgeries if and only if there exists a finite set of

Z[π1(X)]-module generators x1, x2, . . . , xk ∈ πn+1(f) = Kn(M) which can be

killed by n-surgeries on f .

Proof The condition 2n+ 2 6 m ensures that the effect of an n-surgery killing

an element x ∈ πn+1(f) is a map f ′ : M ′m → X such that

πi(f
′) = πi(F ) =

{
πi(f) if i 6 n

πn+1(f)/〈x〉 if i = n+ 1 .

2
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Definition 10.4 The framing obstruction of an n-immersion in a map f :

Mm → X

Sn
g //

��

M

f

��

φ

Dn+1 h // X

is the isomorphism class of the normal bundle of g

ν(φ) = νg ∈ πn(BO(m− n)) . 2

Proposition 10.5 Let f : M → X be a map from an m-dimensional manifold

Mm. For any element x ∈ πn+1(f) the following conditions are equivalent :

(i) x can be killed by an n-surgery on f ,

(ii) x can be represented by a framed n-embedding Φ in f ,

(iii) x can be represented by an n-embedding φ in f with framing obstruction

ν(φ) = 0 ∈ πn(BO(m− n)) .

Proof (i) ⇐⇒ (ii) Immediate from the definitions (10.1).

(ii) ⇐⇒ (iii) An n-embedding φ in f extends to a framed n-embedding Φ pre-

cisely when the normal bundle νg can be framed, by the Tubular Neighbourhood

Theorem (5.50). 2

We now move on to surgery on a normal map (1.15)

(f, b) : M → X

with f : Mm → X a map from an m-dimensional manifold and b : νM → η a

pullback bundle map over f .

Definition 10.6 A framed n-embedding (Φ, B) in (f, b) (or a b-framed n-

embedding (Φ, B) in f) is a framed n-embedding in f

Sn ×Dm−n g //

��

M

f

��

Φ

Dn+1 ×Dm−n h // X

together with an extension of (f, b) to a normal map on the trace of the n-surgery

on f removing Φ
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(F,B) : (W ;M,M ′)→ X × (I; {0}, {1})
with

F : W = M × I ∪g Dn+1 ×Dm−n → X × I
such that

F ' f ∪ h : W ' M ∪g Dn+1 → X .

The normal map

(f ′, b′) = (F,B)| : M ′ = cl.(M\g(Sn ×Dm−n)) ∪Dn+1 × Sm−n−1 → X

bordant to (f, b) by (F,B) is the effect of the n-surgery on (f, b) removing

(Φ, B) and killing the homotopy class x = [φ] ∈ πn+1(f). 2

Example 10.7 Every manifold M admits a normal map (νM , 1) : M → X =

BO. A framed n-embedding (Φ, B) in (νM , 1) is just a framed n-embedding in

M , and surgery on (f, b) is just surgery on M . 2

Definition 10.8 Let (f, b) : M → X be a normal map, and let φ be an n-

immersion in f

Sn
g //

��

M

f

��

φ

Dn+1 h // X .

The normal bundle νg : Sn → BO(m− n) has a stable framing

δνh,b : νg ⊕ εk ∼= εm−n+k

determined by an embedding e : M ↪→ Sm+k (k large), the identities

νg ⊕ g∗νe = νeg ,

νe = νM ∼=b f∗η ,

g∗νe ∼= g∗f∗η ∼=h εk

and the canonical framing νeg ∼= εm−n+k of the normal bundle of the immersion

eg : Sn # Sm+k The b-framing obstruction of φ is

νb(φ) = (δνh,b, νg) ∈ πn+1(BO,BO(m− n)) . 2

Lemma 10.9 The normal bundle νi : Sn → BO(k) of an immersion i : Sn #
Sn+k (k large) is equipped with a canonical class of isomorphisms νj : νi ∼= εk,

which corresponds to a canonical class of null-homotopies of a classifying map

νj : νi ' {∗} : Sn → BO(k) ,

with νj ∼ ν′j if (ν′j)
−1νj = 0 ∈ πn(O(k)).
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Proof Relate i to the standard embedding i0 : Sn ↪→ Sn+k by a regular homo-

topy it : Sn # Sn+k (0 6 t 6 1), with i1 = i. Use this to translate the standard

bundle isomorphisms

νj0 : νi0 ⊕ εn+1 ∼= νi0 ⊕ τSn ⊕ ε ∼= i∗0τSn+k ⊕ ε ∼= εn+k+1

from i0 to i. Any two choices of regular homotopies {it}, {i′t} are related by a

regular homotopy of the track immersions Sn × I # Sn+k × I. 2

Next, consider the manifold M . For definiteness, let νM = νe : M → BO(k)

be the normal bundle of an embedding e : M ↪→ Sm+k (k large), and let η :

X → BO(k) be likewise a k-plane bundle, so that b : νM → η is a map of

k-plane bundles. The normal bundle of the composite immersion

g′ = eg : Sn #Mm ↪→ Sm+k

is trivial, with a trivialisation

νg′ = νg ⊕ g∗νM ' {∗} : Sn → BO(m− n+ k) .

The normal bundle νg : Sn → BO(m − n) is a stable inverse of the pullback

g∗νM : Sn → BO of the stable normal bundle νM : M → BO, that is

νg ⊕ g∗νM = ε∞ : Sn → BO .

Similarly for a normal map (f, b) : M → X : the map of k-plane bundles b :

νM → η and the null-homotopy h : gf ' ∗ : Sn → X determine a null-homotopy

g∗νM = g∗f∗η ' ∗ : Sn → BO(k)

which in general is not compatible with the canonical null-homotopy of νg′ .

Combining the two null-homotopies into a single null-homotopy and passing to

the limit as k →∞ there is obtained a commutative square

Sn
νg //

��

BO(m− n)

��
Dn+1

δνh,b // BO

representing the b-framing obstruction

νb(φ) = (δνh,b, νg) ∈ πn+1(BO,BO(m− n)) .

Proposition 10.10 Let (f, b) : M → X be a normal map from an m-dimensional

manifold Mm. For any element x ∈ πn+1(f) the following conditions are equiv-

alent :
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(i) x can be killed by an n-surgery on (f, b),

(ii) x can be represented by a framed n-embedding (Φ, B) in (f, b),

(iii) x can be represented by an n-embedding φ in f with b-framing obstruction

νb(φ) = 0 ∈ πn+1(BO,BO(m− n)) .

Proof (i) ⇐⇒ (ii) Immediate from the definitions (10.6).

(ii) ⇐⇒ (iii) An n-embedding φ in f extends to a framed n-embedding Φ pre-

cisely when the normal bundle νg can be framed, by the Tubular Neighbourhood

Theorem (5.50). 2

By analogy with 10.3 :

Corollary 10.11 For 2n+2 6 m an n-connected normal map (f, b) : Mm → X

can be made (n + 1)-connected by n-surgeries if and only if there exists a finite

set of Z[π1(X)]-module generators x1, x2, . . . , xk ∈ πn+1(f) = Kn(M) which can

be killed by n-surgeries on (f, b). 2

10.2 The regular homotopy groups

The regular homotopy groups In(M) of immersions g : Sn # Mm (5.54) will

now be generalised to the relative regular homotopy homotopy groups In+1(f)

for a map f : Mm → X, with an exact sequence

. . .→ πn+1(X)→ In+1(f)→ In(M)→ πn(X)→ . . . .

The groups In+1(f) will be used to formulate Wall’s immersion-theoretic ap-

proach to surgery on normal maps (f, b) : M → X. The case m = 2n will be

used in the 2n-dimensional surgery obstruction theory of Chapter 11.

Definition 10.12 (i) The relative regular homotopy group In+1(f) of a

map f : Mm → X from an m-dimensional manifold M to any space X is the

Z[π1(X)]-module of regular homotopy classes of n-immersions in f , with addition

by connected sum.

(ii) The relative framed regular homotopy group I f rn+1(f) of a map f :

Mm → X from an m-dimensional manifold M to any space X is the Z[π1(X)]-

module of regular homotopy classes of framed n-immersions in f , with addition

by connected sum. 2

Proposition 10.13 Let f : Mm → X be a map from an m-dimensional mani-

fold M , and let n 6 m− 2.

(i) The relative regular homotopy groups In+1(f), I f rn+1(f) fit into a commutative

braid of exact sequences of Z[π1(M)]-modules
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πn(Vm−n)

q %%

""
πn(BO(m− n))

%%

##
I f rn (f)

In+1(f)
ν∂

99

r
%%

πn(BO)

99

%%
I f rn+1(f)

99

<<
πn+1(f)

−νM∂
99

<<
πn−1(Vm−n)

with

I f rn+1(f) = πn+1(f × νM : M → X ×BO) .

(ii) The absolute and relative regular homotopy groups are related by commutative

braids of exact sequences

πn(Vm−n)

%%

""
In(M)

%%

""
πn(X)

In+1(f)

99

%%

πn(M)

f∗ 99

%%
πn+1(X)

99

<<
πn+1(f)

99

<<
πn−1(Vm−n)

πn+1(BO)

%%

##
I f rn (M)

%%

""
πn(X)

I f rn+1(f)

99

%%

πn(M)

f∗ 99

−νM
%%

πn+1(X)

99

<<
πn+1(f)

99

<<
πn(BO)

Proof These are just the relative cases of 7.39, with

Vm−n =
⋃
k

Vm−n+k,k

the stable Stiefel space (7.37). 2
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Definition 10.14 Let (f, b) : M → X be an m-dimensional normal map, and

let n 6 m− 2.

(i) The b-framing section of the forgetful map In+1(f) → πn+1(f) is the

Z[π1(X)]-module morphism

sb : πn+1(f)→ In+1(f) ; φ 7→ sb(φ)

sends a commutative square

Sn
g //

��

Mm

f

��

φ

Dn+1 h // X

to the regular homotopy class of the framed n-immersion

Sn ×Dm−n g //

��

Mm

f

��

φb

Dn+1 ×Dm−n h // X

determined by the stable bundle isomorphism

δνh,b : τSn ⊕ νg ⊕ ε∞ ∼= g∗τM ⊕ ε∞

and the Hirsch-Smale Immersion Classification Theorem (7.35).

(ii) The b-framing section

sf rb : πn+1(f)→ I f rn+1(f)

of the forgetful map I f rn+1(f)→ πn+1(f) is defined in the same way as sb. 2

Theorem 10.15 (Wall [92, Theorem 1.1])

Let (f, b) : Mm → X be an m-dimensional normal map, and let n 6 m − 2.

An element x ∈ πn+1(f) can be killed by an n-surgery on (f, b) if and only if

the regular homotopy class sf rb (x) ∈ I f rn+1(f) of framed n-immersions in (f, b)

contains a representative (g, h) with g : Sn #Mm an embedding.

Proof Such a representative is a b-framed n-embedding, i.e. an n-surgery.

2



THE REGULAR HOMOTOPY GROUPS 229

Proposition 10.16 For n 6 m − 2 a stable bundle map b : νM → η over

f : Mm → X determines a decomposition of the relative regular homotopy group

of immersions In+1(f) as a direct sum system of Z[π1(X)]-modules

πn+1(BO,BO(m− n)) = πn(Vm−n)
q

−−−−−→←−−−−−
tb

In+1(f)
r

−−−−−→←−−−−−
sb

πn+1(f)

such that :

(i) for every (h, g) ∈ In+1(f)

tb(h, g) = (νh, νg) ∈ πn+1(BO,BO(m− n))

is the b-framing obstruction (10.8),

(ii) for every x ∈ πn+1(f)

sb(x) = (h, g) ∈ In+1(f)

is the unique element with image r(h, g) = x ∈ πn+1(f) which admits a

b-framing.

Similarly for the relative regular homotopy group of framed n-immersions I f rn+1(f),

with a direct sum system of Z[π1(X)]-modules

πn+1(BO) = πn+1(BO(m))
qf r

−−−−−→←−−−−−
tf rb

I f rn+1(f)
rf r

−−−−−→←−−−−−
sf rb

πn+1(f)

such that

sb : πn+1(f)
sf rb // I f rn+1(f) // In+1(f) .

Proof Suppose given a map g : Sn →Mm and a stable isomorphism of bundles

over Sn

c : τSn ⊕ εm−n+∞ ∼= g∗τM ⊕ ε∞ .

Since n 6 m− 2

πn(BO(m)) = πn(BO)

and it is possible to destabilise c and regard it as a bundle isomorphism

c : τSn ⊕ εm−n ∼= g∗τM .

By 7.35 such a pair (g, c) determines a regular homotopy class of framed n-

immersions g′ : Sn × Dm−n # M homotopic to g. An element x ∈ πn+1(f) is

represented by a commutative square
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Sn
g //

��

Mm

f

��

φ

Dn+1 h // X .

Now b and h determine a stable isomorphism of bundles over Sn

c : g∗νM ∼= (fg)∗(η) ∼= ε∞ ,

which may be regarded as a stable isomorphism

c : τSn ⊕ εm−n+∞ ∼= g∗τM ⊕ ε∞

(using a standard isomorphism τSn⊕ε ∼= εn+1). As above, c determines a regular

homotopy class of framed n-immersions g′ : Sn # M in the homotopy class of

g, such that fg′ : Sn → X is equipped with a null-homotopy h′ : Dn+1 → X.

Set

sb : πn+1(f)→ In+1(f) ; φ 7→ φ′

with

Sn
g′ //

��

Mm

f

��

φ′

Dn+1 h′ // X .

2

10.3 Kernels

The kernel homology and cohomology Z[π]-modules of a map f : M → X with

respect to an oriented cover (X̃, π, w) of X are defined by

K∗(M) = H∗+1(f̃ : M̃ → X̃) , K∗(M) = H∗+1(f̃ : M̃ → X̃)

with M̃ = f∗X̃ the pullback cover of M . The kernel homology and cohomology

modules of an m-dimensional degree 1 normal map (f, b) : M → X are such that

H∗(M̃) = K∗(M)⊕H∗(X̃) , H∗(M̃) = K∗(M)⊕H∗(X̃)

with Poincaré duality isomorphisms

K∗(M) ∼= Km−∗(M) .
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The extent to which a map f : M → X of connected CW complexes fails to

be a homotopy equivalence is measured by the relative homotopy groups π∗(f)

(3.4), with an exact sequence

. . . // πn+1(M)
f∗ // πn+1(X) // πn+1(f) // πn(M) // . . . .

If f∗ : π1(M) → π1(X) is an isomorphism then πn+1(f) is the set of homotopy

classes of commutative squares

Sn
g //

��

M

f

��
Dn+1 h // X

together with a reference path in M from g(1) to the base point ∗ ∈ M . The

fundamental group π1(X) acts on πn+1(f) by changing the reference path, giving

πn+1(f) the structure of a Z[π1(X)]-module. The Hurewicz map

πn+1(f) = πn+1(f̃)→ Hn+1(f̃)

is a Z[π1(X)]-module morphism, with f̃ : M̃ → X̃ a π1(X)-equivariant lift of f

to the universal cover X̃ of X and the pullback cover M̃ = f∗X̃ of X.

Definition 10.17 Let X be a space with an oriented cover (X̃, π, w), and let

f : M → X be a map with a lift to a π-equivariant map f̃ : M̃ → X̃ from the

pullback cover M̃ = f∗X̃.

(i) The homology kernel Z[π]-modules of f are

Kn(M) = Hn+1(f̃ : M̃ → X̃) ,

with an exact sequence

. . .→ Hn+1(X̃)→ Kn(M)→ Hn(M̃)
f̃∗ // Hn(X̃)→ Kn−1(M)→ . . . .

(ii) The cohomology kernel Z[π]-modules of f are defined by

Kn(M) = Hn+1(f̃ : M̃ → X̃) ,

with an exact sequence

. . .→ Kn−1(M)→ Hn(X̃)
f̃∗ // Hn(M̃)→ Kn(M)→ Hn+1(X̃)→ . . . ,

where

H∗(X̃) = H∗(HomZ[π](C(X̃),Z[π])) . 2
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Proposition 10.18 The following conditions on a map f : M → X of connected

CW complexes are equivalent :

(i) f is a homotopy equivalence,

(ii) the relative homotopy groups are π∗(f) = 0,

(iii) f∗ : π1(M)→ π1(X) is an isomorphism of groups, and the kernel Z[π1(X)]-

modules are K∗(M) = 0.

Proof (i) ⇐⇒ (ii) by the Theorem of J.H.C.Whitehead (3.6).

(ii) ⇐⇒ (iii) by the Hurewicz Theorem (3.26). 2

Proposition 10.19 Let n > 2, and let f : M → X be a map of connected CW

complexes.

(i) The map f is n-connected if and only if f∗ : π1(M) → π1(X) is an isomor-

phism of groups and the kernel Z[π1(X)]-modules are such that

Ki(M) = 0 for i < n .

(ii) If f is n-connected

πi+1(f) = Ki(M) = 0 for i < n

and the Hurewicz map is an isomorphism of Z[π1(X)]-modules

πn+1(f) ∼= Kn(M) .

Moreover, the kernel homology and cohomology Z[π]-modules with respect to any

oriented cover (X̃, π, w) of X are such that

Ki(M) = Ki(M) = 0 for i < n ,

and the evaluation map is an isomorphism of Z[π]-modules

Kn(M)→ Kn(M)∗ ; y 7→ (x 7→ y(x)) .

Proof By the Universal Coefficient Theorem (3.17) and the Hurewicz Theorem

(3.26). 2

The kernel homology and cohomology of a degree 1 map f : M → X of

m-dimensional geometric Poincaré complexes are shown in 10.21 to be such that

there are natural direct sum decompositions

H∗(M̃) = K∗(M)⊕H∗(X̃) , H∗(M̃) = K∗(M)⊕H∗(X̃)

with Poincaré duality isomorphisms
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Km−∗(M) ∼= K∗(M) .

Although there does not exist an m-dimensional geometric Poincaré complex

with homology K∗(M) and cohomology K∗(M) there does exist a Z[π1(X)]-

module chain complex C (defined in the proof of 10.21 below) such that

H∗(C) = K∗(M) , H∗(C) = K∗(M) , Cm−∗ ' C .

For a map of pairs (M,∂M)→ (X, ∂X) there are defined relative homology

and cohomology kernel Z[π]-modules K∗(M,∂M), K∗(M,∂M), to fit into exact

sequences of Z[π]-modules

. . .→ Kn(∂M)→ Kn(M)→ Kn(M,∂M)→ Kn−1(∂M)→ . . . ,

. . .→ Kn−1(∂M)→ Kn(M,∂M)→ Kn(M) → Kn(∂M)→ . . . .

A symmetric bilinear form on a vector space V

α : V × V → R ; (x, y) 7→ α(x, y) = α(y, x)

is nonsingular if the adjoint linear map

α = α∗ : V → V ∗ = HomR(V,R) ; x 7→ (y 7→ α(x, y))

is an isomorphism. A morphism of vector spaces with symmetric bilinear forms

f : (V, α)→ (W,β)

is a linear map f : V →W such that

β(f(x), f(y)) = α(x, y) ∈ R (x, y ∈ V ) ,

or equivalently if

f∗βf = α : V → V ∗ ,

with

f∗ : W ∗ → V ∗ ; g 7→ (x 7→ g(f(x))) .

Thus if (V, α) is nonsingular the linear map defined by

f ! = α−1f∗β : W
β // W ∗

f∗ // V ∗
α−1

// V

splits f , with

f !f = 1 : V → V .

The symmetric bilinear form (K,λ) defined by

K = ker(f ! : W → V ) ,

λ : K ×K → R ; (x, y) 7→ λ(x, y) = β(x, y)
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is such that there are defined inverse isomorphisms of symmetric bilinear forms

(V, α)⊕ (K,λ)
f ⊕ g

−−−−−−−→←−−−−−−−
f ! ⊕ h

(W,β)

with

g = inclusion : K →W , h = 1− ff ! : W → K .

The fact that isometries of nonsingular symmetric bilinear forms split off in this

manner has a direct generalisation to the splitting of Poincaré duality structures

for a degree 1 map, making use of the Z[π]-module version of the Umkehr chain

map (4.14) :

Definition 10.20 Let f : M → X be a degree 1 map of m-dimensional geo-

metric Poincaré complexes, and let f̃ : M̃ → X̃ be a π-equivariant lift of f , for

an oriented cover (X̃, π, w) of X with pullback cover M̃ = f∗X̃. The Umkehr

Z[π]-module chain map is given by

f ! : C(X̃)
([X] ∩ −)−1

−−−−−−−−−→ C(X̃)m−∗
f̃∗

−−−−−→

C(M̃)m−∗
[M ] ∩ −

−−−−−−−−−→ C(M̃) ,

using a chain homotopy inverse to the Poincaré duality chain equivalence of X.

2

The Umkehr of 10.20 is an evident generalisation of the Umkehr chain map

in 4.67.

Proposition 10.21 For a degree 1 map f : M → X of m-dimensional geometric

Poincaré complexes the Poincaré duality isomorphisms of M̃ split as

[M ] ∩ − = ([M ] ∩ −)⊕ ([X] ∩ −) :

Hn(M̃) = Kn(M)⊕Hn(X̃)→ Hm−n(M̃) = Km−n(M)⊕Hm−n(X̃) .

In particular, the homology and cohomology kernel modules are related by Poincaré

duality isomorphisms

[M ] ∩ − : Kn(M)→ Km−n(M) .

Proof It will be shown that f̃ : C(M̃)→ C(X̃) is a chain homotopy split sur-

jection, with a particular splitting f ! : C(X̃) → C(M̃) such that the algebraic

mapping cone C (f !) (3.13) has m-dimensional Poincaré duality, and such that

the homology and cohomology are precisely K∗(M) and K∗(M). By the natu-

rality of the cap product and f∗[M ] = [X] there is defined a chain homotopy

commutative diagram
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C(X̃)m−∗
f̃∗ //

[X] ∩ −
��

C(M̃)m−∗

[M ] ∩ −
��

C(X̃) C(M̃) .
f̃oo

Thus there exists a chain homotopy

f̃f ! ' 1 : C(X̃)→ C(X̃)

and there is defined a chain homotopy direct sum system

C (f !)
g

−−−−−→←−−−−−
e

C(M̃)
f̃

−−−−−→←−−−−−
f !

C(X̃)

with e : C(M̃) → C (f !) the inclusion (which is a chain homotopy split surjec-

tion), and g : C (f !)→ C(M̃) the chain homotopy split injection determined up

to chain homotopy by e, f̃ , f !. The system specifies identifications

K∗(M) = H∗(C (f !)) , K∗(M) = H∗(C (f !)) .

The cap product chain equivalence

[M ] ∩ − : C(M̃)m−∗ → C(M̃)

defines a chain equivalence of direct sum systems

C (f !)m−∗

[M ] ∩ −
��

e∗ //
C(M̃)m−∗

g∗
oo

[M ] ∩ −
��

f !∗
//
C(X̃)m−∗

[X] ∩ −
��

f̃∗
oo

C (f !)
g //

C(M̃)
e

oo
f̃ //

C(X̃)

f !
oo

since there exist chain homotopies

f̃([M ] ∩ −)e∗ ' 0 : C (f !)m−∗ → C(X̃) ,

e([M ] ∩ −)f̃∗ ' 0 : C(X̃)m−∗ → C (f !) ,

using the existence of a chain homotopy

[M ] ∩ − ' T ([M ] ∩ −) : C(M̃)m−∗ → C(M̃)

given by the chain homotopy symmetry of the diagonal chain approximation

(3.18). 2
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Definition 10.22 The homology intersection pairing on the kernel Z[π]-

modules of an m-dimensional oriented map f : M → X with respect to an

oriented cover (X̃, π, w) of X are the sesquilinear pairings

λ : Kn(M)×Km−n(M)→ Z[π]

inherited from the intersection pairing of 4.66

λ : Hn(M̃)×Hm−n(M̃)→ Z[π]

using the natural maps K∗(M)→ H∗(M̃). 2

The intersection pairings determine the effect of surgery on the homology

kernel of a normal map :

Proposition 10.23 Let (f, b) : Mm → X be an m-dimensional normal map,

and let

((F,B); (f, b), (f ′, b′)) : (Wm+1;Mm,M ′m)→ X × (I; {0}, {1})
be the trace of an n-surgery on (f, b) killing an element of x ∈ πn+1(f), and let

M0 = cl.(M\(Sn ×Dm−n)) .

(i) The kernel Z[π]-modules are such that

Ki(W,M) =

{
Z[π] if i = n+ 1

0 if i 6= n+ 1 ,

Ki(W,M
′) =

{
Z[π] if i = m− n
0 if i 6= m− n

with a commutative braid of exact sequences of Z[π]-modules

Ki+1(W,M)

''

x

%%
Ki(M)

''

x!

%%
Ki(W,M

′)

Ki+1(W,M ∪M ′)

77

''

Ki(W )

77

''
Ki+1(W,M ′)

77

x′
99
Ki(M

′)

77

(x′)!
99

Ki(W,M)

such that

x : Kn+1(W,M) = Z[π]→ Kn(M) ; 1 7→ x ,

x ! : Km−n(M)→ Km−n(W )→ Km−n(W,M ′) = Z[π] ; y 7→ λ(x, y) .

(ii) If X is an m-dimensional geometric Poincaré complex and (f, b) is a degree

1 normal map then

K∗+1(W,M ∪M ′) = K∗(M0)
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Proof (i) Working as in the proof of 4.68 it is possible to express C (f ′!) up to

chain equivalence in terms of C (f !) as

C (f ′!)i =


C (f !)n+1 ⊕ Z[π] if i = n+ 1 6= m− n− 1

C (f !)m−n−1 ⊕ Z[π] if i = m− n− 1 6= n+ 1

C (f !)n+1 ⊕ Z[π]⊕ Z[π] if i = m− n− 1 = n+ 1

C (f !)i otherwise .

(ii) By the Poincaré disc theorem (9.14) it may be assumed that X = X0 ∪Dm

for an m-dimensional geometric Poincaré pair (X0, S
m−1), and that the trace

degree 1 normal map can be expressed as a union of degree 1 normal maps

(F,B) = (F0, B0) ∪ (g, c) :

(W ;M,M ′) = M0 × (I; {0}, {1})∪(Dn+1 ×Dm−n;Sn ×Dm−n, Dn+1 × Sm−n−1)

→ X × (I; {0}, {1}) = X0 × (I; {0}, {1}) ∪Dm × (I; {0}, {1}n+1 �Dm�nSn �Dm�n Dn+1 � Sm�n�1W(F;B)��X � IM(f; b)��X � f0g M 0(f 0; b0)��X � f1g
M0 � IM0 � f0g M0 � f1g

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Dm � IDm � f0g Dm � f1gX0 � IX0 � f0g X0 � f1g
The isomorphism K∗(M0) ∼= K∗+1(W,M ∪M ′) follows from the commutative

braid of exact sequences
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Ki

''

''
Hi+1(W̃ , M̃ ∪ M̃ ′)

''

%%
Hi

Hi+1(M̃0 × I, ∂) = Hi(M̃0)

77

''

Hi+1(X̃ × I, ∂) = Hi(X̃)

77

''
Hi+1

77

88
Hi+1(X̃0 × I, ∂) = Hi(X̃0)

77

88Ki−1

where

Hi = Z[π]⊗Z Hi(D
m, Sm−1) = Z[π]⊗Z Hi+1(Dm+1, Sm)

=

{
Z[π] if i = m

0 if i 6= m ,

Ki = Ki(M0) = Ki+1(W,M ∪M ′) .
2

10.4 Surgery below the middle dimension

An element x ∈ πn(M) can be killed by an n-surgery on an m-dimensional

manifold Mm if and only if it can be represented by an embedding g : Sn ↪→Mm

with trivial normal bundle νg : Sn → BO(m− n). Below the middle dimension,

this condition is purely homotopy-theoretic :

Proposition 10.24 (Repetition of 5.64) If 2n+ 1 6 m an element x ∈ πn(M)

can be killed by n-surgery on Mm if and only if (νM )∗(x) = 0 ∈ πn(BO).

Proof (A more detailed version of the proof of By the Whitney Embedding

Theorem (7.2) it is possible to represent x by an embedding g : Sn ⊂ Mm. Let

νM = νe : M → BO(k) be the normal bundle of an embedding e : M ↪→ Sm+k (k

large), and let η : X → BO(k) be likewise a k-plane bundle, so that b : νM → η

is a map of k-plane bundles. The normal bundle of the composite embedding

g′ = eg : Sn ↪→Mm ↪→ Sm+k

is trivial, with 10.9 giving a trivialisation

νg′ = νg ⊕ g∗νM ' {∗} : Sn → BO(m− n+ k) .

The normal bundle νg : Sn → BO(m − n) is a stable inverse of the pullback

g∗νM : Sn → BO of the stable normal bundle νM : M → BO, that is

νg ⊕ g∗νM = ε∞ : Sn → BO .

Thus

νg = − g∗νM = − (νM )∗(x) ∈ πn(BO(m− n)) = πn(BO) ,

and νg = 0 if and only if (νM )∗(x) = 0. 2
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Surgery is always possible below the middle dimension of a normal map, and

the homology effect is given by :

Proposition 10.25 Let (f, b) : Mm → X be an m-dimensional normal map.

(i) If 2n + 1 6 m every element x ∈ πn+1(f) can be killed by an n-surgery on

(f, b). Let

((F,B); (f, b), (f ′, b′)) : (W ;M,M ′)→ X × (I; {0}, {1})

be the trace of an n-surgery on (f, b) killing x, and let x′ ∈ πm−n(f ′) be the

relative homotopy class killed by the dual (m−n−1)-surgery. The kernel homology

Z[π1(X)]-modules are such that

Ki(M) = Ki(W ) for i 6= n, n+ 1 ,

Ki(M
′) = Ki(W ) for i 6= m− n− 1,m− n

with exact sequences

0 // Kn+1(M) // Kn+1(W ) // Z[π1(X)]

x // Kn(M) // Kn(W ) // 0 ,

0 // Km−n(M ′) // Km−n(W ) // Z[π1(X)]

x′ // Km−n−1(M ′) // Km−n−1(W ) // 0 .

(ii) For 2n+ 2 < m there are exact sequences

0 // Kn+1(M) // Kn+1(M ′)
x′ ! // Z[π1(X)]

x // Kn(M) // Kn(M ′) // 0 ,

0 // Km−n(M ′) // Km−n(M)
x !
// Z[π1(X)]

x′ // Km−n−1(M ′) // Km−n−1(M) // 0 .

(iii) For m = 2n+ 2 there are exact sequences

0 // Kn+1(M) // coker(x′ : Z[π1(X)]→ Kn+1(M ′))
x′ ! // Z[π1(X)]

x // Kn(M) // Kn(M ′) // 0 ,

0 // Kn+2(M ′) // Kn+2(M)
x !
// Z[π1(X)]

x′ // ker(x′ ! : Kn+1(M ′)→ Z[π1(X)]) // Kn+1(M) // 0 .

(iv) For m = 2n+ 1 there is a commutative braid of exact sequences
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0

!!

��
Kn+1(M ′)

!!

x′ !

��
Z[π1(X)]

!!

x

��
Kn(M)

!!

��
0

Kn(W )

==

!!

Kn+1(W )

==

!!

Kn+1(W )

==

!!

Kn(W )

==

!!
0

==

AA
Kn+1(M)

==

x!

AA
Z[π1(X)]

==

x′
AA

Kn(M ′)

==

BB 0

Proof For 2n + 1 6 m the relative regular homotopy groups of Section 10.2

are such that

In+1(f) = πn+1(f) , I f rn+1(f) = sf rb (πn+1(f))⊕ πn+1(BO) .

By the Whitney Immersion and Embedding Theorem (7.1, 7.2) x ∈ πn+1(f)

can represented by an n-immersion φ = (h, g) with g : Sn # Mm an em-

bedding. The b-framing obstruction νb(φ) = (νh, νg) of 10.8 takes its value in

πn+1(BO,BO(m − n)) = 0, and Theorem 10.15 applies to give that x can be

killed by surgery. The homology kernels K∗(M ′), K∗(W ) are given by Proposi-

tion 10.23. 2

10.5 Finite generation

The main results of this section are :

(i) if m = 2n or 2n + 1 every m-dimensional normal map (f, b) : M → X is

normal bordant to an n-connected normal map,

(ii) for an n-connected map of finite CW complexes f : M → X the first non-

vanishing relative homotopy group πn+1(f) = Kn(M) is a finitely gener-

ated (f.g.) Z[π1(X)]-module,

(iii) for an n-connected degree 1 map f : M → X of 2n-dimensional geometric

Poincaré complexes Kn(M) is a stably f.g. free Z[π1(X)]-module.

These results make use of the duality properties of the homology and cohomology

of finite chain complexes of f.g. projective A-modules for a ring with involution

A. In the application A = Z[π1(X)].

Lemma 10.26 Let A be a ring with involution, and let C be a finite f.g. projec-

tive A-module chain complex.

(i) If Hi(C) = 0 for i < n then Hn(C) is a f.g. A-module, and the evaluation

map is an A-module isomorphism

Hn(C)→ Hn(C)∗ ; f 7→ (x 7→ f(x)) .
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(ii) If Hi(C) = 0 for i < n and Hj(C) = 0 for j > n then Hn(C) and Hn(C)

are dual f.g. projective A-modules, with isomorphisms

Hn(C)⊕ ∑
i∈Z

Cn+2i+1
∼=

∑
j∈Z

Cn+2j ,

Hn(C)⊕ ∑
i∈Z

Cn+2i+1 ∼=
∑
j∈Z

Cn+2j .

In particular, if the A-modules Cr (r > 0) are f.g. free then Hn(C) and Hn(C)

are dual stably f.g. free A-modules.

Proof (i) By standard homological algebra there exist A-module morphisms

Γ : Ci → Ci+1 for i < n such that

dΓ + Γd = 1 : Ci → Ci for i < n .

The A-module morphisms

g : ker(d : Cn → Cn−1)⊕ Cn−1 ⊕ Cn−3 ⊕ . . .→ Cn ⊕ Cn−2 ⊕ Cn−4 ⊕ . . . ,
h : Cn ⊕ Cn−2 ⊕ Cn−4 ⊕ . . .→ ker(d : Cn → Cn−1)⊕ Cn−1 ⊕ Cn−3 ⊕ . . .

defined by

g(xn, xn−1, xn−3, . . .) =

(xn + Γ(xn−1), d(xn−1) + Γ(xn−3), d(xn−3) + Γ(xn−5), . . .) ,

h(yn, yn−2, yn−4, . . .) =

((1− Γd)(yn), d(yn) + Γ(yn−2), d(yn−2) + Γ(yn−4), . . .)

are inverse isomorphisms

ker(d : Cn → Cn−1)⊕ Cn−1 ⊕ Cn−3 ⊕ . . . ∼= Cn ⊕ Cn−2 ⊕ Cn−4 ⊕ . . . .

Thus ker(d : Cn → Cn−1) is a f.g. projective A-module, and the A-module

Hn(C) = ker(d : Cn → Cn−1)/im(d : Cn+1 → Cn)

is finitely generated. The f.g. projective A-module chain complex C ′ defined by

C ′r = 0 for r < n ,

d′ =


d+ Γ : C ′n+1 =

∑
i>0

Cn+1−2i → C ′n =
∑
j>0

Cn−2j

d⊕ 0 : C ′n+2 = Cn+2 → C ′n+1 = Cn+1 ⊕
∑
i>1

Cn+1−2i

d : C ′r = Cr → C ′r−1 = Cr−1 for r > n+ 2

is chain equivalent to C, so that

Hn(C) = Hn(C ′) = coker(d′ : C ′n+1 → C ′n) ,

Hn(C) = Hn(C ′) = ker(d′∗ : C ′n → C ′n+1) .

The evaluation map Hn(C ′) → Hn(C ′)∗ is an isomorphism because C ′n−1 = 0.

Here is the argument in detail. Since C ′n is projective, if an element f ∈ C ′n is
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such that f(x) = 0 ∈ A for all x ∈ C ′n then f = 0. This shows that the evaluation

map is injective. For surjectivity, given g ∈ Hn(C ′)∗ use the projectivity of C ′n
to lift g : Hn(C ′) → A to an A-module morphism h : C ′n → A such that

hd′(y) = 0 ∈ A for all y ∈ C ′n+1, so that h ∈ ker(d′∗) = Hn(C ′) has image g

under the evaluation map.

(ii) In this case there also exist A-module morphisms Γ : Cj → Cj+1 for j > n

with

dΓ + Γd = 1 : Cj → Cj+1 for j > n .

This uses the involution on A, specifically the property of the f.g. projective

A-modules Cj that the natural double duality A-module morphisms are isomor-

phisms

eCj : Cj → C∗∗j ; x 7→ (f 7→ f(x)) .

The A-module morphisms

Hn(C)⊕ ∑
i∈Z

Cn+2i+1 →
∑
j∈Z

Cn+2j ;

([xn],
∑
i

xn+2i+1) 7→ (1− dΓ)(xn) +
∑
i

(d(xn+2i+1) + Γ(xn+2i+1)) ,∑
j∈Z

Cn+2j → Hn(C)⊕ ∑
i∈Z

Cn+2i+1 ;∑
j

yn+2j 7→ ([(1− Γd)(yn)],
∑
j

(d(yn+2j) + Γ(1− Γd)(yn+2j)))

define inverse isomorphisms

Hn(C)⊕
∑
i∈Z

Cn+2i+1
∼=
∑
j∈Z

Cn+2j .

The dual A-module morphisms define inverse isomorphisms

Hn(C)⊕
∑
i∈Z

Cn+2i+1 ∼=
∑
j∈Z

Cn+2j ,

identifying Hn(C) = Hn(C)∗ by (i). 2

Remark 10.27 If C is a finite based f.g. free A-module chain complex such

that H∗(C) = 0 then H∗(C) = 0 and the isomorphism used in the proof of 10.26

(with n = 0)

d+ Γ :
∑
i

C2i+1 →
∑
j

C2j

is the one used to define the Whitehead torsion of C in 8.10. 2

The following result gives the finite generation of the relative homotopy group

in the Hurewicz dimension :

Proposition 10.28 Let n > 2, and let f : M → X be an n-connected map of

CW complexes, so that f∗ : π1(M) → π1(X) is an isomorphism and πi+1(f) =
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Ki(M) = 0 for i 6 n− 1.

(i) If M has a finite n-skeleton and X has a finite (n+1)-skeleton then πn+1(f) =

Kn(M) is a f.g. Z[π1(X)]-module.

(ii) If M and X are finite CW complexes and also Ki(M) = 0 for i > n + 1

then Kn(M) is a stably f.g. free Z[π1(X)]-module, with the evaluation map a

Z[π1(X)]-module isomorphism

Kn(M)→ Kn(M)∗ ; y 7→ (x 7→ 〈y, x〉) .

Proof Let f̃ : M̃ → X̃ be a π1(X)-equivariant lift of f to the universal covers

M̃, X̃ of M,X. By the Hurewicz Theorem (3.26) there are identifications of

Z[π1(X)]-modules

πi(f) = πi(f̃) = Hi(f̃) = Ki−1(M) for i 6 n+ 1

= 0 for i 6 n .

The relative homology modules H∗(f̃) = K∗−1(M) of the induced Z[π1(X)]-

module chain map f̃ : C(M̃)→ C(X̃) of the cellular chain complexes

H∗(f̃) = H∗(C(f̃))

are the homology of the algebraic mapping cone C (f̃) (3.22). The chain complex

C = C (f̃) is such that

(a) Ci = 0 for i < 0,

(b) Ci is a f.g. free Z[π1(X)]-module for i 6 n+ 1,

(c) Hi(C) = 0 for i 6 n,

and in the case (ii) also

(d) Ci = 0 for all i > m, for some m > 0,

(e) Ci is a f.g. free Z[π1(X)]-module for i > n+ 2,

(f) Hi(C) = 0 for i > n+ 2.

By 10.26 the Z[π1(X)]-module

Kn(M) = πn+1(f) = Hn+1(f̃)

= ker(d : Cn+1 → Cn)/im(d : Cn+2 → Cn+1)

is f.g. in case (i) and stably f.g. free in case (ii). 2

Corollary 10.29 Let f : M → X be a degree 1 map of m-dimensional geometric

Poincaré complexes, and let K∗(M), K∗(M) be the homology and cohomology

kernel Z[π]-modules with respect to an oriented cover (X̃, π, w) of X. If f is

n-connected then :
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(i) Kr(M) = Kr(M) = 0 for r < n,

(ii) Kn(M) is a f.g. Z[π]-module, and the evaluation map is a Z[π]-module iso-

morphism Kn(M) ∼= Kn(M)∗,

(iii) if m = 2n then Kn(M) is a stably f.g. free Z[π]-module,

(iv) if m = 2n− 2 or 2n− 1 then K∗(M) = 0,

(v) if m = 2n− 2 or 2n− 1, n > 2, and (X̃, π, w) is the universal oriented cover

then f is a homotopy equivalence.

Proof (i) By the Universal Coefficient Theorem (3.17).

(ii)+(iii) Immediate from 10.28 (i)+(ii).

(iv) Ki(M) = 0 for i 6 n− 1 by the Hurewicz Theorem, so that by 10.28 (ii)

Ki(M) = Ki(M)∗ = 0 for i 6 n− 1 .

The kernel Poincaré duality established in 10.21 gives

Kj(M) = Km−j(M) = 0 for j > n

since m− j 6 n− 1, and so K∗(M) = 0.

(v) For n > 2 and (X̃, π1(X), w(X)) the universal oriented cover the Whitehead

Theorem (3.6) and (iv) give that f is a homotopy equivalence. 2

Theorem 10.30 (Surgery below the middle dimension.)

(i) Let (f, b) : M → X be an m-dimensional normal map with X a connected

CW complex with a finite n-skeleton. If 2n 6 m then (f, b) is bordant to an

n-connected normal map (f ′, b′) : M ′ → X.

(ii) Let (f, b) : M → X be an m-dimensional degree 1 normal map. If 2n 6 m

then (f, b) is bordant to an n-connected degree 1 normal map (f ′, b′) : M ′ → X.

Proof (i) It suffices to prove that if (f, b) is (n−1)-connected and 2n 6 m then

(f, b) is bordant to an n-connected normal map (f ′, b′) : M ′ → X.

Consider first the case n = 0. The connected sum (2.9) of the components of

M is a connected manifold M ′. The effect of the corresponding 0-surgeries on

(f, b) is a bordant 0-connected normal map (f ′, b′) : M ′ → X.

Similarly in the case n = 1. The CW complex X has a finite 1-skeleton, so

that the fundamental group π1(X) is finitely generated, and hence so is

π1(f) = π1(X)/〈f∗(π1(M))〉
with 〈f∗(π1(M))〉 / π1(X) the normal subgroup generated by f∗(π1(M)) ⊆
π1(X). Kill a finite of set of generators of π1(f) by 0-surgeries on (f, b), with

effect a bordant 1-connected normal map (f ′, b′) : M ′ → X.

Next, consider the case n > 2, so that

Ki(M) = πi+1(f) = 0 for i 6 n− 2

by the Hurewicz Theorem (3.26). The Z[π1(X)]-module Kn−1(M) = πn(f) is

f.g. by Corollary 10.29, and can be killed by Corollary 10.11, thus obtaining a
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normal bordant n-connected normal map (f ′, b′) : M ′ → X.

(ii) Apply (i), noting that for a degree 1 normal map (f, b) : M → X the target

X is a finite CW complex, and that f∗ : H0(M)→ H0(X) is onto. 2

In the case m = 2n it is possible to represent every element x ∈ πn+1(f) by

an n-immersion (h, g) with b-framing obstruction

(νh, νg) = 0 ∈ πn+1(BO,BO(n)) ,

but there is an obstruction in Z[π1(M)\{1}] to representing x by an n-immersion

with g an embedding. The surgery obstruction of an n-connected 2n-dimensional

degree 1 normal map (f, b) is due to the fact that it may not be possible to kill

an element x ∈ πn+1(f) = Kn(M) by an n-surgery on (f, b) because it may not

be possible to represent ∂x ∈ πn(M) by an embedding Sn × Dn ↪→ M2n. See

Chapter 11 for a detailed account of the 2n-dimensional surgery obstruction.

The surgery obstruction of an n-connected (2n + 1)-dimensional degree 1

normal map (f, b) is due to the fact that even though it is possible to kill every

element x ∈ πn+1(f) = Kn(M) by an n-surgery on (f, b) (10.25) there are many

ways of doing so, none of which need reduce the size of πn+1(f). See Chapter 12

for a detailed account of the (2n+ 1)-dimensional surgery obstruction.
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THE EVEN-DIMENSIONAL SURGERY OBSTRUCTION

This chapter defines the Wall surgery obstruction of a 2n-dimensional degree

1 map (f, b) : M → X

σ∗(f, b) ∈ L2n(Z[π1(X)]) .

The main result is that σ∗(f, b) = 0 if (and for n > 3 only if) (f, b) is normal

bordant to a homotopy equivalence.

Section 11.1 develops the general theory of ε-quadratic forms (K,λ, µ) over

a ring with involution A, with ε = ±1. Section 11.2 constructs the kernel (−1)n-

quadratic form (Kn(M), λ, µ) over Z[π1(X)] of an n-connected 2n-dimensional

degree 1 normal map (f, b). Section 11.3 describes the algebraic effect on the ker-

nel form of a geometric surgery on (f, b). The 2n-dimensional surgery obstruction

group L2n(A) of equivalence classes of nonsingular (−1)n-quadratic forms over

A is defined in Section 11.4. The even-dimensional surgery obstruction is defined

in Section 11.5.

11.1 Quadratic forms

Let A be a ring with involution A→ A; a 7→ ā. The general theory of sesquilinear

pairings of A-modules was already developed in Section 4.4. As in 4.37, given

A-modules K,L let S(K,L) denote the additive group of sesquilinear pairings

λ : K × L→ A.

Definition 11.1 Let K be an A-module.

(i) The sesquilinear group of K is the additive group

S(K) = S(K,K)

= {sesquilinear pairings λ : K ×K → A} .

(ii) The ε-transposition involution is given for ε = ±1 by

Tε : S(K)→ S(K) ; λ 7→ Tελ = ε(Tλ) ,

such that

Tελ(x, y) = ελ(y, x) ∈ A , (Tε)
2 = id. : S(K)→ S(K) .

(iii) The ε-symmetric group of K is the additive group
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Qε(K) = ker(1− Tε : S(K)→ S(K)) .

(iv) The ε-quadratic group of K is the additive group

Qε(K) = coker(1− Tε : S(K)→ S(K)) .

(v) The ε-symmetrisation morphism is given by

1 + Tε : Qε(K)→ Qε(K) ; ψ 7→ ψ + Tεψ .

(vi) Write

Q̂ε(K) =
ker(1− Tε : S(K)→ S(K))

im(1 + Tε : S(K)→ S(K))
,

so that there is defined an exact sequence

0 // Q̂−ε(K) // Qε(K)
1 + Tε // Qε(K) // Q̂ε(K) // 0 .

2

For ε = +1 it is customary to refer to ε-symmetric and ε-quadratic objects as

symmetric and quadratic, as in the commutative case. For ε = −1 the customary

terminology is skew-symmetric (or symplectic) and skew-quadratic.

For K = A there is an isomorphism of additive groups with involution

A→ S(A) ; a 7→ ((x, y) 7→ yax)

and there are natural identifications

Qε(A) = {a ∈ A | εa = a} ,
Qε(A) = A/{b− εb | b ∈ A} ,
1 + Tε : Qε(A)→ Qε(A) ; a 7→ a+ εa ,

Q̂ε(A) =
{a ∈ A | εa = a}
{b+ εb | b ∈ A}

.

Example 11.2 Let A = Z. The ε-symmetric and ε-quadratic groups of K = Z
are given by

Qε(Z) =

{
Z if ε = +1

0 if ε = −1 ,

Qε(Z) =

{
Z if ε = +1

Z2 if ε = −1 ,

Q̂ε(Z) =

{
Z2 if ε = +1

0 if ε = −1 ,

with generators represented by 1 ∈ Z, and with
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1 + T+ = 2 : Q+(Z) = Z→ Q+(Z) = Z .

The quadratic Q-groups Qε(Z) have already featured in Chapters 5 and 7, with

In(S2n) = πn+1(BO,BO(n)) = Q(−1)n(Z) .

2

Definition 11.3 (i) An ε-symmetric form (K,λ) over A is an A-module K

together with an element λ ∈ Qε(K). Thus λ is a sesquilinear pairing

λ : K ×K → A ; (x, y) 7→ λ(x, y)

such that for all x, y ∈ K

λ(x, y) = ελ(y, x) ∈ A .

(ii) A morphism of ε-symmetric forms

f : (K,λ)→ (K ′, λ′)

is an A-module morphism f : K → K ′ such that

λ′(f(x), f(y)) = λ(x, y) ∈ A .

(iii) The adjoint of an ε-symmetric form (K,λ) is the A-module morphism

K → K∗ ; x 7→ (y 7→ λ(x, y))

which is also denoted by λ, and is such that

Tελ = λ : K → K∗ .

(iv) An ε-symmetric form (K,λ) is nonsingular if λ : K → K∗ is an isomor-

phism of A-modules. 2

Example 11.4 The symmetric form (A, λ) defined by

λ = 1 : A→ A∗ ; a 7→ (b 7→ ba)

is nonsingular. 2

Example 11.5 Let X be a 2n-dimensional geometric Poincaré complex, and let

(X̃, π, w) be an oriented cover. The cohomology intersection pairing (4.58)

λ : Hn(X̃)×Hn(X̃)→ Z[π]

is a (−1)n-symmetric form over Z[π] with the w-twisted involution. Using the

Poincaré duality isomorphism Hn(X̃) ∼= Hn(X̃) this can also be regarded as a

homology intersection (−1)n-symmetric form

λ : Hn(X̃)×Hn(X̃)→ Z[π] . 2
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The homology intersection form (im(πn(M)→ Hn(M̃)), λ) of a 2n-dimensional

manifold M2n with universal cover M̃ was interpreted in Section 7.2 in terms of

geometric intersection numbers. In particular, it was shown that if an element

x ∈ πn(M) can be killed by an n-surgery then

λ(x, x) = 0 ∈ Z[π1(M)] .

However, the condition λ(x, x) = 0 given by the symmetric structure alone is

not sufficient for an element x ∈ πn(M) to be a potential surgery victim. It will

also be necessary to consider quadratic structure.

Definition 11.6 (i) An ε-quadratic form (K,λ, µ) over A is an ε-symmetric

form (K,λ) together with a function

µ : K → Qε(A) ; x 7→ µ(x)

such that for all x, y ∈ K, a ∈ A

(a) µ(x+ y)− µ(x)− µ(y) = λ(x, y) ∈ Qε(A) ,

(b) µ(x) + εµ(x) = λ(x, x) ∈ im(1 + Tε : Qε(A)→ Qε(A)) ,

(c) µ(ax) = aµ(x)a ∈ Qε(A) .

(ii) An ε-quadratic form (K,λ, µ) is nonsingular if (K,λ) is nonsingular, i.e. if

λ : K → K∗ is an isomorphism of A-modules.

(iii) A morphism of ε-quadratic forms

f : (K,λ, µ)→ (K ′, λ′, µ′)

is a morphism of the underlying ε-symmetric forms f : (K,λ) → (K ′, λ′) such

that

µ′(f(x)) = µ(x) ∈ Qε(A) .

(iv) For any f.g. projective A-module L define the nonsingular hyperbolic ε-

quadratic form over A by

Hε(L) = (L⊕ L∗, λ, µ)

with

λ =

(
0 1

ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ;

(x, f) 7→ ((y, g) 7→ f(y) + εg(x)) ,

µ : L⊕ L∗ → Qε(A) ; (x, f) 7→ f(x) .

2

Proposition 11.7 If 2 ∈ A is invertible there is an identification of categories

{ε-quadratic forms over A} = {ε-symmetric forms over A} .
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Proof The ε-symmetrisation map 1 + Tε : Qε(K)→ Qε(K) is an isomorphism

for any A-module K, with inverse

Qε(K)→ Qε(K) ; λ 7→ ((x, y) 7→ 1

2
λ(x, y)) .

For any ε-quadratic form (K,λ, µ) over A the ε-quadratic function µ is deter-

mined by the ε-symmetric pairing λ, with

µ(x) =
1

2
λ(x, x) ∈ Qε(A) .

2

In particular, for A = R the hyperbolic quadratic form H+1(L) defined in

11.6 (iv) is essentially the same as the hyperbolic symmetric form H(L) of 6.34.

In Section 11.2 it will be shown that an n-connected 2n-dimensional degree

1 normal map (f, b) : M2n → X determines a nonsingular (−1)n-quadratic form

(Kn(M), λ, µ) over Z[π1(X)]. The (−1)n-quadratic function

µ : Kn(M)→ Q(−1)n(Z[π1(X)])

will be defined using geometric self-intersection numbers, and it will be shown

that µ(x) = 0 if (and for n > 3 only if) x ∈ Kn(M) can be killed by surgery. The

main result of even-dimensional surgery obstruction theory is that for n > 3 (f, b)

is bordant to a homotopy equivalence if and only if the (−1)n-quadratic form

(Kn(M), λ, µ) over Z[π1(X)] is stably hyperbolic, i.e. there exists an isomorphism

of forms

(Kn(M), λ, µ)⊕H(−1)n(F ) ∼= H(−1)n(F ′)

for some f.g. free Z[π1(X)]-modules F, F ′.

The ε-quadratic structures (λ, µ) on a f.g. projective A-module K will now

be shown to correspond to the elements of the ε-quadratic group of 11.1

Qε(K) = coker(1− Tε : S(K)→ S(K)) .

The pair of functions (λ, µ) used to define an ε-quadratic form (K,λ, µ) can thus

be replaced by an equivalence class of A-module morphisms ψ : K → K∗ such

that

λ(x, y) = ψ(x)(y) + εψ(y)(x) ∈ A , µ(x) = ψ(x)(x) ∈ Qε(A) .

Only forms on f.g. projective A-modules will be considered from now on.

Definition 11.8 (i) A split ε-quadratic form (K,ψ) over A is a f.g. projective

A-module K together with an element ψ ∈ S(K).
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(ii) An equivalence of split ε-quadratic forms (K,ψ), (K,ψ′) on the same f.g.

projective A-module K is an element χ ∈ Q−ε(K) such that

ψ′ − ψ = χ− εχ∗ : K → K∗ .

(iii) A morphism of split ε-quadratic forms

(f, χ) : (K,ψ)→ (K ′, ψ′)

is an A-module morphism f ∈ HomA(K,K ′) together with an element χ ∈
Q−ε(K) such that

f∗ψ′f − ψ = χ− εχ∗ : K → K∗ . 2

Proposition 11.9 (i) The ε-quadratic structures (λ, µ) on a f.g. projective A-

module K are in one-one correspondence with the equivalence classes ψ ∈ Qε(K)

of split ε-quadratic forms (K,ψ) over A.

(ii) Every morphism of ε-quadratic forms f : (K,λ, µ) → (K ′, λ′, µ′) lifts to a

morphism of split ε-quadratic forms (f, χ) : (K,ψ)→ (K ′, ψ′).

Proof (i) Given a split ε-quadratic form (K,ψ) define an ε-quadratic form

(K,λ, µ) by

λ = (1 + Tε)ψ : K → K∗ ; x 7→ (y 7→ ψ(x)(y) + εψ(y)(x)) ,

µ : K → Qε(A) ; x 7→ ψ(x)(x) .

Conversely, let (K,λ, µ) be an ε-quadratic form over A, with K f.g. projective.

Choose a f.g. projective A-module L such that K ⊕ L is f.g. free of rank k, let

{x1, x2, . . . , xk} be a basis for K ⊕ L, and let

λij = (λ⊕ 0)(xi, xj) ∈ A (1 6 i < j 6 k) .

Choose representatives µi ∈ A of µ(xi) ∈ Qε(A) (1 6 i 6 k), and define the

A-module morphism

ψK⊕L : K ⊕ L→ (K ⊕ L)∗ ;

k∑
i=1

aixi 7→ (
k∑
j=1

bjxj 7→
k∑
i=1

biµiai +
∑

16i<j6k
bjλijai) .

The A-module morphism defined by

ψ : K
inclusion
−−−−−−−→ K ⊕ L

ψK⊕L−−−−−→ (K ⊕ L)∗ = K∗ ⊕ L∗
projection
−−−−−−−→K∗

is such that
λ = ψ + εψ∗ : K → K∗,

µ(x) = ψ(x)(x) ∈ Qε(A) (x ∈ K) .

(ii) Immediate from (i). 2
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Thus Qε(K) is both the group of isomorphism classes of ε-quadratic and split

ε-quadratic structures on a f.g. projective A-module K.

For a f.g. free A-module K = Ak :

Proposition 11.10 An ε-quadratic form (Ak, λ, µ) over A is determined by a

k × k-matrix λ = {λij ∈ A | 1 6 i, j 6 k} such that

λij = ελji ∈ A

and a collection of elements µ = {µi ∈ Qε(A) | 1 6 i 6 k} such that

µi + εµi = λii ∈ Qε(A) .

Choosing any representatives µi ∈ A of µi ∈ Qε(Ak) there is defined a split ε-

quadratic form (Ak, ψ) with ψ = {ψij ∈ A | 1 6 i, j 6 k} the k×k matrix defined

by

ψij =


λij if i < j

µi if i = j

0 otherwise .

Proof This is the essence of Proposition 11.9 for K = Ak. 2

Example 11.11 For a f.g. projective A-module P the hyperbolic ε-quadratic

form Hε(P ) = (P ⊕ P ∗, λ, µ) (11.6) corresponds to the element ψ ∈ Qε(P ⊕ P ∗)
represented by the sesquilinear pairing

ψ =

(
0 1

0 0

)
: P ⊕ P ∗ → (P ⊕ P ∗)∗ = P ∗ ⊕ P . 2

For any ε-symmetric form (K,λ) and x ∈ K

λ(x, x) ∈ Qε(A) .

Definition 11.12 An ε-symmetric form (K,λ) is even if for all x ∈ K

λ(x, x) ∈ im(1 + Tε : Qε(A)→ Qε(A)) . 2

Proposition 11.13 If 1 + Tε : Qε(A) → Qε(A) is an injection there is an

identification of categories

{ε-quadratic forms over A} = {even ε-symmetric forms over A} .
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Proof Given an even ε-symmetric form (K,λ) over A there is a unique function

µ : K → Qε(A) such that for all x ∈ K

(1 + Tε)(µ(x)) = λ(x, x) ∈ Qε(A) ,

which then automatically satisfies the conditions of 11.6 for (K,λ, µ) to be an

ε-quadratic form. 2

Example 11.14 (i) The symmetrisation map

1 + T = 2 : Q+(Z) = Z→ Q+(Z) = Z

is an injection, so that quadratic forms over Z coincide with the even symmetric

forms.

(ii) The skew-symmetrisation map

1− T = 0 : Q−(Z) = Z2 → Q−(Z) = 0

is not an injection, and there is an essential difference between skew-quadratic

and skew-symmetric forms over Z (Arf invariant – see 11.60 below). 2

Definition 11.15 (i) A ring with involution A is pure if it splits as a Z[Z2]-

module

A = Z⊕ Ã .

Write the components of elements a ∈ A as

(a1, ã) ∈ Z⊕ Ã ,

calling a1 the integral component of a and ã the reduced component of a. If

(K,λ, µ) is an ε-quadratic form write

λ = λ1 ⊕ λ̃ , µ = µ1 ⊕ µ̃ .

(ii) The Q-groups of a pure A split as direct sums of the Q-groups of Z and

reduced Q-groups

Qε(A) = Qε(Z)⊕ Q̃ε(A) ,

Qε(A) = Qε(Z)⊕ Q̃ε(A) ,

Q̂ε(A) = Q̂ε(Z)⊕ ˜̂Qε(A)

with Qε(Z), Qε(Z), Q̂ε(Z) as in 11.2 and

Q̃ε(A) = {a ∈ Ã | εa = a} ,
Q̃ε(A) = Ã/{a− εa | a ∈ Ã} ,
˜̂
Q
ε

(A) =
{a ∈ Ã | εa = a}
{b+ εb | b ∈ Ã}

.

2
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Example 11.16 A group ring Z[π] with a w-twisted involution is pure, with

Z[π] = Z⊕ Z[π\{1}] . 2

Proposition 11.17 If A is a pure ring with involution such that there is a

Z[Z2]-module splitting

A = Z⊕ (B ⊕B)

then the morphisms of additive groups

B → Q̃ε(A) ; b 7→ (b, 0) = (0, εb̄) ,

1 + Tε : Q̃ε(A)→ Q̃ε(A) ; (b, 0) 7→ (b, εb̄)

are isomorphisms. The reduced component µ̃ of the function µ in any ε-quadratic

form (K,λ, µ) over A is determined by the reduced component λ̃ of λ, with

(1 + Tε)µ̃(x) = λ̃(x, x) ∈ Q̃ε(A) (x ∈ K) .

Proof The Q̂-groups of any pure ring with involution A = Z⊕ Ã split as

Q̂ε(A) = Q̂ε(Z)⊕ ˜̂Qε(A) ,

and the exact sequence

0 // Q̂−ε(A) // Qε(A)
1 + Tε // Qε(A) // Q̂ε(A) // 0

is the direct sum of an integral and a reduced exact sequence. If Ã = B⊕B then˜̂
Q
ε

(A) = 0, so the reduced exact sequence collapses to an isomorphism

1 + Tε : Q̃ε(A)→ Q̃ε(A) .

2

The integral components of an ε-quadratic form (K,λ, µ) over Z[π] are in-

variant under the group action

λ1(gx, gy) = λ1(x, y) , µ1(gx) = µ1(x) (x, y ∈ K, g ∈ π) ,

and so may be regarded as defining an ε-quadratic form (K1, λ1, µ1) over Z on

the induced Z-module K1 = Z⊗Z[π] K .

Example 11.18 If π is a group without 2-torsion, then a decomposition

π = {1} ∪ S ∪ S−1

determines a Z[Z2]-module splitting of the group ring with a w-twisted involution
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Z[π] = Z⊕ (Z[S]⊕ Z[S−1])

satisfying the hypothesis of 11.15, so that up to isomorphism

Q̃ε(Z[π]) = Q̃ε(Z[π]) = Z[S] .

A quadratic form over Z[π] is the same as an even symmetric form. A skew-

quadratic form (K,λ, µ) over Z[π] is the same as a skew-symmetric form (K,λ)

over Z[π] together with a function µ1 : K1 → Q−(Z) = Z2 such that (K1, λ1, µ1)

is a skew-quadratic form over Z. There exists such µ1 for every skew-symmetric

form (K,λ) over Z[π] with K f.g. projective, but it is not unique. 2

Remark 11.19 If A = Z ⊕ B ⊕ B (as in 11.17) the element ψ ∈ Qε(A
k) as-

sociated to an ε-quadratic form (Ak, λ, µ) is determined by λ and the integral

components

µ1 = {(µi)1 ∈ Qε(Z) | 1 6 i 6 m} . 2

11.2 The kernel form

The kernel form (Kn(M), λ, µ) of an n-connected 2n-dimensional degree 1 nor-

mal map (f, b) : M → X is defined using the intersection and self-intersection

properties of immersions g : Sn # M2n. The intersection pairing (4.66) on the

homology of the universal cover M̃

λ : Hn(M̃)×Hn(M̃)→ Z[π1(M)]

is such that

λ(g, g) = (−1)nλ(g, g) ∈ Q(−1)n(Z[π1(M)])

counts each unordered double point [x, y] ∈ S2[g] (7.3) twice, once as (x, y) and

once as (y, x). The quadratic self-intersection defined in this section

µ(g) ∈ Q(−1)n(Z[π1(M)])

counts each unordered double point once only.

The main result of this section is the Wall Embedding Theorem (11.25) that

for n > 3 :

(i) an immersion g : Nn # M2n with π1(N) = {1} is regular homotopic to

an embedding if and only if

µ(g) = 0 ∈ Q(−1)n(Z[π1(M)])
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(ii) for a 2n-dimensional normal map (f, b) : M → X the quadratic self-

intersection of b-framed immersions g : Sn #M defines a function

µ : πn+1(f)→ Q(−1)n(Z[π1(X)])

such that an element x ∈ πn+1(f) can be killed by surgery on (f, b) if and

only if µ(x) = 0.

The double point set of a map g : N →M with itself is

S2(g, g) = {(x, y) ∈ N ×N | g(x) = g(y) ∈M}
= S2(g) ∪∆(N) (disjoint union) ,

with

S2(g) = {(x, y) ∈ S2(g, g) |x 6= y}
the ordered double point set (7.3). The ordered double points (x, y) ∈ S2(g)

come in pairs (x, y), (y, x). As in (7.3) the unordered double point set is defined

by

S2[g] = S2(g)/Z2

= {(x, y) ∈ N ×N |x 6= y ∈ N, g(x) = g(y) ∈M}/{(x, y) ∼ (y, x)} .

Proposition 11.20 The homology self-intersection of an immersion g : Nn #
M2n is related to the ordered double points by

λ(g, g) =
∑

(x,y)∈S2(g)

I(x, y) + χ(g) ∈ Q(−1)n(Z[π1(M)]) ,

with I(x, y) the equivariant intersection index (7.18) and

χ(g) = χ(νg) ∈ Q(−1)n(Z) =

{
Z if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2)

the Euler number (5.44) of the normal bundle.

Proof The immersion g : Sn #M extends to an immersion g : E(νg) #M of

the total space of the normal bundle. Use g to move g away from itself, as follows.

Let s0 : N ↪→ E(νg) be the zero section, and let st : N # E(νg) (0 6 t 6 1)

be an isotopy between s0 and a section s1 : N ↪→ E(νg) which is zero at only a

finite number of points, such that gt = gst : N #M defines a regular homotopy

between g0 = g and an immersion g1 : N # M without triple points and only

transverse double points. By the Poincaré-Hopf theorem (Milnor [56, p.35])

|S2(s0, s1)| = |χ(g)| > 0 .

For each (x, y) ∈ S2(g) there is a unique y1 ∈ N in the neighbourhood of y ∈ N
with
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g(x) = g(y) = g1(y1) ∈M .

The double point set of g0 and g1 is the disjoint union

S2(g0, g1) = {(x, y1) | (x, y) ∈ S2(g)} ∪ S2(s0, s1) .

Now apply 7.22 to identify

λ(g, g) = λalg(g, g) = λalg(g0, g1)

= λgeo(g0, g1) =
∑

(x,y)∈S2(g)

I(x, y) + χ(g) ∈ Q(−1)n(Z[π1(M)]) .

2

The formula of 11.20 gives a necessary homological condition for an element

x ∈ πn(M) to be killed by surgery on a 2n-dimensional manifold M2n, namely

that the Hurewicz image x ∈ Hn(M̃) be such that

λ(x, x) = 0 ∈ Q(−1)n(Z[π1(M)]) ,

with M̃ the universal cover of M . In general, this is not a sufficient condition,

since the formula counts the ordered double points of an immersion g : Sn #
M2n representing x, rather than the unordered double points. In order to count

the unordered double points it is necessary to factor out the effect on the equiv-

ariant index of the change of ordering.

The equivariant index I(x) ∈ Z[π1(M)] of a transverse ordered double point

x = (x1, x2) ∈ S2(g) of an immersion g : Nn #M2n with a lift g̃ : N # M̃ was

defined in (7.18) to be

I(x) = w(x)a(x) ∈ {±π1(M)} ⊂ Z[π1(M)]

with a(x) ∈ π1(M) such that

g̃(x2) = a(x)g̃(x1) ∈ M̃

and

w(x) =

{
+1

−1
if dg̃(x)

{preserves

reverses
orientations

with

dg̃(x) = ( d(g(x)g̃) dg̃ ) : τN (x1)⊕ τN (x2)→ τ
M̃

(g̃(x2))

an isomorphism of oriented vector spaces. By 7.19 the effect of reversing the

order on the equivariant index is given by

I(x2, x1) = (−1)nI(x1, x2) ∈ Z[π1(M)] .
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Definition of the Wall µ-form 11.21 ([92, 5.2])

Let g : Nn # M2n be a self-transverse immersion with a lift g̃ : N # M̃ to the

universal cover M̃ of M .

(i) The equivariant index of an unordered double point x = [x1, x2] ∈ S2[g] is

I[x] = [I(x)] ∈ Q(−1)n(Z[π1(M)]) .

(ii) The geometric self-intersection of g is the sum of the equivariant indices

of the unordered double points

µ(g) =
∑

[x]∈S2[g]

I[x] ∈ Q(−1)n(Z[π1(M)]) . 2

Example 11.22 An embedding g : Nn ↪→ M2n has S2[g] = ∅, so that the

geometric self-intersection is

µ(g) = 0 ∈ Q(−1)n(Z[π1(M)]) . 2

Example 11.23 The immersion f εn : Sn # S2n of 7.12 has a single unordered

double point [xε, yε] ∈ S2[f εn] with I[xε, yε] = ε ∈ Z and geometric self-intersection

µ(f εn) = I[xε, yε] = ε ∈ Q(−1)n(Z) . 2

Proposition 11.24 (i) The geometric self-intersection µ(g) of an immersion

g : Nn #M2n is a regular homotopy invariant.

(ii) If an immersion g : Nn # M2n is regular homotopic to an embedding then

µ(g) = 0.

(iii) The homological self-intersection of an immersion g : Nn #M2n is related

to the geometric self-intersection λ(g, g) and the Euler number of the normal

bundle νg by

λ(g, g) = µ(g) + (−1)nµ(g) + χ(g) ∈ Q(−1)n(Z[π1(M)]) .

(iv) The connected sum of immersions g : Nn # M2n, g′ : N ′n # M2n is an

immersion

g′′ = g# g′ : N ′′n = N #N ′ #M

with geometric self-intersection

µ(g′′) = µ(g) + µ(g′) + λ(g, g′) ∈ Q(−1)n(Z[π1(M)])

and Euler number

χ(g′′) = χ(g) + χ(g′) ∈ Q(−1)n(Z)

(v) The effect on µ(g) of changing the lift g̃ : N # M̃ to ag̃ : N # M̃ for some

a ∈ π1(M) is given by



THE KERNEL FORM 259

µ(ag) = w(a)aµ(g)a−1 ∈ Q(−1)n(Z[π1(M)]) .

(vi) The geometric self-intersections of immersions g0, g1 : Nn # M2n related

by a generic homotopy gt : N →M (0 6 t 6 1) are such that

µ(g1) = µ(g0) + ω(g) ∈ Q(−1)n(Z[π1(M)]) ,

with ω(g) ∈ Q(−1)n(Z) the number of generic singularities (7.42) in the track of

gt
g : N × I →M × I ; (x, t) 7→ (gt(x), t) .

The normal bundles are such that

νg1 = νg0 #ω(g)τSn : N = N #Sn → BO(n) ,

νg1 ⊕ ε∞ = νg0 ⊕ ε∞ : N → BO .

In particular, if gt is a regular homotopy then ω(g) = 0 and

µ(g1) = µ(g0) ∈ Q(−1)n(Z[π1(M)]) ,

νg1 = νg0 : N → BO(n) .

Proof (i) The track of a regular homotopy gt : Nn # M2n (0 6 t 6 1) is an

immersion of an (n+1)-dimensional manifold in a (2n+1)-dimensional manifold

N × I #M × I ; (x, t) 7→ (gt(x), t)

with a 1-dimensional unordered double point set with components :

(a) k1 paths joining unordered double points of g0,

(b) k2 paths joining unordered double points of g1,

(c) k3 paths joining unordered double points of g0 and g1,

(d) k4 circles in the interior

for some k1, k2, k3, k4 > 0.

The unordered double point set S2(g1) is obtained from S2(g0) by removing k1

cancelling pairs of double points and introducing k2 cancelling pairs. Each pair

contributes

a− (−1)nw(a)a−1 = 0 ∈ Q(−1)n(Z[π1(M)])

to the self-intersection form µ, with a ∈ π1(M) the equivariant index, so that

µ(g0) = µ(g1).
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(ii) By (i) and 11.22.

(iii) By 11.20.

(iv) The ordered double point set of g′′ is the disjoint union

S2(g′′) = S2(g) ∪ S2(g′) ∪ S2(g′, g′′) ∪ S2(g′′, g′) ,

so that the unordered double point set is

S2[g′′] = S2[g] ∪ S2[g′] ∪ S2(g′, g′′) .

(v) By 7.19 (ii) at any ordered double point (x1, x2) ∈ S2(g) the effect on the

equivariant index of a change of lift from g̃ to g̃′ = ag̃ : N # M̃ (a ∈ π1(M)) is

Ĩ ′(x1, x2) = w(a)aĨ(x1, x2)a−1 ∈ Z[π1(M)] .

(vi) The singularities of g consist of closed circles in the interior and paths with

endpoints in the boundary (as in (i)) and at the generic singularities (7.42),

which are cones on immersed n-spheres in the boundary. Thus in passing from

t = 0 to t = 1 the double points in S2[gt] are created and die in pairs away

from the singularities, and are created and die individually at the singularities.

At each singularity a copy of ±τSn is spliced to the normal bundle. 2

The geometric self-intersection µ has the following key property :

Wall Embedding Theorem 11.25 ([92, 5.2])

For n > 3 an immersion g : Nn #M2n with π1(N) = {1} is regular homotopic

to an embedding if and only if

µ(g) = 0 ∈ Q(−1)n(Z[π1(M)]) .

Proof The geometric self-intersection is such that µ(g) = 0 if the number of

unordered double points of g is even and it is possible to match them up in pairs

[x1, y1], [x2, y2] ∈ S2[g] with lifts to ordered double points (x1, y1), (x2, y2) ∈
S2(g) such that

I(x1, y1) = − I(x2, y2) ∈ Z[π1(M)] .

Apply the Whitney trick (7.27) to each pair in turn, deforming g by a sequence

of regular homotopies to an immersion without double points, i.e. an embedding.

2

Remark 11.26 For any immersion g : Nn # M2n it is possible to deform the

immersion

N #M × R ; x 7→ (g(x), 0)

by a regular homotopy to an embedding g′ : N ↪→ M × R (7.2) with normal

bundle
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νg′ = νg ⊕ ε : N → BSO(n+ 1) .

The Pontrjagin-Thom construction (6.8) gives a geometric Umkehr map for g

G : ΣM+ = (M × R)+ → T (νg′) = ΣT (νg)

which depends on the choice of g′. If g : Nn # S2n is a framed immersion then

νg = εn , T (νg) = ΣnN+

and g′ : N ↪→ S2n×R is a framed embedding. The geometric self-intersection of

g is the image of the Hopf invariant H(f) ∈ Z (5.76) of the composite

f : S2n+1 G // T (νg′) = ΣT (νg) = Σn+1N+

proj. // Sn+1

that is

µ(g) = [H(f)] ∈ Q(−1)n(Z) = Z/{1 + (−1)n+1} ,
(Koschorke and Sanderson [41]). By the Adams Hopf Invariant 1 Theorem (5.79)

there exists a map f : S2n+1 → Sn+1 with H(f) ≡ 1 (mod 2) if and only if

n = 1, 3, 7. Thus for a framed immersion g : Nn # S2n

µ(g) = 0 ∈ Q(−1)n(Z) for n 6= 1, 3, 7 .

2

The geometric definition (11.21) of the self-intersection form µ(g) ∈ Q(−1)n(Z[π])

of an immersion g : Nn #M2n is quite delicate, in that it is only a regular ho-

motopy invariant and not a homotopy invariant. The decomposition of the group

ring as a direct sum

Z[π1(M)] = Z⊕ Z[π1(M)\{1}]

and the splitting of the Q-groups (11.15) gives a decomposition of µ(g) into

integral and reduced components

µ(g) = (µ0(g), µ̃(g)) ∈ Q(−1)n(Z[π1(M)]) = Q(−1)n(Z)⊕Q(−1)n(Z[π1(M)\{1}]) .

The reduced component µ̃(g) will now be shown to depend only on the homotopy

class of g : N #M . (In fact, the visible symmetric construction of Weiss [95] can

be used to prove that µ̃(g) only depends on the homology class g̃[N ] ∈ Hn(M̃).)

For any group π with orientation character w : π → Z2 write

Z̃[π] = Z[π\{1}] = {
∑
g∈π

ngg ∈ Z[π] |n1 = 0 ∈ Z} .

The direct sum decomposition
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Z[π] = Z⊕ Z̃[π]

is respected by the w-twisted involution, and the ε-quadratic Q-groups of Z[π]

split as

Qε(Z[π]) = Qε(Z)⊕ Q̃ε(Z[π])

(as in 11.15) with the reduced ε-quadratic Q-groups given by

Q̃ε(Z[π]) = Z̃[π]/{a− εa | a ∈ Z̃[π]} .

Definition 11.27 (i) For any element x =
∑
a∈π

naa ∈ Z[π] write the components

as

x = (x1, x̃) ∈ Z[π] = Z⊕ Z̃[π]

with

x1 = n1 ∈ Z , x̃ =
∑
a6=1∈π

naa ∈ Z̃[π] .

(ii) The components of the intersection λ(g1, g2) of homology classes g1, g2 ∈
Hn(M̃2n) are written as

λ(g1, g2) = (λ1(g1, g2), λ̃(g1, g2)) ∈ Z[π1(M)] = Z⊕ Z̃[π1(M)]

with λ1(g1, g2) the integral intersection and λ̃(g1, g2) the reduced intersec-

tion of g1, g2.

(iii) The components of the geometric self-intersection µ(g) of an immersion

g : Nn #M2n are written as

µ(g) = (µ1(g), µ̃(g)) ∈ Q(−1)n(Z[π1(M)]) = Q(−1)n(Z)⊕ Q̃(−1)n(Z[π1(M)])

with µ1(g) the integral self-intersection and µ̃(g) the reduced self-inter-

section of g. 2

Proposition 11.28 Let g : Sn # M2n be a self-transverse immersion with a

lift g̃ : Sn # M̃ to the universal cover M̃ of M .

(i) The integral self-intersection µ1(g) ∈ Q(−1)n(Z) is a regular homotopy invari-

ant of g such that µ1(g) = 0 if (and for n > 3 only if ) g̃ is regular homotopic to

an embedding Sn ↪→ M̃ .

(ii) The reduced self-intersection µ̃(g) ∈ Q̃(−1)n(Z[π1(M)]) is a homotopy in-

variant of g such that µ̃(g) = 0 if (and for n > 3 only if ) g is homotopic to an

embedding g′ : Sn ↪→M .

(iii) The coefficients na ∈ Z (a ∈ π1(M), a2 6= 1) in

µ(g) =
∑

a∈π1(M)

naa ∈ Q(−1)n(Z[π1(M)])

are determined by λ(g, g) ∈ Q(−1)n(Z[π1(M)]).
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Proof (i) This is a special case of 11.24 (i).

(ii) The homotopy invariance of µ̃(g) is given by 11.24 (vi), and it is clear that

µ̃(g) = 0 for an embedding g. Conversely, assume that n > 3 and that µ̃(g) = 0.

The connected sum of g and µ1(g) copies of f−n : Sn # S2n is a homotopic

immersion

g′ = g#µ1(g)f−n : N#Sn = N #M#S2n = M

with

µ(g′) = µ(g)− µ1(g) = µ̃(g) = 0 ∈ Q(−1)n(Z[π1(M)]) .

By the Wall Embedding Theorem (11.25) g′ is regular homotopic to an embed-

ding, and so g is homotopic to an embedding.

(iii) Let

α = {a ∈ π1(M) | a2 6= 1} , β = {b ∈ π1(M) | b2 = 1 , b 6= 1} ,

so that

π1(M) = {1} ∪ α ∪ β .
Choose partitions

α = α+ ∪ α− , S2(bg̃, g̃) = S+
2 (bg̃, g̃) ∪ S−2 (bg̃, g̃) (b ∈ β)

such that

α− = {a−1 | a ∈ α+} , S−2 (bg̃, g̃) = {(x2, x1) | (x1, x2) ∈ S+
2 (bg̃, g̃)} .

The reduced self-intersection is given by

µ̃(g) =
∑
a∈α+

maa+
∑
b∈β

nbb ∈ Q̃(−1)n(Z[π1(M)]) ,

with

ma =
∑

x∈S2(ag̃,g̃)

I(x) , nb =
∑

y∈S+
2 (bg̃,g̃)

I(y) ∈ Z .

The (−1)n-symmetrisation map

1 + T(−1)n :

Q̃(−1)n(Z[π1(M)]) =
∑
a∈α+

Z⊕ ∑
b∈β

Q(−1)nw(b)(Z)→ Q̃(−1)n(Z[π1(M)]) ;

(
∑
a∈α+

mgg,
∑
b∈β

nbb) 7→
∑
a∈α+

ma(a+ (−1)nw(a)a−1) +
∑
b∈β

nb(1 + (−1)nw(b))b

is an injection on
∑
a∈α+

Z, so that the coefficients ma ∈ Z (a ∈ α+) are determined

by the (−1)n-symmetrisation of µ(g)

(1 + T(−1)n)µ(g) = µ(g) + (−1)nµ(g)

= λ(g, g)− χ(g) ∈ Q(−1)n(Z[π1(M)]) .

(If n is even this is also the case for the coefficients nb ∈ Q(−1)n(Z) (b ∈ β) with

w(b) = +1.) 2
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Remark 11.29 In the simply-connected case π1(M) = {1} the reduced geomet-

ric self-intersection µ̃(g) takes values in Q̃(−1)n(Z) = 0, and 11.28 shows that for

n > 3 every map g : Nn →M2n is homotopic to an embedding g′ : N ↪→M , as

in the original embedding theorem of Whitney [98]. In the non-simply-connected

case π1(M) 6= {1} with n > 3 every map g : Nn → M2n of a simply-connected

manifold N is homotopic to an immersion g′ : N #M with a lift to an embed-

ding g̃′ : N ↪→ M̃ in the universal cover M̃ , so that µ1(g′) = 0 ∈ Q(−1)n(Z).

2

We now restrict attention to the case Nn = Sn, that is immersions g : Sn #
M2n in a 2n-dimensional manifold M .

Proposition 11.30 Let n > 1, and let (1, b) : S2n → S2n be the identity normal

map.

(i) The b-framing obstruction (10.8) of an n-immersion

Sn
g //

��

S2n

1
��

Dn+1 h // S2n

and the self-intersection of g define an isomorphism

In(S2n) = In+1(1 : S2n → S2n) = πn+1(BSO,BSO(n))

→ Q(−1)n(Z) ; (h, g) = (νh, νg) 7→ −µ(g) .

The choice of sign ensures that the diagram

πn+1(BSO,BSO(n))
' //

��

Q(−1)n(Z)

1 + T(−1)n

��
πn(BSO(n))

χ // Q(−1)n(Z)

commutes. Thus for n ≡ 0 (mod 2)

µ(g) = − 1

2
χ(νg) ∈ Q+1(Z) = Z .

(ii) The single double point immersion f+
n : Sn # S2n (7.12) represents the

generator

µ(f+
n ) = (g+

n , f
+
n ) = 1 ∈ Q(−1)n(Z) =

{
Z if n ≡ 0 (mod 2)

Z2 if n ≡ 1 (mod 2) ,

with

πn+1(BSO,BSO(n)) = Q(−1)n(Z)→ πn(BSO(n)) ; 1 7→ νf+
n

= − τSn .
(iii) For n 6= 1, 3, 7 the following conditions on an n-immersion g : Sn # S2n

are equivalent:
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(a) g is regular homotopic to the standard embedding Sn ↪→ S2n,

(b) µ(g) = 0 ∈ Q(−1)n(Z),

(c) g is framed, i.e. νg = 0 ∈ πn(BSO(n)).

Proof Every immersion g : Sn # S2n is null-homotopic, so by 11.24 (i)

λ(g, g) = (1 + (−1)n)µ(g) + χ(νg) = 0 ∈ Q(−1)n(Z) .

From 5.83 we have

πi(Vn+2,2) = Hi(Vn+2,2) =

{
0 if 1 6 i 6 n− 1 ,

Q(−1)n(Z) if i = n

with the generator

1 = (δτSn , τSn) ∈ In(S2n) = πn+1(BSO,BSO(n)) = πn(Vn+2,2) = Q(−1)n(Z)

represented by the tangent bundle of the n-sphere τSn : Sn → BSO(n) with

the stable trivialisation δτSn : τSn ⊕ εk ∼= εn+k determined by the standard

embedding Sn ↪→ Sn+k (k > 1). This generator is the b-framing obstruction

νb(g
+
n , f

+
n ) ∈ πn+1(BSO,BSO(n)) of the immersion f+

n : Sn # S2n of 7.12,

regarded as an n-immersion in the identity normal map (1, 1) : S2n → S2n

Sn
f+
n ////

��

S2n

1

��
Dn+1

g+
n //// S2n

using any null-homotopy g+
n , with

µ(f+
n ) = 1 ∈ Q(−1)n(Z) ,

λ(f+
n , f

+
n ) = 0 ∈ Q(−1)n(Z) ,

χ(f+
n ) = χ(−τSn) = − (1 + (−1)n)

= λ(f+
n , f

+
n )− (1− (−1)n)µ(f+

n ) ∈ Q(−1)n(Z) .

If n 6= 1, 3, 7 then τSn 6= 0 ∈ πn(BSO(n)) (5.74) and there is defined a short

exact sequence

0→ Q(−1)n(Z)→ πn(BSO(n))→ πn(BSO)→ 0 .

2
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Example 11.31 The Stiefel manifold of orthonormal 2-frames in R3 can be

expressed as

V3,2 = SO(3) = S3/{±1} = RP3

using SO(1) = {1} and regarding S3 as the group of unit quaternions. The

fundamental group is

π1(V3,2) = Z2 = Q−1(Z) ,

with the generator 1 = (δτS1 , τS1) ∈ I1(S2) = Z2 corresponding to the figure 8

immersion f+
1 : S1 # S2 with geometric self-intersection µ(f+

1 ) = 1 ∈ Z2. 2

Remark 11.32 (i) The J-homomorphism (5.80) and the Hopf invariant (5.76)

define natural transformations of exact sequences

. . . // πn+1(BSO)

J
��

// In(S2n)

µ ∼=
��

// πn(BSO(n))

J
��

// πn(BSO)

J
��

// . . .

. . . // πSn
H∞ //

H
��

Q(−1)n(Z)

=
��

P∞ // π2n−1(Sn)

H
��

E∞ // πSn−1

H
��

// . . .

. . . // Q̂(−1)n+1

(Z) // Q(−1)n(Z)
N // Q(−1)n(Z) // Q̂(−1)n(Z) // . . .

with

Q̂(−1)n(Z) = {x ∈ Z | (1 + (−1)n+1)x = 0}/{(1 + (−1)n)y | y ∈ Z}

=

{
Z2 if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2),

N = 1 + (−1)n : Q(−1)n(Z)→ Q(−1)n(Z) .

The morphism

In(S2n)→ πn(BSO(n)) ; (g : Sn # S2n) 7→ νg

injective for n 6= 1, 3, 7.

(ii) The morphism

πn+1(BSO,BSO(n)) = Q(−1)n(Z)→ πn(BSO(n)) ; 1 7→ νf+
n

= − τSn
trivial if and only if n = 1, 3, 7 by the Bott-Milnor theorem (5.74). For n = 1, 3, 7

the geometric Umkehr map F : S2n+1 → Sn+1 of f+
n has Hopf invariant 1, and

(f+
n )′ : N = Sn ↪→ S2n+1 is the standard embedding with the exotic framing.

(iii) The composite of the universal (double) covering projection

p : Sn → RPn ; x = (x0, x1, . . . , xn) 7→ p(x) = [x0, x1, . . . , xn]

and any immersion f : RPn # S2n is an immersion

g = pf : Sn # RPn → S2n .

The geometric self-intersection is such that µ(g) 6= 0 if and only if n = 2j − 1 for

some j > 1 (Brown [16]). 2
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As in 11.27 write the (−1)n-symmetric intersection pairing as

λ = (λ1, λ̃) : πn(M)× πn(M)→ Z[π1(M)] = Z⊕ Z̃[π1(M)] .

Note that λ1 : πn(M)× πn(M)→ Z determines λ by

λ(x, y) =
∑

a∈π1(M)

λ1(ax, y)a ∈ Z[π1(M)] .

Example 11.33 (Rees [77, §5]) For n > 2 let

p : Sn → RPn ; x = (x0, x1, . . . , xn) 7→ p(x) = [x0, x1, . . . , xn]

be the universal (double) covering projection. The immersion

g : Sn # RPn ×Dn ; x = (x0, x1, . . . , xn) 7→ (p(x), (x1, . . . , xn))

has a single unordered double point, namely

g(1, 0, . . . , 0) = g(−1, 0, . . . , 0)

= ([±1, 0, . . . , 0], (0, . . . , 0)) ∈ RPn ×Dn .

The geometric self-intersection is

µ(g) = (0, T ) ∈ Q(−1)n(Z[Z(−1)n+1

2 ]) = Q(−1)n(Z)⊕ Q̃(−1)n(Z[Z(−1)n+1

2 ]) ,

where Z[Z(−1)n+1

2 ] denotes the group ring Z[π1(RPn)] = Z[Z2] with the involution

determined by w1(RPn) = (−1)n+1 ∈ H1(RPn;Z2) = Z2 = {±1}

Z[Z(−1)n+1

2 ]→ Z[Z(−1)n+1

2 ] ; a+ bT 7→ a+ (−1)n+1bT .

The reduced self-intersection is non-zero

µ̃(g) = T 6= 0 ∈ Q̃(−1)n(Z[Z(−1)n+1

2 ]) = Z2 ,

so that g : Sn # RPn ×Dn is not homotopic to an embedding. 2

The connected sum of immersions g, g′ : Sn #M2n is an immersion

g#g′ : Sn#Sn = Sn #M2n .

Proposition 11.34 Let M2n be a 2n-dimensional manifold, with n > 3.

(i) The Z[π1(M)]-module In(M) of regular homotopy classes of immersions g :

Sn #M2n is isomorphic to the Z[π1(M)]-module

Q(−1)n(Z)×λ1
πn(M) = {(x, y) |x ∈ Q(−1)n(Z), y ∈ πn(M)}

with addition and Z[π1(M)]-action by
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(x, y) + (x′, y′) = (x+ x′ + λ1(y, y′), y + y′) ,

(
∑

a∈π1(M)

naa)(x, y) = (n1x,
∑

a∈π1(M)

naay)

The isomorphism is given by

In(M)→ Q(−1)n(Z)×λ1 πn(M) ; g 7→ (µ1(g), [g])

with [g] ∈ πn(M) the homotopy class of a regular homotopy class of immersions

g : Sn #M2n. The element (1, 0) ∈ In(M) is represented by the null-homotopic

immersion

f+
n : Sn #M#S2n = M

with f+
n : Sn # S2n the single double point immersion of (7.12) with µ1(f+

n ) = 1.

(ii) For any immersion g : Sn # M let g̃ : Sn # M̃ be the prescribed lift to

the universal cover M̃ , and let gemb : Sn # M be any immersion in the regular

homotopy class

gemb = (−µ1(g), g) ∈ In(M) = Q(−1)n(Z)×λ1 πn(M)

of immersions which are homotopic to g and lift to an embedding g̃emb : Sn ↪→ M̃

in the universal cover M̃ . The reduced geometric self-intersection and the normal

bundle define functions

µ̃ : πn(M)→ Q̃(−1)n(Z[π1(M)]) ; (g : Sn #M) 7→ µ̃(g) ,

ν : In(M)→ πn(BSO(n)) ; g 7→ νg̃ ,

νemb : πn(M)→ πn(BSO(n)) ; g 7→ νg̃emb

such that

µ̃(x+ y) = µ̃(x) + µ̃(y) + λ̃(x, y) ∈ Q̃(−1)n(Z[π1(M)]) ,

ν(x+ y) = ν(x) + ν(y) ,

νemb(x+ y) = νemb(x) + νemb(y) + λ1(x, y)τSn ∈ πn(BSO(n)) ,

χ(νemb(x)) = λ1(x, x) ∈ Q(−1)n(Z) .

The various functions fit into a commutative diagram

0 // Q(−1)n(Z)
f+
n // In(M) //

(
µ

ν

)

��

πn(M) //

(
µ̃

νemb

)
��

0

0 // Q(−1)n(Z)

(
1

−τSn
)
// Q(−1)n ⊕ πn

(
p̃ 0

p1 1

)
// Q̃(−1)n ⊕ πn // 0

with
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p̃ = proj. : Q(−1)n = Q(−1)n(Z[π1(M)])→ Q̃(−1)n = Q̃(−1)n(Z[π1(M)]) ,

p1 : Q(−1)n = Q(−1)n(Z[π1(M)])→ Q(−1)n(Z)→ πn = πn(BSO(n)) ,

µ : In(M) = Q(−1)n(Z)×λ1
πn(M)

→ Q(−1)n(Z[π1(M)]) = Q(−1)n(Z)⊕ Q̃(−1)n(Z[π1(M)]) ;

(g : Sn #M) = (µ1(g), g) 7→ µ(g) = (µ1(g), µ̃(g)) .

Proof (i) The morphism

Q(−1)n(Z) = In(S2n)→ In(M) ; (f : Sn # S2n) 7→ (f : Sn #M#S2n = M)

in the exact sequence of 7.39

. . .→ πn+1(M)→ πn+1(BO,BO(n)) = Q(−1)n(Z)

→ In(M)→ πn(M)→ πn(BO,BO(n)) = 0

is split by the self-intersection function µ : In(M) → Q(−1)n(Z). The stated

formulae for the addition and Z[π1(M)]-action in In(M) are direct consequences

of 11.24 (iv) and (v).

(ii) Combine Propositions 11.24 and 11.30. 2

Example 11.35 Wall [89] proved that for n > 3 the diffeomorphism classes of

(n − 1)-dimensional 2n-dimensional manifolds (M,∂M) with homotopy sphere

boundary ∂M = Σ2n−1 are in one-one correspondence with the isomorphism

classes of ‘n-spaces’ (H,λ, ν) with (H,λ : H × H → Z) a nonsingular (−1)n-

symmetric form over Z and ν : H → πn(BSO(n)) a function such that

ν(ax) = a2ν(x) , ν(x+ y) = ν(x) + ν(y) + λ(x, y)τSn ∈ πn(BSO(n))

λ(x, x) = χ(ν(x)) ∈ Q(−1)n(Z) (x, y ∈ H, a ∈ Z) .

The triple associated to (M,∂M) is given by

(H,λ, ν) = (Hn(M), λ1, ν
emb)

with νemb as in 11.34. 2

Proposition 11.36 For any 2n-dimensional normal map (f, b) : M2n → X

the intersections and self-intersections of b-framed n-immersions in f define a

(−1)n-quadratic form (πn+1(f), λ, µ) over Z[π1(X)] such that if x can be killed

by surgery on (f, b) then

λ(x, x) = 0 ∈ Z[π1(X)] , µ(x) = 0 ∈ Q(−1)n(Z[π1(X)]) .
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Proof Define λ to be the composite

λ : πn+1(f)× πn+1(f) // Hn(M̃)×Hn(M̃)
λ // Z[π1(X)]

with M̃ = f∗X̃ the pullback of the universal cover X̃ of X. By 10.16 the bundle

map b : νM → η determines a splitting of the forgetful map In+1(f)→ πn+1(f)

sb : πn+1(f)→ In+1(f) ; φ 7→ φb

sending the homotopy class of a commutative square

Sn
g //

��

M

f

��

φ

Dn+1 h // X

to the regular homotopy class of a b-framed n-immersion φb in f with gb : Sn #
M homotopic to g, which differ by the b-framing obstruction (10.8)

µ(gb)− µ(g) = νb(φ) ∈ Q(−1)n(Z) ⊆ Q(−1)n(Z[π1(M)]) .

The self-intersection defines a function

µ : In+1(f)→ Q(−1)n(Z[π1(X)]) ; φ 7→ µ(g)

sending the regular homotopy class of an n-immersion φ in f to the self-intersection

of the immersion g : Sn #M with

νg = εn : Sn → BSO(n) , χ(νg) = Q(−1)n(Z) .

Define µ on πn+1(f) to be the composite

µ : πn+1(f)
sb // In+1(f)

∂ // In(M)
µ // Q(−1)n(Z[π1(X)]) .

Properties (i),(ii),(iii),(iv) follow from 11.24. 2

Definition 11.37 The kernel form of a 2n-dimensional degree 1 normal map

(f, b) : M2n → X is the geometric (intersection, self-intersection) (−1)n-quadratic

form (πn+1(f), λ, µ) over Z[π1(X)] of 11.36. 2

Proposition 11.38 The kernel form of an n-connected 2n-dimensional degree 1

normal map (f, b) : M2n → X is a nonsingular (−1)n-quadratic form (Kn(M), λ,

µ) on the stably f.g. free Z[π1(X)]-module Kn(M) = πn+1(f).
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Proof Let X̃ be the universal cover of X, and let M̃ = f∗X̃ be the pullback

cover of M . By Proposition 10.21 the Poincaré duality isomorphisms of M̃ split

as
[M ] ∩ − = ([M ] ∩ −)⊕ ([X] ∩ −) :

Hn(M̃) = Kn(M)⊕Hn(X̃)→ Hn(M̃) = Kn(M)⊕Hn(X̃) .

The natural Z[π1(X)]-module morphism Kn(M)→ Kn(M)∗ is an isomorphism

and Kn(M) is stably f.g. free by Corollary 10.29. The kernel Poincaré duality iso-

morphism [M ]∩− : Kn(M) ∼= Kn(M) is the inverse of the homology intersection

pairing

λ : Kn(M)→ Kn(M)∗ = Kn(M)

so that λ is an isomorphism. 2

The nonsingular kernel form of 11.38 will be used in Section 11.4 below to

represent the surgery obstruction

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)]) .

Example 11.39 For any m-dimensional degree 1 normal map (f, b) : M → X

and any n-immersion

Sn
g //

��

Mm

f

��

φ

Dn+1 h // X

there is a b-framing obstruction

νb(φ) = (δνh,b, νg) ∈ πn+1(BO,BO(m− n))

as in 10.8. See Ranicki [69] for the homotopy-theoretic construction of a (−1)n-

quadratic function in the case m = 2n

µb : Kn(M)→ Q(−1)n(Z[π1(X)])

using a stable π1(X)-equivariant geometric Umkehr map F : Σ∞X̃+ → Σ∞M̃+

inducing the Z[π1(X)]-module chain Umkehr f ! : C(X̃)→ C(M̃). The composite

µb : πn+1(f) // Kn(M)
µb // Q(−1)n(Z[π1(X)])

sends the homotopy class of an n-immersion φ to the sum of the self-intersection

µ(g) and the b-framing obstruction νb(φ) ∈ πn+1(BO,BO(n)) = Q(−1)n(Z)

µb(φ) = µ(g) + νb(φ) ∈ Q(−1)n(Z[π1(X)]) .

In particular, for a b-framed n-immersion µb(φ) = µ(g) is the self-intersection,

while for an n-embedding µb(φ) = νb(φ) is the b-framing obstruction. For π1(X) =
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{1} µb is the form over Z originally constructed by Browder [14] (III.4, IV.4) us-

ing functional Steenrod squares. 2

Next, consider the kernel form of a 2n-dimensional degree 1 normal map

which is the boundary of a (2n+ 1)-dimensional degree 1 normal map of pairs.

Proposition 11.40 Let (f, b) : (M2n+1, ∂M)→ (X, ∂X) be a (2n+1)-dimensional

degree 1 normal map of pairs, such that π1(∂X) ∼= π1(X).

(i) The kernel form (πn+1(∂f), λ, µ) of 11.37 is such that

λ(x, x′) = 0 ∈ Z[π1(X)] , µ(x) = 0 ∈ Q(−1)n(Z[π1(X)])

for any

x, x′ ∈ im(∂ : πn+2(f, ∂f)→ πn+1(∂f)) ⊆ πn+1(∂f) .

(ii) If (f, b) is n-connected then the kernel form (Kn(∂M), λ, µ) is such that

λ(x, x′) = 0 ∈ Z[π1(X)] , µ(x) = 0 ∈ Q(−1)n(Z[π1(X)])

for any

x, x′ ∈ im(Kn+1(M,∂M)→ Kn(∂M)) = im(πn+2(f, ∂f)→ πn+1(∂f)) .

Proof (i) The intersection pairing λ on πn+1(∂f) factors through the homo-

logical intersection pairing

λ : Kn(∂M)×Kn(∂M)→ Z[π1(X)]

adjoint to the Poincaré duality isomorphism

λ = [∂M ] ∩ − : Kn(∂M)→ Kn(∂M) .

It is immediate from the isomorphism of exact sequences

Kn(M) //

∼=
��

Kn(∂M) //

∼=
��

Kn+1(M,∂M)

∼=
��

Kn+1(M,∂M) // Kn(∂M) // Kn(M)

that the composite

Kn(M)→ Kn(∂M)→ Kn(∂M)→ Kn(M)

is 0, so that λ vanishes on

ker(Kn(∂M)→ Kn(M)) = im(Kn+1(M,∂M)→ Kn(∂M)) ,
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and hence also on im(πn+2(f, ∂f)→ πn+1(f)).

Every element x ∈ πn+2(f, ∂f) is represented by an relative n-immersion

(h, g) in f

(Dn+1
+ , Sn)

g //

��

(M,∂M)

f

��
(Dn+2, Dn+1

− )
h // (X, ∂X)

with the immersion of pairs

(g, ∂g) : (Dn+1, Sn) # (M2n+1, ∂M)

intersecting transversely. By definition

µ(∂x) = µ(∂g) + ν∂b(∂h, ∂g) ∈ Q(−1)n(Z[π1(M)]) .

The extension of (∂h, ∂g) to (h, g) determines a null-homotopy of the ∂b-framing

obstruction, so that

ν∂b(∂h, ∂g) = 0 ∈ Q(−1)n(Z) ⊆ Q(−1)n(Z[π1(X)]) .

The unordered double point sets (S2[g], S2[∂g]) define a 1-dimensional manifold

with boundary. The components are either closed circles in S2[g], or else paths

in S2[g] with endpoints in S2[∂g]. The paths match up the elements [y] ∈ S2[∂g]

in pairs [y], [z] with lifts to unordered double points y, z ∈ S2(∂g) such that

I(y) = − I(z) ∈ Z[π1(M)]

(exactly as in the proof of 11.25), so that

µ(∂g) =
∑

y∈S2[∂g]

I[y] = 0 ∈ Q(−1)n(Z[π1(X)]) .

(ii) Immediate from (i). 2

The kernel form is also defined on degree 1 normal maps of pairs :

Definition 11.41 The kernel form of an n-connected 2n-dimensional degree 1

normal map of pairs (f, b) : (M2n, ∂M)→ (X, ∂X) is the (−1)n-quadratic form

(Kn(M), λ : Kn(M)×Kn(M)→ Z[π1(X)], µ : Kn(M)→ Q(−1)n(Z[π1(X)]))

on the stably f.g. free Z[π1(X)]-module πn+1(f) = Kn(M) given by the con-

struction of 11.36 on Kn(M) = πn+1(f). 2
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The various kernel Z[π1(X)]-modules are related by an exact sequence

. . .→ Kr(∂M)→ Kr(M)→ Kr(M,∂M)→ Kr−1(∂M)→ . . . ,

with Kr(M) = 0 for r 6= n. By Poincaré duality and the universal coefficient

theorem
Kr(M,∂M) ∼= K2n−r(M) ∼= K2n−r(M)∗

= 0 for r 6= n ,

so that Kr(∂M) = 0 for r 6= n− 1, n. The Z[π1(X)]-module morphism

λ : Kn(M)→ Kn(M)∗ ∼= Kn(M) ∼= Kn(M,∂M)

thus fits into the exact sequence

0→ Kn(∂M)→ Kn(M)
λ
→ Kn(M,∂M)→ Kn−1(∂M)→ 0

and the kernel form (Kn(M), λ, µ) is nonsingular if and only if ∂f : ∂M → ∂X

is a Z[π1(X)]-homology equivalence : if π1(∂M) = π1(∂X) = π1(X) this is the

same as homotopy equivalence.

Proposition 11.42 (Realization of forms)

Let N2n−1 be a (2n− 1)-dimensional manifold with fundamental group π1(N) =

π, and n > 3.

Every (−1)n-quadratic form (K,λ, µ) over Z[π] with K f.g. free is realized as the

kernel form of an n-connected 2n-dimensional degree 1 normal bordism

(f, b) : (M2n;N2n−1, N ′2n−1)→ N × (I; {0}, {1})

with Kn(M) = K and (f, b)| = identity : N → N . The restriction (f, b)| : N ′ →
N is (n− 1)-connected, with

Kn−1(N ′) = coker(λ : K → K∗) , Kn(N ′) = ker(λ : K → K∗) .

The form (K,λ, µ) is nonsingular if and only if f | : N ′ → N is a homotopy

equivalence.

Proof Let K = Z[π]k be of rank k. Construct M by attaching k n-handles to

N × I
M2n = N × I ∪e1

⋃
k

Dn ×Dn

exactly as in Theorem 5.8 of Wall [92] : starting with a null-homotopic unlinked

embedding

e0 :
⋃
k

Sn−1 ×Dn ↪→ N

construct a regular homotopy with track an immersion
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e :
⋃
k

Sn−1 ×Dn × [0, 1] # N × [0, 1]

with (intersection, self-intersection) data (λ, µ), and so obtain a linked embedding

e1 :
⋃
k

Sn−1 ×Dn ↪→ N ; x 7→ e(x, 1) .

Thus N ′2n−1 is the effect of k (n− 1)-surgeries on the restrictions

e1| : Sn−1 ×Dn ↪→ N2n−1 .

2

Remark 11.43 The realization of forms by even-dimensional normal maps is

a non-simply-connected generalisation of the plumbing construction of Milnor

[52]. Let (K,λ) be a (−1)n-symmetric form over Z with K a f.g. free Z-module,

together with a function ν : K → πn(BSO(n)) such that

ν(ax) = a2ν(x) , ν(x+ y) = ν(x) + ν(y) + λ(x, y)τSn ∈ πn(BSO(n))

λ(x, x) = χ(ν(x)) ∈ Q(−1)n(Z) (x, y ∈ K, a ∈ Z) .

For any basis (b1, b2, . . . , bk) of K the functions λ, ν are determined by the values

λij = λ(bi, bj) ∈ Z (i 6= j) , νi = ν(bi) ∈ πn(BSO(n)) .

Let G be the graph with k vertices v1, v2, . . . , vk and |λij | edges joining vi to vj
(i 6= j), so that (λij) is the incidence matrix, and give each vertex vi the weight

νi. Assuming (K,λ, µ) cannot be decomposed as a nontrivial direct sum, G is

connected with the homotopy type of a wedge of circles

G '
∨
g

S1

with g = 1 − χ(G). (Terminology : the wedge of pointed spaces X, Y is the

one-point union

X ∨ Y = X × {y0} ∪ {x0} × Y ⊆ X × Y

with x0 ∈ X, y0 ∈ Y the base points.) The disk bundles

(Dn, Sn−1)→ (E(νi), S(νi))→ Sn (1 6 i 6 k)

can be spliced together using λij , νi to obtain a connected framed 2n-dimensional

manifold with boundary

P = (

k∐
i=1

E(νi))/∼ ,
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a thickening of the space obtained from k copies of Sn by identifying |λij | points

in the ith and jth copies (1 6 i < j 6 k) such that

P = h0 ∪⋃
g
h1 ∪⋃

k

hn ' ∨
g
S1 ∪⋃

k

Dn ,

Hr(P ) =


Z if r = 0

Zg if r = 1

K if r = n

0 otherwise

with an exact sequence

0→ Hn(∂P )→ Hn(P ) = K
λ // Hn(P, ∂P ) = K∗ → Hn−1(∂P )→ 0 .

For n > 3 π1(P ) = ∗gZ can be killed by g 1-surgeries S1×D2n−1 ↪→ P and remov-

ing an interior D2n ↪→ P there is obtained an (n− 1)-connected 2n-dimensional

cobordism (M ;S2n−1, ∂P ). If the function ν is actually determined by a (−1)n-

quadratic function µ for λ

ν : K
µ // Q(−1)n(Z) = πn+1(BSO,BSO(n))→ πn(BSO(n))

plumbing gives an n-connected 2n-dimensional normal map

(f, b) : (M2n;S2n−1, ∂P )→ S2n−1 × (I; {0}, {1})

such that (f, b)| = identity : S2n−1 → S2n−1, with kernel form (Kn(M) =

K,λ, µ), i.e. the realization of the form as in 11.42. The (n−1)-connected (2n−1)-

dimensional normal map (f, b)| : ∂P → S2n−1 has kernel homology

K∗(∂P ) = H∗(∂P ) (∗ 6= 0, 2n− 1) ,

so that it is a homotopy equivalence if and only if (K,λ) is nonsingular. Here is

an illustration of plumbing in the case k = 2

See Chapter V of Browder [14] for a detailed account of plumbing. 2
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Example 11.44 Let N2n−1 = S2n−1 in the construction of 11.42.

(i) For the singular (−1)n-quadratic form (K,λ, µ) = (Zk, 0, 0) over Z

(M2n;N2n−1, N ′2n−1)

=

{
#
k

(cl.(Sn ×Dn\D2n);S2n−1, Sn × Sn−1) if n > 2

(cl.(D2\ ∪k+2 D
2);S1,∪k+1S

1) if n = 1

is the trace of surgeries on an unlinked embedding ∪kSn−1×Dn ↪→ S2n−1. Here

is an illustration of the case k = 2, n = 1.

(ii) For the nonsingular hyperbolic (−1)n-quadratic form over Z (K,λ, µ) =

H(−1)n(Zk)

(M2n;N2n−1, N ′2n−1) = #
k

(cl.(Sn × Sn\(D2n ∪D2n));S2n−1, S2n−1)

is the trace of surgeries on a linked embedding ∪2kS
n−1 ×Dn ↪→ S2n−1. Here is

an illustration of the case k = 2, n = 1.

(Exercise : follow the boundary round to see that there are just two circles). 2
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Example 11.45 An element

x = (δω, ω) ∈ πn(SO/SO(n)) = πn(SO, SO(n))

classifies a map ω : Sn−1 → SO(n) with a null-homotopy δω : ω ' ∗ : Sn−1 →
SO. As in 5.68 twist the embedding

e : Sn−1 ×Dn ↪→ Sn−1 ×Dn ∪Dn × Sn−1 = S2n−1

by ω, to define an n-surgery

gω : Sn−1 ×Dn ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 ; (x, y) 7→ e(x, ω(x)(y))

with effect the (n− 1)-sphere bundle over Sn

S(ω)2n−1 = Dn × Sn−1 ∪ω Dn × Sn−1

classified by ω ∈ πn−1(SO(n)) = πn(BSO(n)). Use δω to extend the degree 1

map S(ω)→ S2n−1 to a normal bordism

(f, b) : (M2n;S2n−1, S(ω)2n−1)→ S2n−1 × (I; {0}, {1})

with (f, b)| = id. : S2n−1 → S2n−1. This is just the normal bordism of 11.42 for

N2n−1 = S2n−1 , N ′2n−1 = S(ω)2n−1 , (K,λ, µ) = (Z, x) ,

using the isomorphism of 5.83

πn(SO/SO(n)) ∼= Q(−1)n(Z)

to identify x with a (−1)n-quadratic structure (λ, µ) on K = Z. Under this

identification

λ = χ(ω) : Z→ Z∗ = Z .

In particular, for the generator x = 1 ∈ πn(SO/SO(n)) ω is the tangent bundle

of the n-sphere

ω = τSn : Sn → BSO(n) ,

and the framing δω : ω ' ∗ : Sn → BSO is determined by an embedding

Sn ↪→ Sn+k for k > 1 (as in 10.8). In this case

(K,λ, µ) = (Z, 1 + (−1)n, 1)

and N ′2n−1 = S(ω) is the (2n− 1)-dimensional Stiefel manifold

S(ω)2n−1 = SO(n+ 1)/SO(n− 1) = Vn+1,2

of orthonormal 2-frames in Rn+1 (cf. 5.83). 2

The kernel form (Kn(M), λ, µ) of an n-connected 2n-dimensional degree 1

normal map (f, b) : M2n → X can also be obtained as follows.
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Remark 11.46 Define a presentation of (f, b) to be the n-connected (2n+1)-

dimensional normal bordism

((F,B); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n)→ X × (I; {0}, {1})

obtained from the product

(f, b)× id : M × (I; {0}, {1})→ X × (I; {0}, {1})

by surgery on a basis of the (stably) f.g. free Z[π1(X)]-module

Kn(M × I) = Kn(M) ,

so that (f ′, b′) is a copy of (f, b). The identification (2n+ 1)-dimensional degree

1 normal map

(F,B)/((f, b) = (f ′, b′)) : W/(M = M ′)→ X × (I/0 ∼ 1) = X × S1

is an n-connected Z[π1(X)]-homology equivalence. The Z[π1(X)]-module mor-

phisms induced by the inclusions M ↪→W , M ′ ↪→W

h = inclusion∗ : Kn(M)→ Kn(W ) ,

h′ = inclusion∗ : Kn(M) = Kn(M ′)→ Kn(W )

are such that h−h′ : Kn(M)→ Kn(W ) is a Z[π1(X)]-module isomorphism. The

Z[π1(X)]-module morphism

ψ : Kn(M)
(h− h′)−1h

// Kn(M)
λ // Kn(M)∗

defines a split (−1)n-quadratic form (Kn(M), ψ) which corresponds to (Kn(M),

λ, µ) under the one-one correspondence of 11.9 (ii). 2

Example 11.47 Presentations as in 11.46 arise naturally in knot theory.

A knot k : S2n−1 ↪→ S2n+1 is simple if S2n+1\k(S2n−1) is (n − 1)-connected.

Such a knot admits a simple Seifert surface which is an (n − 1)-connected

framed codimension 1 submanifoldM2n ↪→ S2n+1 with boundary ∂M = k(S2n−1).

(The simple Seifert terminology has nothing to do with Whitehead torsion). The

inclusion defines an n-connected degree 1 normal map

(f, b) : (M2n, ∂M)→ (D2n+2, k(S2n−1))

which is the identity on the boundary. The knot complement is the (2n + 1)-

dimensional manifold with boundary defined by

(N2n+1, ∂N) = (cl.(S2n+1\(k(S2n−1)×D2)), S2n−1 × S1) ,

with an n-connected (2n+ 1)-dimensional normal map
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(e, a) : (N2n+1, ∂N)→ (D2n+2, k(S2n−1))× S1

which is the identity on the boundary. Cutting (e, a) along (f, b) results in a

presentation

((F,B); (f, b), (f ′, b′) : (W 2n+1;M2n,M ′2n)→ D2n+2 × (I; {0}, {1}) .

A Seifert matrix of the knot is the matrix of the Z-module morphism ψ :

Kn(M) → Kn(M)∗ given by 11.46, with respect to any basis of the f.g. free

Z-module Kn(M) = Hn(M).

See Ranicki [70, 8.9], [74] for accounts of high-dimensional knot theory from the

surgery theoretic point of view. 2

11.3 Surgery on forms

This section develops algebraic surgery on forms. The effect of a geometric n-

surgery on an n-connected 2n-dimensional degree 1 normal map is an algebraic

surgery on the kernel (−1)n-quadratic form. Moreover, geometric surgery is pos-

sible if and only if algebraic surgery is possible.

Given an ε-quadratic form (K,λ, µ) over a ring with involution A it is possible

to kill an element x ∈ K by algebraic surgery if and only if x is isotropic

µ(x) = 0 ∈ Qε(A)

and x generates a direct summand 〈x〉 = Ax ⊂ K, with

〈x〉 ⊆ 〈x〉⊥ = { y ∈ K |λ(x, y) = 0 } .

The effect of the algebraic surgery is the ε-quadratic form

(K ′, λ′, µ′) = (〈x〉⊥/〈x〉, [λ], [µ]) .

More generally, algebraic surgery can be defined for any ‘sublagrangian’ of (K,λ, µ) :

Definition 11.48 (i) Given an ε-symmetric form (K,λ) and a submodule L ⊆
K define the orthogonal submodule

L⊥ = { y ∈ K |λ(x, y) = 0 ∈ A for all x ∈ L }
= ker(i∗λ : K → L∗) ⊆ K

with i : L→ K the inclusion. If (K,λ) is nonsingular and L is a direct summand

of K then so is L⊥.
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(ii) An algebraic surgery on an ε-quadratic form (K,λ, µ) over A kills a sub-

module L ⊆ K such that

µ(L) = {0} ⊆ Qε(A) ,

so that

λ(L× L) = {0} ⊆ A , L ⊆ L⊥ .

The effect of the algebraic surgery is the ε-quadratic form

(K ′, λ′, µ′) = (L⊥/L, [λ], [µ]) .

(iii) A sublagrangian of an ε-quadratic form (K,λ, µ) over A is a direct sum-

mand L ⊆ K such that µ(L) = {0}.
(iv) A lagrangian of (K,λ, µ) is a sublagrangian L such that

L⊥ = L ,

so that the effect of the corresponding algebraic surgery is (K ′, λ′, µ′) = (0, 0, 0).

2

The main result of this section is that the inclusion of a sublagrangian in a

nonsingular ε-quadratic form

i : (L, 0, 0)→ (K,λ, µ)

extends to an isomorphism

f : Hε(L)⊕ (L⊥/L, [λ], [µ])→ (K,λ, µ)

with Hε(L) the hyperbolic ε-quadratic form (11.6). In particular, it follows that

the effect of the algebraic surgery (L⊥/L, [λ], [µ]) is also nonsingular.

In the classical theory of quadratic forms over fields a lagrangian is a “maxi-

mal isotropic subspace”. Wall [92] called hyperbolic forms “kernels” and the la-

grangians “subkernels”. Novikov [64] called hyperbolic forms “hamiltonian”, and

introduced the name “lagrangian”, because of the analogy with the hamiltonian

formulation of physics in which the lagrangian expresses a minimum condition.

The algebraic effect of an n-surgery on an n-connected 2n-dimensional degree

1 normal map is an algebraic surgery on the kernel (−1)n-quadratic form, and

for n > 3 algebraic surgeries can be realized geometrically :

Proposition 11.49 Let (f, b) : M2n → X be an n-connected 2n-dimensional

degree 1 normal map, with kernel (−1)n-quadratic form (Kn(M), λ, µ) over Z[π1(X)].

(i) An element x ∈ Kn(M) is such that µ(x) = 0 if (and for n > 3 only if ) x
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can be killed by an n-surgery on (f, b).

(ii) A degree 1 normal bordism

((F,B); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n)→ X × (I; {0}, {1})

is such that K∗(W,M) = 0 for ∗ 6= n + 1 if and only if it is the trace of

` n-surgeries on (f, b) killing x1, x2, . . . , x` ∈ Kn(M), with Kn+1(W,M) =

Z[π1(X)]`. Given such a degree 1 normal bordism let

L = im(Kn+1(W,M)→ Kn(M)) = 〈x1, x2, . . . , x`〉 ⊆ Kn(M) .

The map F : W → X × I is n-connected, the map f ′ : M ′ → X is (n − 1)-

connected, and the kernel Z[π1(X)]-modules fit into a commutative braid of exact

sequences

Kn+1(M ′)∼=
!!

x′ !

��
Z[π1(X)]`

!!

x

��
Kn(M)

!!

x!

��
Z[π1(X)]`

!!

x′

��
Kn−1(M ′)

Kn+1(W )

==

!!

Kn(W )

==

!!

Kn(W )

==

!!

Kn+1(W )

∼= ==

!!
0

==

AA 0

==

AA
Kn(M ′)

==

AA 0

==

AA 0

with

x ! : Kn(M)→ Z[π1(X)]` ; y 7→ (λ(x1, y), λ(x2, y), . . . , λ(x`, y)) ,

Kn−1(M ′) = coker(x ! : Kn(M)→ Z[π1(X)]`) ,

(Kn(M ′), λ′, µ′) = (L⊥/L, [λ], [µ]) ,

Kn+1(M ′) = ker(x : Z[π1(X)]` → Kn(M)) ,

Kn(W ) = Kn(M)/L , Kn(W ) = L⊥ .

L is a sublagrangian of (Kn(M), λ, µ) if and only if (f ′, b′) is n-connected, in

which case

Kn+1(W,M) = Z[π1(X)]` = L , Kn+1(M ′) = Kn−1(M ′) = 0 .

L is a lagrangian of (Kn(M), λ, µ) if and only if (f ′, b′) is a homotopy equiva-

lence.

(iii) The kernel form (Kn(M), λ, µ) admits a lagrangian if (and for n > 3 only

if ) there exists a normal bordism (F,B) : W → X × I of (f, b) to a homotopy

equivalence (f ′, b′) with K∗(W,M) = 0 for ∗ 6= n+ 1.
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Proof (i) Immediate from the Wall Embedding Theorem 11.25.

(ii) This is a special case of Proposition 10.23, noting that K∗(W,M) = 0 for

∗ 6= n+ 1 if and only if W has a handle decomposition on M of the type

W = M × I ∪
⋃
`

(n+ 1)-handles Dn+1 ×Dn ,

with Kn+1(W,M) = Z[π1(X)]`.

(iii) Combine (i) and (ii). 2

Example 11.50 The effect of an n-surgery on an n-connected 2n-dimensional

degree 1 normal map (f, b) : M2n → X killing 0 ∈ Kn(M) is the (n−1)-connected

degree 1 normal map

(f ′, b′) = (f, b)#1 : M ′2n = M#(Sn+1 × Sn−1)→ X

with

Kn−1(M ′) = Kn+1(M ′) = Z[π1(X)] , Kn(M ′) = Kn(M) .

2

Theorem 11.51 A nonsingular ε-quadratic form (K,λ, µ) admits a lagrangian

L if and only if it is isomorphic to the hyperbolic form Hε(L).

Proof An isomorphism of forms sends lagrangians to lagrangians, so any form

isomorphic to a hyperbolic form has at least one lagrangian. In proving the

converse, it is convenient to use the language of split ε-quadratic forms of 11.1

replacing (λ, µ) by ψ ∈ Qε(K) (as in 11.9) and choosing a representative ψ ∈
S(K). Suppose that

(i, θ) : (L, 0)→ (K,ψ)

is the inclusion of a lagrangian of (K,λ, µ). An extension of (i, θ) to an isomor-

phism

(f, χ) : Hε(L)→ (K,ψ)

determines a lagrangian f(L∗) ⊂ K complementary to L. Construct an isomor-

phism (f, χ) by first choosing a complementary lagrangian to L in (K,ψ). Let

i ∈ HomA(L,K) be the inclusion, and choose a splitting j′ ∈ HomA(L∗,K) of

i∗(ψ + εψ∗) ∈ HomA(K,L∗), so that

i∗(ψ + εψ∗)j′ = 1 ∈ HomA(L∗, L∗) .

In general, j′ : L∗ → K is not the inclusion of a lagrangian, with j′∗ψj′ 6= 0 ∈
Qε(L

∗). Given any k ∈ HomA(L∗, L) there is defined another splitting

j = j′ + ik : L∗ → K
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such that
j∗ψj = j′∗ψj′ + k∗i∗ψik + k∗i∗ψj′ + j′∗ψik

= j′∗ψj′ + k ∈ Qε(L∗) .
Choose a representative ψ ∈ HomA(K,K∗) of ψ ∈ Qε(K) and set

k = − j′∗ψj′ : L∗ → L .

The corresponding splitting j : L∗ → K is the inclusion of a lagrangian

(j, ν) : (L∗, 0)→ (K,ψ)

which extends to an isomorphism of split ε-quadratic forms

((i j) ,

(
θ 0

j∗ψi ν

)
) : Hε(L)→ (K,ψ) .

2

Theorem 11.51 is a generalisation of Witt’s theorem on the extension to

isomorphism of an isometry of quadratic forms over fields. The procedure for

modifying the choice of complement to be a lagrangian is a generalisation of the

Gram-Schmidt method of constructing orthonormal bases in an inner product

space.

Corollary 11.52 The inclusion of a lagrangian in a nonsingular ε-quadratic

form

i : (L, 0, 0)→ (M,λ, µ)

extends to an isomorphism of forms

f : Hε(L)→ (M,λ, µ) .

Proof The proof of 11.51 gives an explicit extension. 2

Proposition 11.53 The inclusion i : (L, 0, 0)→ (K,λ, µ) of a sublagrangian in

a nonsingular ε-quadratic form (K,ψ) extends to an isomorphism of forms

f : Hε(L)⊕ (L⊥/L, [λ], [µ])→ (K,λ, µ) .

Proof Again, use the language of split ε-quadratic forms, writing the inclusion

of the sublagrangian as

(i, θ) : (L, 0)→ (K,ψ) .

For any direct complement L1 to L⊥ in K there is defined an A-module isomor-

phism
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h : L1 → L∗ ; x 7→ (y 7→ (1 + Tε)ψ(x)(y)) .

Define an A-module morphism

j : L∗
h−1

// L1
inclusion // K .

The nonsingular split ε-quadratic form defined by

(H,φ) = (L⊕ L∗,
(

0 1

0 j∗ψj

)
)

has lagrangian L, so that it is isomorphic to the hyperbolic form Hε(L) by 11.52.

Also, there is defined a morphism of split ε-quadratic forms

(g = (i j) ,

(
θ i∗ψj
0 0

)
) : (H,φ)→ (K,ψ)

with g : H → K an injection split by

h = ((1 + Tε)φ)−1g∗(1 + Tε)ψ : K → H .

The direct summand of K defined by

H⊥ = {x ∈ K | (1 + Tε)ψ(x)(gy) = 0 for all y ∈ H }
= ker(g∗(1 + Tε)ψ : K → H∗)

= ker(h : K → H)

is such that

K = g(H)⊕H⊥ .

It follows from the factorisation

i∗(1 + Tε)ψ : K
h // H = L⊕ L∗ projection // L∗

that

L⊥ = ker(i∗(1 + Tε)ψ : K → L∗) = L⊕H⊥ .

The restriction of ψ ∈ S(K) to H⊥ defines a nonsingular split ε-quadratic form

(H⊥, φ⊥) . Define an extension of g to an isomorphism of split forms

(f = (g g⊥), χ) : (H,φ)⊕ (H⊥, φ⊥)→ (K,ψ)

with g⊥ : H⊥ → K the inclusion, and with (H⊥, φ⊥) isomorphic to (L⊥/L, [ψ]).

2
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Example 11.54 An n-connected (2n+1)-dimensional degree 1 normal bordism

((F,B); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n)→ X × (I; {0}, {1})

is such that W has a handle decomposition on M of the type

W = M × I ∪
⋃
k

n-handles Dn ×Dn+1 ∪
⋃
`

(n+ 1)-handles Dn+1 ×Dn .

Let

(W ;M,M ′) = (W ′;M,N) ∪N (W ′′;N,M ′)

with
W ′ = M × I ∪⋃

k

n-handles Dn ×Dn+1 ,

W ′′ = N × I ∪ ⋃̀(n+ 1)-handles Dn+1 ×Dn .





The restriction of (F,B) to N is an n-connected 2n-dimensional degree 1 normal

map

(fN , bN ) : N ∼= M #(#
k
Sn × Sn) ∼= M ′#(#

`
Sn × Sn)→ X

with kernel (−1)n-quadratic form

(Kn(N), λN , µN ) ∼= (Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k)

∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Z[π1(X)]`) .

Thus (Kn(N), λN , µN ) has sublagrangians

L = im(Kn+1(W ′, N)→ Kn(N)) ∼= Z[π1(X)]k ,

L′ = im(Kn+1(W ′′, N)→ Kn(N)) ∼= Z[π1(X)]` ⊆ Kn(N)

such that
(L⊥/L, [λN ], [µN ]) ∼= (Kn(M), λ, µ) ,

(L′⊥/L′, [λN ]′, [µN ]′) ∼= (Kn(M ′), λ′, µ′) .

Note that L is a lagrangian if and only if (f, b) : M → X is a homotopy equiva-

lence. Similarly for L′ and (f ′, b′) : M ′ → X. 2
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Definition 11.55 The nonsingular ε-quadratic forms (K,λ, µ), (K ′, λ′, µ′) are

cobordant if there exists an isomorphism

(K,λ, µ)⊕Hε(F ) ∼= (K ′, λ′, µ′)⊕Hε(F
′)

for some f.g. free A-modules F, F ′. 2

Proposition 11.56 (i) Cobordism is an equivalence relation on nonsingular ε-

quadratic forms (K,λ, µ) over A.

(ii) (K,λ, µ) ⊕ (K,−λ,−µ) is cobordant to 0, for any nonsingular ε-quadratic

form (K,λ, µ) over A with K f.g. free.

Proof (i) Clear.

(ii) The diagonal is a lagrangian

∆ = {(x, x) ∈ K ⊕K |x ∈ K}

of (K ⊕ K,λ ⊕ −λ, µ ⊕ −µ). For any split ε-quadratic structure ψ ∈ S(K)

representing (λ, µ) apply 11.52 to obtain an extension of the inclusion ∆ ↪→
K ⊕K to an isomorphism of ε-quadratic forms(

1 −εψ∗
1 ψ

)
: Hε(K)→ (K,λ, µ)⊕ (K,−λ,−µ) .

2

11.4 The even-dimensional L-groups

The even-dimensional surgery obstruction groups L2∗(A) are now defined us-

ing forms. The surgery obstruction of an even-dimensional normal map will be

defined in Section 11.5 using the kernel form of Section 11.2.

Definition 11.57 The 2n-dimensional L-group L2n(A) of a ring with invo-

lution A is the group of cobordism classes of nonsingular (−1)n-quadratic forms

(K,λ, µ) on f.g. free A-modules. The addition and inverses in L2n(A) are given

by

(K1, λ1, µ1) + (K2, λ2, µ2) = (K1 ⊕K2, λ1 ⊕ λ2, µ1 ⊕ µ2) ,

−(K,λ, µ) = (K,−λ,−µ) ∈ L2n(A) .

2

It should be clear that L2n(A) depends only on the residue n (mod 2), so

that only two L-groups have actually been defined, L0(A) and L2(A).
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The surgery obstruction of an n-connected 2n-dimensional degree 1 normal

map (f, b) : M2n → X will be defined in Section 11.5 to be the element

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)])

represented by the kernel form of 11.37, such that σ∗(f, b) = 0 if and only if

(f, b) is bordant to a homotopy equivalence.

Proposition 11.58 The even-dimensional L-groups of R are given by

L2n(R) =

{
Z if n ≡ 0 (mod 2)

0 if n ≡ 1 (mod 2) .

Proof Since 1/2 ∈ R there is no difference between symmetric and quadratic

forms over R. If (K,λ) is a nonsingular (−1)n-symmetric form over R then for

any x 6= 0 ∈ K with λ(x, x) = 0 ∈ R there exists y ∈ K with λ(y, y) = 0,

λ(x, y) = 1, so that

(K,λ) = H(−1)n(R)⊕ (K ′, λ′)

with K ′ = 〈x, y〉⊥.

Consider first the case n ≡ 0 (mod 2). The signature of a nonsingular sym-

metric form (K,λ) over R (6.30) is defined by

σ(K,λ)

= no. of positive eigenvalues of λ − no. of negative eigenvalues of λ ∈ Z .

In particular, σ(R, 1) = 1. The symmetric form λ ∈ Q+(K) is identified with

the symmetric k × k matrix (λ(xi, xj)16i,j6k) ∈ Mk,k(R) determined by any

choice of basis x1, x2, . . . , xk for K. By Sylvester’s Law of Inertia (6.33) the rank

of K and the signature define a complete set of invariants for the isomorphism

classification of nonsingular symmetric forms (K,λ) on finite-dimensional vector

spaces K over R, meaning that two forms are isomorphic if and only if they have

the same rank and signature. A nonsingular symmetric form (K,λ) over R is

isomorphic to a hyperbolic form if and only if it has signature 0. Nonsingular

symmetric forms (K,λ), (K ′, λ′) over R are related by an isomorphism

(K,λ)⊕H+(Rd) ∼= (K ′, λ′)⊕H+(Rd
′
)

for some d, d′ > 0 if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ Z ,

so that the signature defines an isomorphism

L0(R)→ Z ; (K,λ) 7→ σ(K,λ) .

For n ≡ 1 (mod2) we have L2(R) = 0 because every nonsingular skew-

symmetric (alias symplectic) form over R admits a lagrangian, and is thus iso-

morphic to a hyperbolic form. 2
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See Chapter II of Milnor and Husemoller [60] for what is known about the

isomorphism classification of nonsingular symmetric and quadratic forms over Z.

For the applications to surgery it suffices to know if two forms become isomorphic

after adding hyperbolics.

Definition 11.59 The signature of a nonsingular symmetric form (K,λ) over

Z is the signature of the induced nonsingular symmetric form over R

σ(K,λ) = σ(R⊗K, 1⊗ λ) ∈ Z . 2

In particular, σ(Z, 1) = 1.

Definition 11.60 The Arf invariant of a nonsingular quadratic form over Z2

(K,λ, µ) is given by

c(K,λ, µ) =

m∑
i=1

µ(xi)µ(xi+m) ∈ Z2

for any symplectic basis x1, . . . , x2m for K, i.e. a basis such that

λ(xi, xj) =

{
1 if |i− j| = m

0 otherwise .

2

The original reference is Arf [4].

Proposition 11.61 The even-dimensional L-groups of Z are given by

L2n(Z) =

{
Z if n ≡ 0 (mod 2)

Z2 if n ≡ 1 (mod 2) .

Proof Consider first the case n ≡ 0(mod 2). By Serre [79] (§1, Chapter V) the

signature of a nonsingular even symmetric form (K,λ) is divisible by 8

σ(K,λ) ≡ 0 (mod 8) .

Two such forms (K,λ), (K ′ λ′) are related by an isomorphism

(K,λ)⊕H+(Zk) ≡ (K ′, λ′)⊕H+(Z`)

if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ 8Z ⊂ Z .

The nonsingular even symmetric form (Z8, E8) associated to the exceptional Lie

group E8
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E8 =



2 0 0 1 0 0 0 0

0 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

1 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 2


: Z8 // (Z8)∗

has signature

σ(Z8, E8) = 8 ∈ Z .

Thus L0(Z) = Z, with an isomorphism

L0(Z)→ Z ; (K,λ) 7→ σ(K,λ)/8 .

See Chapter III.1 of Browder [14] for the classification of quadratic forms

over Z2 which shows that the Arf invariant defines an isomorphism

L2(Z2)→ Z2 ; (K,λ, µ) 7→ Arf(K,λ, µ)

and also that the natural map

L2(Z)→ L2(Z2) = Z2 ; (K,λ, µ) 7→ Z2 ⊗Z (K,λ, µ)

defines an isomorphism. Thus L2(Z) is generated by the nonsingular skew-

quadratic form (Z⊕ Z, λ, µ) over Z defined by

λ((a, b), (c, d)) = ad− bc ∈ Z ,

µ(a, b) = a+ b+ ab ∈ Q−1(Z) = Z2

such that the induced form over Z2 has Arf invariant 1. 2

Example 11.62 For k > 2 let

(F,B) : (W 4k;S4k−1,Σ4k−1)→ S4k−1 × (I; {0}, {1})

be the 4k-dimensional normal bordism realizing the nonsingular quadratic form

(K,λ, µ) = (Z8, E8) over Z generating L4k(Z) = Z. This can be obtained by

plumbing together (11.43) 8 copies of the tangent bundle τS2k : S2k → BSO(2k)

of the 2k-sphere S2k, using the E8-graph� � � � � � ��v1v2 v3 v4 v5 v6 v7 v8
with incidence matrix E8, weighted at each vertex by

1 ∈ π2k+1(BSO,BSO(2k)) = Q+(Z) = Z .

The effect of the corresponding 8 (2k − 1)-surgeries on (F,B)| = id. : S4k−1 →
S4k−1 is a homotopy equivalence (F,B)| : Σ4k−1 → S4k−1 with Σ4k−1 an exotic
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(4k−1)-dimensional sphere generating the cyclic subgroup bP4k ⊆ Θ4k−1 (13.22)

of the exotic spheres which bound framed 4k-manifolds. In particular, for k = 2

this gives one of the exotic 7-spheres Σ7 originally constructed by Milnor [49]

(cf. Section 13.3 below and also Example 11.44). 2

Example 11.63 As in 5.72 for any map ω : S4 → SO(5) surgery on S9 removing

the embedding

gω : S4 ×D5 ↪→ S9 = S4 ×D5 ∪D5 × S4 ; (x, y) 7→ (x, ω(x)(y))

is a 10-dimensional cobordism (W 10;S9, S(ω)) with S(ω) the sphere bundle of

ω : S5 → BSO(5). For the unique non-zero element

ω ∈ ker(π4(SO(5))→ π4(SO)) = Z2

and the trace of framed 4-surgeries removing two disjoint linked embeddings

gω , g
′
ω : S4 ×D5 ↪→ S9

the standard framing of S9 extends to a framing b of W 10 such that

(H5(W ;Z2), λ, µb) = (Z2 ⊕ Z2,

(
0 1

1 0

)
,Arf form) .

The sphere bundle S(ω) = Σ9 is the exotic sphere of Kervaire [36], such that

D10 ∪W ∪ D10 is a closed 10-dimensional PL manifold without differentiable

structure. 2

Definition 11.64 Let C be the ring of complex numbers, with the complex

conjugation involution

x+ iy = x− iy (x, y ∈ R) .

The signature of a (−1)n-symmetric form (K,λ) over C is defined by

σ(K,λ) =

no. of positive eigenvalues of inλ− no. of negative eigenvalues of inλ ∈ Z

with n = 0, 1. 2

Proposition 11.65 The even-dimensional L-groups of C with the complex con-

jugation involution i = −i are given by

L2n(C) = Z .

Proof As for the real case (11.58), with the signature defining isomorphisms

L2n(C)→ Z ; (K,λ, µ) 7→ σ(K,λ) .

2
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The rest of this section is devoted to a brief introduction to the even-dimensional

L-groups of finite group rings.

For a finite group π and F = R,C,H let αF (π) be the number of irreducible

real representations of π which correspond to a type F summand in the Wed-

derburn decomposition of R[π] as a product of matrix algebras

R[π] =

αR(π)⊕
i=1

Mdi(R,π)(R)⊕
αC(π)⊕
j=1

Mdj(C,π)(C)⊕
αH(π)⊕
k=1

Mdk(H,π)(H)

with

|π| =

αR(π)∑
i=1

di(R, π)2 + 2

αC(π)∑
j=1

dj(C, π)2 + 4

αH(π)∑
k=1

dk(H, π)2 .

The sum

r(π) = αR(π) + αC(π) + αH(π)

= no. of conjugacy classes of unordered pairs {g, g−1} in π

is the number of irreducible real representations of π (as in Example 8.8). Every

ε-quadratic form (K,λ, µ) over R[π] with the oriented involution g = g−1 (g ∈ π)

has a corresponding splitting. For each summand Md(F ) ⊂ R[π] there is defined

an ε-quadratic form F d ⊗R[π] (K,λ, µ) over F , regarding F d as an (F,Md(F ))-

bimodule (Morita theory). For F = R (with ε = 1) and F = C (ε = ±1) this

gives a signature σ ∈ Z as in Definitions 6.30, 11.64.

Definition 11.66 For ε = (−1)n the multisignature of a nonsingular ε-quadratic

form (K,λ, µ) over R[π] is the collection of signatures

σ∗(K,λ, µ) =



(
αR(π)∑
i=1

σi(K,λ, µ),
αC(π)∑
j=1

σj(K,λ, µ))

∈ ⊕
αR(π)

Z⊕ ⊕
αC(π)

Z if n ≡ 0(mod 2)

αC(π)∑
j=1

σj(K,λ, µ) ∈ ⊕
αC(π)

Z if n ≡ 1(mod 2)

one for each of the αR(π) summands Mdi(R) ⊂ R[π] (ε = +1) and one for each

of the αC(π) summands Mdj (C) ⊂ R[π] (ε = ±1). 2

Proposition 11.67 (Wall [92, Chap. 13A], [93]) The even-dimensional surgery

obstruction groups of a finite group π with the oriented involution are such that

L2n(Z[π]) =


⊕

αR(π)+αC(π)

Z⊕ (2-primary torsion) if n ≡ 0 (mod 2)⊕
αC(π)

Z⊕ (2-primary torsion) if n ≡ 1 (mod 2)

with the Z-summands detected by the multisignature.
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Proof The original references may be supplemented by Chapter 22 of Ranicki

[71] for the (easy) torsion-free part. 2

Remark 11.68 See Hambleton and Taylor [30] for a survey of the computations

of the L-groups of finite groups. 2

Example 11.69 (i) The even-dimensional L-groups of Z[Z2] with the oriented

involution T = T are given by

L2n(Z[Z2]) =

{
Z⊕ Z if n ≡ 0 (mod 2)

Z2 if n ≡ 1 (mod 2)

detected by the multisignature and Arf invariant. The multisignature isomor-

phism

L0(Z[Z2])→ L0(Z)⊕ L0(Z) = Z⊕ Z ;

(K,λ, µ) 7→ (σ(ε+(K,λ, µ))/8, σ(ε−(K,λ, µ))/8)

has components induced by the morphisms of rings with involution

ε± : Z[Z2]→ Z ; a+ bT 7→ a± b .

The Arf invariant isomorphism is given by

L2(Z[Z2])→ L2(Z) = Z2 ; (K,λ, µ) 7→ c(ε+(K,λ, µ)) = c(ε−(K,λ, µ)) .

(ii) The irreducible complex representaton of Zm

ρj : Zm → C ; t 7→ e2πij/m (0 6 j < m)

give the real group ring of Zm to be

R[Zm] =


R2 ⊕ ⊕

(m−2)/2

C if m ≡ 0 (mod 2)

R⊕ ⊕
(m−1)/2

C if m ≡ 1 (mod 2)

so that
r(Zm) = αR(Zm) + αC(Zm)

=

{
2 + (m− 2)/2 if m ≡ 0 (mod 2)

1 + (m− 1)/2 if m ≡ 1 (mod 2) .

The even-dimensional L-groups of

Z[Zm] = Z[t]/(tm − 1)

with the oriented involution t = t−1 are such that
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L0(Z[Zm]) =


⊕

(m+2)/2

Z⊕ (2-primary torsion) if m ≡ 0 (mod 2)⊕
(m+1)/2

Z⊕ (2-primary torsion) if m ≡ 1 (mod 2)

L2(Z[Zm]) =


⊕

(m−2)/2

Z⊕ (2-primary torsion) if m ≡ 0 (mod 2)⊕
(m−1)/2

Z⊕ (2-primary torsion) if m ≡ 1 (mod 2) .

The multisignature components are given by the morphisms of rings with invo-

lution ρj : Z[Zm]→ C

ρj : L2n(Z[Zm])→ L2n(C) = Z (0 6 j 6 m/2) .

2

11.5 The even-dimensional surgery obstruction

It was shown in Section 10.4 that every 2n-dimensional degree 1 normal map

is bordant to an n-connected degree 1 normal map. In general, there is an ob-

struction to the existence of a further bordism to an (n+ 1)-connected degree 1

normal map (= homotopy equivalence), which is defined as follows.

Definition 11.70 The surgery obstruction of an n-connected 2n-dimensional

degree 1 normal map (f, b) : M2n → X is the class of the kernel (−1)n-quadratic

form over Z[π1(X)]

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)]) . 2

The main result of this section is that σ∗(f, b) = 0 if (and for n > 3 only if)

(f, b) is bordant to a homotopy equivalence. It is clear that if (f, b) is a homotopy

equivalence then σ∗(f, b) = 0, for then Kn(M) = 0.

Proposition 11.71 The surgery obstructions of bordant n-connected 2n-dimen-

sional degree 1 normal maps (f, b) : M2n → X, (f ′, b′) : M ′2n → X are the same

σ∗(f, b) = σ∗(f
′, b′) ∈ L2n(Z[π1(X)]) .

Proof Given a (2n+ 1)-dimensional degree 1 normal bordism

((F,B); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n)→ X × (I; {0}, {1})

with (f, b) and (f ′, b′) n-connected use the rel ∂ version of 10.30 to kill the kernel

Z[π1(X)]-modules Ki(W ) for i 6 n−1 by i-surgeries on the interior of W keeping

f and f ′ fixed. Thus it may be assumed that F is n-connected, such that



THE EVEN-DIMENSIONAL SURGERY OBSTRUCTION 295

W = M × I ∪
⋃
k

n-handles Dn ×Dn+1 ∪
⋃
`

(n+ 1)-handles Dn+1 ×Dn ,

and by Example 11.54

(Kn(N), λN , µN ) ∼= (Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k)

∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Z[π1(X)]`) .

It follows that

σ∗(f, b) = (Kn(M), λ, µ) = (Kn(M ′), λ′, µ′) = σ∗(f
′, b′) ∈ L2n(Z[π1(X)]) .

2

In view of the invariance of the surgery obstruction under normal bordism

(11.71) and the result of Section 10.4 that every 2n-dimensional degree 1 normal

map is bordant to an n-connected degree 1 normal map the surgery obstruction

can be defined in general :

Definition 11.72 The surgery obstruction of a 2n-dimensional degree 1 nor-

mal map (f, b) : M2n → X is defined to be the class of the kernel (−1)n-quadratic

form over Z[π1(X)]

σ∗(f, b) = (Kn(M ′), λ′, µ′) ∈ L2n(Z[π1(X)])

of any bordant n-connected 2n-dimensional degree 1 normal map (f ′, b′) : M ′2n →
X. 2

Proposition 11.73 Let n > 3. Given an n-connected 2n-dimensional degree 1

normal map (f, b) : M2n → X such that

σ∗(f, b) = 0 ∈ L2n(Z[π1(X)])

there exists an n-connected (2n+ 1)-dimensional degree 1 normal bordism

((F,B); (f, b), (f ′, b′)) : (W 2n+1;M2n,M ′2n)→ X × (I; {0}, {1})

to a homotopy equivalence (f ′, b′) : M ′ → X.

Proof For any embedding D2n ↪→M set

M0 = cl.(M\D2n) .

By the Poincaré Disc Theorem (9.14) it may be assumed that

X = X0 ∪D2n
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for a 2n-dimensional Poincaré pair (X0, S
2n−1), with

(f, b) = (f0, b0) ∪ 1 : M = M0 ∪D2n → X = X0 ∪D2n .

By hypothesis there exists an isomorphism of forms

(Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k) ∼= H(−1)n(Z[π1(X)]`) .

The effect of k (n− 1)-surgeries on (f, b) is the bordant degree 1 map

(f1, b1) = (f, b) # std. : M1 = M # #
k
Sn × Sn → X = X #S2n

(using X0 and (f0, b0) to define the connected sums #), with hyperbolic kernel

form

(Kn(M1), λ1, µ1) = (Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k) = H(−)n(Z[π1(X)])` .

The effect of ` n-surgeries on (f1, b1) killing a basis x1, x2, . . . , x` ∈ Kn(M1) for

a lagrangian is a homotopy equivalence (f ′, b′) : M ′2n → X bordant to (f1, b1),

which is also bordant to (f, b). 2

Theorem 11.74 Let n > 3. A 2n-dimensional degree 1 normal map of pairs

(f, b) : (M2n, ∂M)→ (X, ∂X)

with ∂f : ∂M → ∂X a homotopy equivalence has a rel ∂ surgery obstruction

σ∗(f, b) ∈ L2n(Z[π1(X)])

such that σ∗(f, b) = 0 if and only if (f, b) is bordant rel ∂ to a homotopy equiva-

lence of pairs.

Proof The surgery obstruction of (f, b) is defined by

σ∗(f, b) = (Kn(M ′), λ′, µ′) ∈ L2n(Z[π1(X)])

for any n-connected degree 1 normal map (f ′, b′) : (M ′, ∂M)→ (X, ∂X) bordant

to (f, b) relative to the boundary, with ∂f ′ = ∂f , exactly as in the closed case

∂M = ∂X = ∅ in 11.72. The rel ∂ version of 11.71 shows that the surgery

obstruction is a normal bordism invariant, which is 0 for a homotopy equivalence.

Also, if n > 3 and σ∗(f, b) = 0 then (f, b) is bordant rel ∂ to a homotopy

equivalence of pairs, proved exactly as in the closed case in 11.73. 2

Proposition 11.75 Let π be a finitely presented group with an orientation char-

acter w : π → Z2. For any m > 4 there exists a closed m-dimensional manifold

N with

(π1(N), w(N)) = (π,w) .
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Proof Given a finite presentation π = {g1, g2, . . . , gk | r1, r2, . . . , r`} realize the

orientation characters

ωi = w(gi) ∈ π1(BO(m)) = Z2 (1 6 i 6 k)

by m-plane bundles over S1. The sphere bundles Sm−1 → S(ωi)→ S1 are such

that S(ωi) = Sm−1 × S1 in the orientable case, and

S(ωi) = Sm−1 × I/{(x, 0) ∼ (Tx, 1)}

in the nonorientable case, with T : Sm−1 → Sm−1; (x1, . . . , xm) 7→ (−x1, . . . , xm)

of degree −1. The connected sum is a closed m-dimensional manifold M =
k

#
i=1

S(ωi) with π1(M) = {g1, g2, . . . , gk} = ∗kZ, w(M)(gi) = ωi. The relations

rj ∈ π1(M) are realized by disjoint framed 1-embeddings S1 ×Dm−1 ⊂M such

that the effect of the corresponding 1-surgeries on M

N = (M\(
⋃̀
j=1

S1 ×Dm−1)) ∪
⋃̀
j=1

D2 × Sm−2

is a closed m-dimensional manifold with π1(N) = π, w(N) = w. 2

Corollary 11.76 Let π be a finitely presented group with an orientation charac-

ter w : π → Z2, and let n > 3. Every element x ∈ L2n(Z[π]) is the rel ∂ surgery

obstruction x = σ∗(f, b) of an n-connected 2n-dimensional degree 1 normal bor-

dism (f, b) : M2n → X with (π1(X), w(X)) = (π,w).

Proof By Proposition 11.75 there exists a closed (2n−1)-dimensional manifold

N with (π1(N), w(N)) = (π,w). By Proposition 11.42 every (−1)n-quadratic

form (K,λ, µ) representing x is realized as the kernel form of an n-connected

2n-dimensional degree 1 normal bordism

(f, b) : (M2n;N2n−1, N ′2n−1)→ N × (I; {0}, {1})

with (f, b)| = 1 : N → N and (f, b)| : N ′ → N a homotopy equivalence. The rel

∂ surgery obstruction is

σ∗(f, b) = (K,λ, µ) = x ∈ L2n(Z[π]) .

2

Example 11.77 (i) The surgery obstruction of an n-connected 2n-dimensional

degree 1 normal map (f, b) : M2n → X with π1(X) = {1} is given in the case

n = 2k by

σ∗(f, b) =
1

8
(signature(H2k(M), λ)− signature(H2k(X), λ)) ∈ L4k(Z) = Z ,
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and in the case n = 2k + 1 by

σ∗(f, b) = Arf invariant (K2k+1(M ;Z2), λ, µ) ∈ L4k+2(Z) = Z2 .

(ii) A framed m-dimensional manifold (Mm, b) determines an m-dimensional

degree 1 normal map (f, b) : Mm → Sm with

f : M →M/cl.(M\Dm) = Sm , η = ε∞ : Sm → BO .

The m-dimensional surgery obstruction defines morphisms

σf r
∗ : Ωf r

m = πSm → Lm(Z) ; (Mm, b) 7→ σ∗((f, b) : Mm → Sm) .

If (M4k, b) is a framed 4k-dimensional manifold then for k > 1

σf r
∗ (M, b) = signature of (H2k(M), λ)/8 = 0 ∈ L4k(Z) = Z

by the Hirzebruch Signature Theorem (6.41). If (M4k+2, b) is a framed (4k+ 2)-

dimensional manifold then

σf r
∗ (M, b) = Arf invariant (H2k+1(M ;Z2), λ, µ) ∈ L4k+2(Z) = Z2 .

For k = 0, 1, 3, 7, 15 there exists a framed (4k + 2)-dimensional manifold with

Arf invariant 1, so that σf r
∗ is onto. In particular, the Arf invariant map

σf r
∗ : Ωf r

2 = πS2 → Z2

is an isomorphism, with Ωf r
2 generated by a non-standard framing b on T 2 =

S1×S1, corresponding to the essential map η2 : S4 → S2 obtained by composing

the Hopf map η : S3 → S2 and its suspension η : S4 → S3. Browder [13] showed

that σf r
∗ : Ωf r

4k+2 → L4k+2(Z) = Z2 has image 0 for k 6= 2i − 1, using the Adams

spectral sequence. The existence or otherwise of framed (4k + 2)-dimensional

manifolds with Arf invariant 1 with k = 2i − 1 for i > 5 is the subject of much

speculation in homotopy theory. 2

Example 11.78 (i) As in Example 11.47, given a knot k : S2n−1 ↪→ S2n+1 and

a Seifert surface M2n ⊂ S2n+1 inclusion defines a degree 1 normal map

(f, b) : (M2n, ∂M)→ (D2n+2, k(S2n−1))

which is the identity on the boundary. The surgery obstruction

σ∗(f, b) ∈ L2n(Z)

is the signature (resp. Arf invariant) of k for n even (resp. odd).

(ii) The unknot k : S1 ↪→ S3 has a contractible Seifert surface D2 ↪→ S3 with

Seifert matrix (11.47) 0.
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The 2-dimensional degree 1 normal map (f, b) : (D2, S1) → (D4, k(S1)) is a

homotopy equivalence, with surgery obstruction

σ∗(f, b) = 0 ∈ L2(Z) = Z2 .

(iii) The trefoil knot k : S1 ↪→ S3 has a Seifert surface which is a punctured

torus

M2 = cl.(T 2\D2) ⊂ S3 .

with Seifert matrix

(
1 1

0 1

)
.

The 2-dimensional degree 1 normal map (f, b) : (M,S1) → (D4, k(S1)) has

surgery obstruction

σ∗(f, b) = (Z⊕ Z,
(

1 1

0 1

)
) = 1 ∈ L2(Z) = Z2 .

Thus the trefoil knot has Arf invariant 1, and cannot be unknotted. 2

Remark 11.79 See Section 13.4 below for a brief account of the surgery theory

of topological manifolds. The surgery obstructions σ∗(f, b) ∈ L2n(Z[π1(X)]) of

normal maps (f, b) : M → X of closed 2n-dimensional topological manifolds with
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π1(X) = π constitute a subgroup of L2n(Z[π]). For finite π the multisignature

(11.66) of such (f, b) is constrained to have equal components, by Proposition

13B.1 of Wall [92]. See Hambleton, Milgram, Taylor and Williams [29] and Mil-

gram [48] for the solution of the ‘oozing conjecture’ concerning this subgroup for

finite π (in both the even and odd dimensions). 2



12

THE ODD-DIMENSIONAL SURGERY OBSTRUCTION

This chapter defines the Wall surgery obstruction of a (2n + 1)-dimensional

degree 1 map (f, b) : M → X

σ∗(f, b) ∈ L2n+1(Z[π1(X)]) .

The main result is that σ∗(f, b) = 0 if (and for n > 2 only if) (f, b) is normal

bordant to a homotopy equivalence.

Section 12.1 introduces the notion of an ε-quadratic formation (K,λ, µ;F,G),

which is a nonsingular ε-quadratic form (K,λ, µ) with lagrangians F,G. Sec-

tion 12.2 constructs a kernel (−1)n-quadratic formation over Z[π1(X)] for an

n-connected (2n + 1)-dimensional degree 1 normal map (f, b). The (2n + 1)-

dimensional surgery obstruction group L2n+1(A) of cobordism classes of non-

singular (−1)n-quadratic formations (K,λ, µ;F,G) over A is defined in Section

12.3. The odd-dimensional surgery obstruction is defined in Section 12.4 to be

the cobordism class of a kernel formation. Section 12.5 describes the algebraic

effect on a kernel formation of a geometric surgery on (f, b). Finally, Section

12.6 is a brief account of linking forms, the original approach to odd-dimensional

surgery obstruction theory.

Odd-dimensional surgery obstruction theory is technically more complicated

than the even-dimensional case. Specifically, an n-connected 2n-dimensional nor-

mal map has a unique kernel form, whereas an n-connected (2n+1)-dimensional

normal map has many kernel formations.

12.1 Quadratic formations

The surgery obstruction of an even-dimensional degree 1 normal map was ex-

pressed in Section 11.5 as the equivalence class of the kernel nonsingular ε-

quadratic form, with the zero class represented by the forms which admit a

lagrangian. The different lagrangians admitted by the kernel form correspond to

different ways of solving the even-dimensional surgery problem by a normal bor-

dism to a homotopy equivalence. The odd-dimensional surgery obstruction will

be expressed in Section 12.4 as an equivalence class of ε-quadratic ‘formations’,

which are nonsingular ε-quadratic forms with ordered pairs of lagrangians, corre-

sponding to two solutions of an even-dimensional surgery problem in codimension

1.
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The fundamental algebraic structure determined by a closed (n−1)-connected

2n-dimensional manifoldN2n is the nonsingular (−1)n-symmetric form (Hn(N), λ)

over Z. The fundamental algebraic structure determined by an (n−1)-connected

(2n+1)-dimensional manifold with boundary (M2n+1, ∂M) with Hn(M,∂M) =

0 is the lagrangian of the (−1)n-symmetric form (Hn(∂M), λ) defined by

L = im(Hn+1(M,∂M)→ Hn(∂M)) ⊂ Hn(∂M) .

Now suppose that M is a closed (2n+1)-dimensional manifold which is expressed

as a union of two (2n+1)-dimensional manifolds (M2n+1
+ , ∂M+), (M2n+1

− , ∂M−)

with the same (n− 1)-connected boundary N2n = ∂M+ = ∂M−

M− M+N

M2n+1 = M− ∪N M+

If M,M+,M−, N are (n − 1)-connected and Hn(M+, N) = Hn(M−, N) = 0

the (−1)n-symmetric form on K = Hn(N) has lagrangians

L± = im(Hn+1(M±, N)→ Hn(N)) ,

giving a (−1)n-symmetric formation (K,λ;L+, L−). Such splittings were first

used by Heegaard (in 1898) in the study of 3-dimensional manifolds : every con-

nected 3-dimensional manifold M3 can be expressed as a union

M = M− ∪N M+

of solid tori along a genus g surface, so that

M+ = M− = #gS
1 ×D2 ,

M+ ∩M− = N = M(g) = #gS
1 × S1

corresponding to a handle decomposition

M = (h0 ∪
⋃
g

h1) ∪ (
⋃
g

h2 ∪ h3) .

It should be clear that such expressions are not unique, since forming the con-

nected sum of M with

S3 = ∂(D2 ×D2) = S1 ×D2 ∪D2 × S1

increases the genus g by 1 without affecting the diffeomorphism type.
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The remainder of this section will only consider the algebraic properties of

formations. As before, let A be a ring with involution, and let ε = ±1.

Definition 12.1 An ε-quadratic formation over A (K,λ, µ;F,G) is a non-

singular ε-quadratic form (K,λ, µ) together with an ordered pair of lagrangians

F ,G. 2

Strictly speaking, Definition 12.1 defines a “nonsingular formation”. In the

general theory a formation (K,λ, µ;F,G) is a nonsingular form (K,λ, µ) together

with a lagrangian F and a sublagrangian G, with F , G and K f.g. projective. For

basic odd-dimensional surgery obstruction theory only nonsingular formations

with F , G and K f.g. free need be considered. Also, A can be assumed to be such

that the rank of f.g. free A-modules is well-defined (e.g. A = Z[π]), with Ak iso-

morphic to A` if and only if k = `. This hypothesis ensures that for every forma-

tion (K,λ, µ;F,G) over A there exists an automorphism α : (K,λ, µ)→ (K,λ, µ)

such that α(F ) = G (Proposition 12.3 below). In the original work of Wall [92,

Chapter 6] the odd-dimensional surgery obstruction was defined in terms of such

automorphisms. Novikov [64] proposed the use of pairs of lagrangians instead,

and the expression of odd-dimensional surgery obstructions in terms of forma-

tions was worked out in Ranicki [68].

Definition 12.2 An isomorphism of ε-quadratic formations over A

f : (K,λ, µ;F,G)→ (K ′, λ′, µ′;F ′, G′)

is an isomorphism of forms f : (K,λ, µ)→ (K ′, λ′, µ′) such that

f(F ) = F ′ , f(G) = G′ . 2

Proposition 12.3 (i) Every ε-quadratic formation (K,λ, µ;F,G) is isomorphic

to one of the type (Hε(F );F,G).

(ii) Every ε-quadratic formation (K,λ, µ;F,G) is isomorphic to one of the type

(Hε(F );F, α(F )) for some automorphism α : Hε(F )→ Hε(F ).

Proof (i) By Theorem 11.51 the inclusion of the lagrangian F → K extends

to an isomorphism of ε-quadratic forms

f : Hε(F )→ (K,λ, µ) ,

defining an isomorphism of ε-quadratic formations

f : (Hε(F );F, f−1(G))→ (K,λ, µ;F,G) .

(ii) As in (i) extend the inclusions of the lagrangians F → K, G → K to

isomorphisms of forms
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f : Hε(F )→ (K,λ, µ) , g : Hε(G)→ (K,λ, µ) .

Then

rankA(F ) = rankA(K)/2 = rankA(G) ,

so that F is isomorphic to G. Choosing an A-module isomorphism β : F → G

there is defined an automorphism of Hε(F )

α : Hε(F )

(
β 0

0 β∗−1

)
// Hε(G)

g // (K,λ, µ)
f−1

// Hε(F )

such that there is defined an isomorphism of formations

f : (Hε(F );F, α(F )) // (K,λ, µ;F,G) .

2

In Section 12.2 there is associated to an n-connected (2n + 1)-dimensional

degree 1 normal map (f, b) : M2n+1 → X a ‘stable isomorphism’ class of kernel

(−1)n-quadratic formations (K,λ, µ;F,G) over Z[π1(X)] such that

Kn(M) = K/(F +G) , Kn+1(M) = F ∩G .

Stable isomorphism is defined as follows :

Definition 12.4 (i) An ε-quadratic formation T = (K,λ, µ;F,G) is trivial if

it is isomorphic to (Hε(F );F, F ∗).
(ii) A stable isomorphism of ε-quadratic formations

[f ] : (K,λ, µ;F,G)→ (K ′, λ′, µ′;F ′, G′)

is an isomorphism of ε-quadratic formations of the type

f : (K,λ, µ;F,G)⊕ T → (K ′, λ′, µ′;F ′, G′)⊕ T ′

with T , T ′ trivial. 2

Proposition 12.5 (i) An ε-quadratic formation (K,λ, µ;F,G) is trivial if and

only if the lagrangians F and G are direct complements in K

F ∩G = {0} , F +G = K .

(ii) A stable isomorphism [f ] : (K,λ, µ;F,G)→ (K ′, λ′, µ′;F ′, G′) of ε-quadratic

formations over A induces A-module isomorphisms

F ∩G→ F ′ ∩G′ , K/(F +G)→ K ′/(F ′ +G′) .

(iii) For any ε-quadratic formation (K,λ, µ;F,G) there is defined a stable iso-

morphism

[f ] : (K,−λ,−µ;G,F )→ (K,λ, µ;F,G) .
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Proof (i) If F and G are direct complements in K represent (λ, µ) by a split

ε-quadratic form (K,ψ ∈ S(K)) with

ψ =

(
α− εα∗ γ

δ β − εβ∗
)

: K = F ⊕G→ K∗ = F ∗ ⊕G∗ .

Then γ + εδ∗ ∈ HomA(G,F ∗) is an A-module isomorphism, and there is defined

an isomorphism of formations(
1 0

0 (γ + εδ∗)−1

)
: (Hε(F );F, F ∗)→ (K,λ, µ;F,G) .

(ii) By (i) an ε-quadratic formation (K,λ, µ;F,G) is trivial if and only if

F ∩G = 0 , K/(F +G) = 0

(iii) By Proposition 12.3 we can take

(K,λ, µ;F,G) = (Hε(F );F, α(G))

with

α =

(
γ δ̃

δ γ̃

)
: Hε(G)→ Hε(F )

an isomorphism of hyperbolic ε-quadratic forms, which defines an isomorphism

of ε-quadratic formations

α : (Hε(G);G,α−1(F ))→ (K,λ, µ;G,F ) .

The A-module isomorphism

f =


γ δ̃ 0 γ

δ γ̃ −εγ̃ 0

0 0 −γ̃ −εδ
0 0 δ̃ γ

 : G⊕G∗ ⊕G∗ ⊕G→ F ⊕ F ∗ ⊕ F ∗ ⊕ F

defines an isomorphism of ε-quadratic formations

f : (Hε(G);G,α−1(F ))⊕(Hε(G
∗);G∗, G)→ (−Hε(F );F, α(G))⊕(Hε(F

∗);F ∗, F )

giving a stable isomorphism

[f ] : (K,λ, µ;G,F )→ (K,−λ,−µ;F,G) .

2

12.2 The kernel formation

An n-connected (2n+ 1)-dimensional degree 1 normal map (f, b) : M2n+1 → X

is such that Ki(M) = 0 for i 6= n, n+ 1. We shall now construct a stable isomor-

phism class of kernel (−1)n-quadratic formations (K,λ, µ;F,G) over Z[π1(X)]

such that

Kn(M) = K/(F +G) , Kn+1(M) = F ∩G ,

using the following generalisation of the Heegaard splitting of a 3-dimensional

manifold as a union of solid tori.
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The kernel Z[π1(X)]-module Kn(M) is finitely generated, by Corollary 10.29.

Every finite set {x1, x2, . . . , xk} of generators is realized by disjoint n-surgeries

Sn ×Dn+1
gi //

��

M2n+1

f

��
Dn+1 ×Dn+1 hi // X

for i = 1, 2, . . . , k.

By the Poincaré Disc Theorem (9.14) it may be assumed that the target

(2n+ 1)-dimensional geometric Poincaré complex X is obtained from a (2n+ 1)-

dimensional geometric Poincaré pair (X0, S
2n) by attaching a (2n+ 1)-cell

X = X0 ∪D2n+1 .

Any choice of generators x1, x2, . . . , xk ∈ Kn(M) is realized by framed embed-

dings gi : Sn × Dn+1 ⊂ M2n+1 together with null-homotopies hi : fgi ' {∗} :

Sn → X.

Definition 12.6 A Heegaard splitting of an n-connected (2n+1)-dimensional

degree 1 normal map (f, b) : M2n+1 → X is an expression as a union

(f, b) = (f0, b0) ∪ (e, a) : M2n+1 = M0 ∪ U → X = X0 ∪D2n+1

with

U2n+1 = #k
i=1 gi(S

n ×Dn+1) ⊂M2n+1 , M0 = cl.(M\U) ,

M0 ∩ U = ∂M0 = ∂U = #k
i=1 gi(S

n × Sn)

associated to a set of framed n-embeddings

gi : Sn ×Dn+1 ↪→M (1 6 i 6 k)

with null-homotopies in X representing a set {x1, x2, . . . , xk} ⊂ Kn(M) of

Z[π1(X)]-module generators. 2

...........................................................................................................................................................................................................................................................................................................................





...........................................................................................................................................................................................................................................M (f; b)

// XUM0 D2n+1X0
Every finite set of generators of Kn(M) is realized by a Heegaard splitting.
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Definition 12.7 The kernel formation of an n-connected (2n+1)-dimensional

degree 1 normal map (f, b) : M2n+1 → X with respect to a Heegaard splitting

is the (−1)n-quadratic formation over Z[π1(X)]

(K,λ, µ;F,G) = (Kn(∂U), λ, µ;Kn+1(U, ∂U),Kn+1(M0, ∂U))

with (Kn(∂U), λ, µ) = H(−1)n(Kn+1(U, ∂U)) the hyperbolic (−1)n-quadratic

kernel form over Z[π1(X)] of the n-connected 2n-dimensional degree 1 nor-

mal map ∂U → S2n. The lagrangians F,G are determined by the n-connected

(2n+ 1)-dimensional degree 1 normal maps of pairs

(e, a) : (U, ∂U)→ (D2n+1, S2n) , (f0, b0) : (M0, ∂U)→ (X0, S
2n) ,

with
F = im(∂ : Kn+1(U, ∂U)→ Kn(∂U)) ∼= Z[π1(X)]k ,

G = im(∂ : Kn+1(M0, ∂U)→ Kn(∂U)) ∼= Z[π1(X)]k . 2

The Heegaard splittings and kernel formations of an n-connected (2n + 1)-

dimensional degree 1 normal map (f, b) : M2n+1 → X are highly non-unique.

Proposition 12.8 For any kernel formation (K,λ, µ;F,G) of an n-connected

(2n+ 1)-dimensional degree 1 normal map (f, b) : M2n+1 → X there are natural

identifications of Z[π1(X)]-modules

Kn(M) = K/(F +G) , Kn+1(M) = F ∩G .

Proof Immediate from the exact sequence

0→ Kn+1(M)→ Kn+1(M,U)→ Kn(U)→ Kn(M)→ 0

and the identification of the map in the middle with the natural Z[π1(X)]-module

morphism

Kn+1(M,U) = Kn+1(M0, ∂U) = G→ Kn(U) = K/F .

2

The kernel formations will be used in Section 12.4 below to represent the

surgery obstruction σ∗(f, b) = (K,λ, µ;F,G) ∈ L2n+1(Z[π1(X)]).

Example 12.9 The kernel formation of the 1-connected degree 1 normal map

on the 3-dimensional lens space (8.39)

(f, b) : L(m,n)3 → S3

is the (−1)-quadratic formation over Z given by
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(H−(Z);Z, im(

(
n

m

)
: Z→ Z⊕ Z∗)) .

In particular,

(i) L(1, 0) = S3 with trivial formation (H−(Z);Z,
(

0

1

)
Z) ,

(ii) L(0, 1) = S1 × S2 with boundary formation (H−(Z);Z,
(

1

0

)
Z) ,

(iii) L(1, 2) = S3 with trivial formation (H−(Z);Z,
(

2

1

)
Z) ,

(iv) L(2, 1) = RP3 with boundary formation (H−(Z);Z,
(

1

2

)
Z) .

2

Proposition 12.10 Let (f, b) : M2n+1 → X be an n-connected (2n+ 1)-dimen-

sional normal map.

(i) The kernel formations associated to all the Heegaard splittings of (f, b) are

stably isomorphic.

(ii) For n > 2 every formation in the stable isomorphism class is realized by a

Heegaard splitting of (f, b).

(iii) A kernel formation of (f, b) is trivial if (and for n > 2 only if ) (f, b) is a

homotopy equivalence.

Proof (i) Consider first the effect on the kernel formation of changing the

framed n-embeddings gi : Sn×Dn+1 ↪→M2n+1 representing a set {x1, x2, . . . , xk}
of Z[π1(X)]-module generators for Kn(M). Proposition 10.13 gives

Kn(M) = πn+1(f) = In+1(f) ,

so that the framed n-embeddings gi are unique up to regular homotopy. Any two

sets of framed n-embeddings representing xi

gi , g
′
i : Sn ×Dn+1 ↪→M2n+1 (1 6 i 6 k)

are thus related by regular homotopies

di : gi ' g′i : Sn ×Dn+1 →M2n+1

with null-homotopies in X. Write the inclusions of the lagrangians associated to

the two Heegaard splittings

(f, b) = (f0, b0) ∪ (e, a) : M2n+1 = M0 ∪ U → X ,

(f, b) = (f ′0, b
′
0) ∪ (e′, a′) : M2n+1 = M ′0 ∪ U ′ → X

as
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γ

δ

)
: G = Kn+1(M0, ∂U)

→ Kn(∂U) = Kn+1(U, ∂U)⊕Kn(U) = F ⊕ F ∗ ,(
γ′

δ′

)
: G′ = Kn+1(M ′0, ∂U

′)

→ Kn(∂U ′) = Kn+1(U ′, ∂U ′)⊕Kn(U ′) = F ′ ⊕ F ′∗ .
Let

α : F → F ′ , β : G→ G′

be the Z[π1(X)]-module isomorphisms determined by the given basis elements,

and let (F ∗, ψ) be a kernel split (−)n+1-quadratic form for the immersion⋃
k

Sn ×Dn+1 × I #M × I ; (yi, zi, t) 7→ (di(yi, zi, t), t)

(defined as in the proof of Proposition 11.42). The commutative diagram

G
β
∼=

//

(
γ

δ

)

��

G′

(
γ′

δ′

)

��
F ⊕ F ∗

(
α α(ψ + (−1)n+1ψ∗)
0 (α∗)−1

)
∼=

// F ′ ⊕ F ′∗

defines an isomorphism of the kernel (−1)n-quadratic formations

(Kn(∂U), λ, µ;Kn+1(U, ∂U),Kn+1(M0, U))

= (H(−1)n(F );F, im(

(
γ

δ

)
: G→ F ⊕ F ∗))

→ (Kn(∂U ′), λ′, µ′;Kn+1(U ′, ∂U ′),Kn+1(M ′0, U
′))

= (H(−1)n(F ′);F ′, im(

(
γ′

δ′

)
: G′ → F ′ ⊕ F ′∗)) .

Next, consider the relationship between the kernel formations associated to

two different sets of generators of Kn(M). Proceed as in Wall [92, Chapter 6].

Any two sets {x1, x2, . . . , xk}, {y1, y2, . . . , y`} of Z[π1(X)]-module generators for

Kn(M) are related by a sequence of elementary operations

{x1, x2, . . . , xk} → {x1, x2, . . . , xk, 0} → {x1, x2, . . . , xk, y1}
→ {x1, x2, . . . , xk, y1, 0} → {x1, x2, . . . , xk, y1, y2}
→ . . .→ {x1, x2, . . . , xk, y1, y2, . . . , y`}
→ {y1, y2, . . . , y`, x1, x2, . . . , xk}
→ . . .→ {y1, y2, . . . , y`}

with yi =
∑
j

aijxj for some aij ∈ Z[π1(X)]. Each of these operations has one of

the following types :
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(1) adjoin (or delete) a zero,

(2) permute the elements,

(3) add to the last element a Z[π1(X)]-linear combination of the others.

The effect of (1) on the kernel formation of (f, b) is to add (or delete) a trivial

formation

(H(−1)n(Z[π1(X)]);Z[π1(X)],Z[π1(X)]∗) ,

while (2) and (3) do not change it.

(ii) For n > 2 it is possible to realize every elementary operation geometrically.

(iii) A kernel formation for (f, b) is trivial if and only if K∗(M) = 0. Now

K∗(M) = 0 if (and for n > 2 only if) (f, b) is a homotopy equivalence. 2

The kernel formations of (f, b) : M2n+1 → X were obtained in 12.7 by

working inside M , using Heegaard splittings. However, as described in Example

6.3 of Ranicki [75] (and pp. 71–72 of the second edition of Wall [92]) there is an

alternative construction, working outside of M as follows.

Definition 12.11 A presentation of an n-connected (2n+ 1)-dimensional de-

gree 1 normal map (f, b) : M2n+1 → X is a degree 1 normal bordism

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

such that f ′ : M ′ → X ′ = X × {1} is n-connected and e : W → X × I is

(n+ 1)-connected.

2

The (2n + 2)-dimensional manifold with boundary W in a presentation has

a handle decomposition on M of the type

W = M × I ∪
⋃
k

(n+ 1)-handles Dn+1 ×Dn+1 .

The kernelsKn+1(W ),Kn+1(W,M),Kn+1(W,M ′) are f.g. free Z[π1(X)]-modules

of rank k. The cobordism (W ;M,M ′) is the trace of n-surgeries

gi : Sn ×Dn+1 ↪→M (1 6 i 6 k)

with null-homotopies in X representing a set {x1, x2, . . . , xk} of Z[π1(X)]-module

generators of Kn(M). The kernel modules K∗(M), K∗(M ′) fit into exact se-

quences

0→ Kn+1(M)→ Kn+1(W )→ Kn+1(W,M)→ Kn(M)→ 0 ,

0→ Kn+1(M ′)→ Kn+1(W )→ Kn+1(W,M ′)→ Kn(M ′)→ 0 .
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Proposition 12.12 Let (f, b) : M2n+1 → X be an n-connected (2n+1)-dimensional

normal map.

(i) There exist presentations (e, a) : (W ;M,M ′)→ X × (I; {0}, {1}).

(ii) A presentation (e, a) determines a kernel (−1)n-quadratic formation for (f, b)

(H(−1)n(F );F,G) = (H(−1)n(Kn+1(W,M ′));Kn+1(W,M ′),Kn+1(W )) .

The inclusion of the lagrangian(
γ

δ

)
: G = Kn+1(W )→ F ⊕ F ∗ = Kn+1(W,M ′)⊕Kn+1(W,M ′)∗

has components

γ : G = Kn+1(W )
inclusion∗−−−−−−−→ Kn+1(W,M ′) = F ,

δ : G = Kn+1(W )
inclusion∗−−−−−−−→

Kn+1(W,M) ∼= Kn+1(W,M ′) ∼= Kn+1(W,M ′)∗ = F ∗ .

(iii) For n > 2 every formation in the stable isomorphism class is realized by a

presentation of (f, b).

Proof (i) A Heegaard splitting

(f, b) = (f0, b0) ∪ (e, a) : M2n+1 = M0 ∪ U → X = X0 ∪D2n+1

determines k n-surgeries U = #
k
Sn ×Dn+1 ↪→M on (f, b).

kDn+1 �Dn+1U = #kSn �Dn+1 U 0 = #kDn+1 � Sn
M2n+1 W 2n+2 M 02n+1

M0 � IM0 � f0g M0 � f1g
The trace of the surgeries is a presentation

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1}) .

The kernel formation of (f, b) given by 12.7 is

(H(−1)n(Kn+1(U, ∂U));Kn+1(U, ∂U),Kn+1(M0, ∂U)) = (H(−1)n(F );F,G) .

(ii) Any presentation arises from a Heegaard splitting as in (i).

(iii) Combine (i), (ii) and 12.10. 2
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Note that turning a presentation of (f, b) around, and viewing it as a presen-

tation of (f ′, b′) gives the kernel formation (H(−1)n(F );F ∗, G) for (f ′, b′), with

γ′ = (−1)n+1δ : G′ = G→ F ′ = F ∗ ,

δ′ = γ : G′ = G→ F ′∗ = F .

Proposition 12.13 A kernel (−1)n-quadratic formation of an n-connected (2n+

1)-dimensional degree 1 normal map (f, b) : M2n+1 → X is stably isomorphic

to the boundary of a (−1)n+1-quadratic form if (and for n > 2 only if ) (f, b) is

bordant to a homotopy equivalence.

Proof Given a normal bordism

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

with (f ′, b′) : M ′ → X a homotopy equivalence make (e, a) (n + 1)-connected

by surgery below the middle dimension, with kernel (−1)n+1-quadratic form

(Kn+1(W ), λW , µW ). This defines a presentation of (f, b) with

γ : Kn+1(W )→ Kn+1(W,M ′)

an isomorphism which is used to identify

Kn+1(W ) = Kn+1(W,M ′) = Kn+1(W,M) = Kn+1(W,M)∗ ,

and

δ = λW : Kn+1(W )→ Kn+1(W,M) = Kn+1(W )∗ ,

so that the kernel formation of (f, b) is the boundary

(H(−1)n(F );F,G) = ∂(Kn+1(W ), λW , µW ) .

Conversely, suppose that n > 2 and that (f, b) : M2n+1 → X has a kernel

formation which is stably isomorphic to the boundary of a (−1)n+1-quadratic

form. By 12.12 it is possible to realize this boundary by a presentation

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

with (f ′, b′) : M ′ → X a homotopy equivalence. 2

Example 12.14 An element

(δω, ω) ∈ πn+1(SO, SO(n+ 1)) = πn+2(BSO,BSO(n+ 1)) = Q(−1)n+1(Z)

classifies an oriented (n+ 1)-plane bundle ω : Sn+1 → BSO(n+ 1) with a stable

trivialisation δω : ω ' {∗} : Sn+1 → BSO. As in 5.68 use (δω, ω) to define an
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n-surgery (gδω, gω) on the identity degree 1 normal map 1 : S2n+1 → S2n+1,

with trace

((e, a); 1, (f, b)) : (W 2n+2;S2n+1, S(ω)2n+1)→ S2n+1 × (I; {0}, {1}) .
The n-connected (2n + 1)-dimensional degree 1 normal map (f, b) : S(ω) →
S2n+1 has kernel (−1)n-quadratic formation over Z

(H(−1)n(Z);Z, im(

(
1

χ(ω)

)
: Z→ Z⊕ Z∗)) = ∂(Z, (δω, ω)) ,

with χ(ω) = (1 + (−1)n+1)χ(δω). 2

Proposition 12.15 Let

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})
be an (n+1)-connected (2n+2)-dimensional normal bordism between n-connected

(2n+1)-dimensional degree 1 normal maps (f, b), (f ′, b′). The kernel formations

(K,λ, µ;F,G), (K ′, λ′, µ′;F ′, G′) of (f, b), (f ′, b′) are related by a stable isomor-

phism

(K,λ, µ;F,G)⊕ (K ′,−λ′,−µ′;F ′, G′)→ ∂(Kn+1(W ), λW , µW ) .

Proof The disjoint union

(f, b) ∪ (f ′,−b′) : M ∪ −M ′ → X ∪ −X
is a degree 1 normal map, where − reverses orientations. The stable isomorphism

of formations is determined by the degree 1 normal map of pairs

((e, a), (f, b) ∪ (f ′,−b′)) : (W 2n+2,M ∪ −M ′)→ X × (I, {0, 1}) ,
working as in the proof of 12.13. 2

The kernel formation is also defined for an n-connected (2n+ 1)-dimensional

degree 1 normal map

(f, b) : (M,∂M)→ (X, ∂X)

which is a homotopy equivalence on the boundary, realizing a set {x1, x2, . . . , xk}
of Z[π1(X)]-module generators of Kn(M) as in 12.6 by a decomposition

(f, b) = (f0, b0) ∪ (e, a) :

(M,∂M) = (M0; ∂M, ∂U) ∪ (U, ∂U)

→ (X, ∂X) = (X0; ∂X, S2n) ∪ (D2n+1, S2n)

with

U2n+1 = #k
i=1 gi(S

n ×Dn+1) ⊂M\∂M , M0 = cl.(M\U) ,

M0 ∩ U = ∂U = #k
i=1 gi(S

n × Sn) .

There is also a version for normal bordisms, as follows.
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Definition 12.16 Suppose given an n-connected (2n+ 1)-dimensional degree 1

normal bordism

(f, b) : (M2n+1;N,N ′)→ N × (I; {0}, {1})

such that f | = 1 : N → N and f | : N ′ → N is a homotopy equivalence. The

Umkehr maps in this case are just

f ! = inclusion∗ : H∗(Ñ)→ H∗(M̃) ,

the kernel Z[π1(N)]-modules are such that

Ki(M) = Hi(M̃, Ñ) = 0 for i 6= n, n+ 1 ,

and the cobordism (M ;N,N ′) has an (n, n + 1)-index handle decomposition

(8.23)

M = N × I ∪
⋃
k

Dn ×Dn+1 ∪
⋃
k

Dn+1 ×Dn .

(i) A Heegaard splitting for (f, b) is an expression as a union

(f, b) = (e, a) ∪ (f0, b0) :

(M ;N,N ′) = (U ;N, ∂+U) ∪ (M0; ∂+U,N
′)

→ (N × [0, 1/2]; {0}, {1/2}) ∪ (N × [1/2, 1]; {1/2}, {1})

determined by a choice of handle decomposition as above, with

U2n+1 = N × I ∪⋃
k

Dn ×Dn+1 ,

M0 ∩ U = ∂+U = N# #
k

(Sn × Sn) ,

M0 = ∂+U × I ∪
⋃
k

Dn+1 ×Dn .

The ith handle represents xi ∈ Kn(M) = Hn(M̃, Ñ), with {x1, x2, . . . , xk} ⊂
Kn(M) a set of Z[π1(N)]-module generators
(ii) The kernel formation associated to a Heegaard splitting as in (i) is

(K,λ, µ;F,G) = (Kn(∂U), λ, µ;Kn+1(U, ∂U),Kn+1(M0, ∂U))

with (Kn(∂U), λ, µ) = H(−1)n(Kn+1(U, ∂U)).

2
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As in the closed case (12.6) every finite set of generators of Kn(M) is re-

alized by a Heegaard splitting of (f, b), and so determines a kernel formation

(K,λ, µ;F,G).

Proposition 12.17 (Realization of formations)

Let N2n be a 2n-dimensional manifold with fundamental group π1(N) = π, with

n > 2. Every (−1)n-quadratic formation (K,λ, µ;F,G) over Z[π] is realized as a

kernel formation (12.16) of an n-connected (2n+1)-dimensional degree 1 normal

bordism

(f, b) : (M2n+1;N2n, N ′2n)→ N × (I; {0}, {1})
with (f, b)| = 1 : N → N and (f, b)| : N ′ → N a homotopy equivalence.

Proof By 11.51 the form (K,λ, µ) is isomorphic to the hyperbolic formH(−1)n(F ),

so there is no loss of generality in taking (K,λ, µ) = H(−1)n(F ). Let k > 0 be

the rank of the f.g. free Z[π]-modules F , G, so that

F ∼= G ∼= Z[π]k .

Let

(f ′, b′) : (U2n+1;N, ∂+U)→ N × ([0, 1/2]; {0}, {1/2})
be the (2n + 1)-dimensional normal bordism defined by the trace of k trivial

(n− 1)-surgeries on (f, b), with

U = N × I ∪⋃
k

n-handles Dn ×Dn+1 ,

(f ′, b′)| = 1 # std. : ∂+U = N # #
k
Sn × Sn → N .

Realize the lagrangian of the kernel form

G ⊂ (Kn(∂+U), λ, µ) = H(−1)n(F )

by a (2n+ 1)-dimensional normal bordism

(f ′′, b′′) : (M2n+1
0 ; ∂+U,N

′)→ N × ([1/2, 1]; {1/2}, {1})
defined by the trace of k n-surgeries on (f ′, b′)|, with

M0 = ∂+U × I ∪
⋃
k

(n+ 1)-handles Dn+1 ×Dn ,

G = im(Kn+1(M0, ∂+U)→ Kn(∂+U)) ⊂ Kn(∂+U) .

The effect is a homotopy equivalence (f ′, b′)| : N ′ → N , since the kernel form is

(Kn(N ′), λ′, µ′) = (G⊥/G, [λ], [µ]) = 0 .

The n-connected (2n+ 1)-dimensional degree 1 normal map of pairs

(f, b) = (f ′, b′) ∪ (f ′′, b′′) :

(M2n+1;N,N ′) = (U ;N, ∂+U) ∪ (M0; ∂+U,N
′)→ N × (I; {0}, {1})

realizes the formation (K,λ, µ;F,G). 2
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12.3 The odd-dimensional L-groups

The odd-dimensional surgery obstruction groups L2∗+1(A) are now defined using

formations. The surgery obstruction of an odd-dimensional normal map will be

defined in Section 12.4 using the kernel formation of Section 12.2, and it will be

proved that for n > 2 an n-connected (2n+ 1)-dimensional degree 1 normal map

(f, b) : M2n+1 → X is bordant to a homotopy equivalence if and only if the stable

isomorphism class of kernel (−1)n-quadratic formations contains the ‘boundary’

of a (−1)n+1-quadratic form (= the kernel form of the (2n+2)-dimensional trace),

in the following sense :

Definition 12.18 Let (K,λ, µ) be a (−ε)-quadratic form.

(i) The graph lagrangian of (K,λ, µ) is the lagrangian

Γ(K,λ) = { (x, λ(x)) ∈ K ⊕K∗ |x ∈ K }

in the hyperbolic ε-quadratic form Hε(K)

(ii) The boundary of (K,λ, µ) is the graph ε-quadratic formation

∂(K,λ, µ) = (Hε(K);K,Γ(K,λ)) . 2

The graph lagrangian Γ(K,λ) and formation ∂(K,λ, µ) depend only on the

even ε-symmetric form (K,λ), and not on the ε-quadratic function µ. Note that

the form (K,λ, µ) may be singular, that is the A-module morphism λ : K → K∗

need not be an isomorphism.

Proposition 12.19 (i) The graphs Γ(K,λ) of (−ε)-quadratic forms (K,λ, µ) are

precisely the lagrangians of Hε(K) which are the direct complements of K∗.
(ii) An ε-quadratic formation (K,λ, µ;F,G) is isomorphic to a boundary if and

only if (K,λ, µ) has a lagrangian H which is a direct complement of both the

lagrangians F , G.

Proof (i) The direct complements of K∗ in K ⊕K∗ are the graphs

L = {(x, λ(x)) ∈ K ⊕K∗ |x ∈ K}

of A-module morphisms λ : K → K∗, with

L⊥ = {(y,−ελ∗(y)) ∈ K ⊕K∗ | y ∈ K} .

Thus L = L⊥ if and only if λ = −ελ∗, with µHε(K)(L) = 0 if and only if λ admits

a (−ε)-quadratic refinement µ.

(ii) For the boundary ∂(F, φ, θ) of a (−ε)-quadratic form (F, φ, θ) the lagrangian

F ∗ of Hε(F ) is a direct complement of both the lagrangians F , Γ(F,φ). Conversely,
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suppose that (K,λ, µ;F,G) is such that there exists a lagrangian H in (K,λ, µ)

which is a direct complement to both F and G. By the proof of Proposition 12.5

(i) there exists an isomorphism of formations

f : (Hε(F );F, F ∗)→ (K,λ, µ;F,H)

which is the identity on F . Now f−1(G) is a lagrangian of Hε(F ) which is a

direct complement of F ∗, so that it is the graph Γ(F,φ) of a (−ε)-quadratic form

(F, φ, θ), and f defines an isomorphism of ε-quadratic formations

f : ∂(F, φ, θ) = (Hε(F );F,Γ(F,φ))→ (K,λ, µ;F,G) .

2

Definition 12.20 The ε-quadratic formations (K,λ, µ;F,G), (K ′, λ′, µ′;F ′, G′)
over A are cobordant

(K,λ, µ;F,G) ∼ (K ′, λ′, µ′;F ′, G′)

if there exists a stable isomorphism

[f ] : (K,λ, µ;F,G)⊕B → (K ′, λ′, µ′;F ′, G′)⊕B′

with B, B′ boundaries. 2

Proposition 12.21 (i) Cobordism is an equivalence relation on ε-quadratic for-

mations over A.

(ii) For any lagrangians F,G,H in a nonsingular ε-quadratic form (K,λ, µ)

(K,λ, µ;F,G)⊕ (K,λ, µ;G,H) ∼ (K,λ, µ;F,H) .

(iii) For any ε-quadratic formation (K,λ, µ;F,G)

(K,λ, µ;F,G)⊕ (K,λ, µ;G,F ) ∼ 0 ,

(K,λ, µ;F,G)⊕ (K,−λ,−µ;F,G) ∼ 0 .

Proof (i) Clear.

(ii) (Taken from Proposition 9.14 of [69]). Choose lagrangians F ∗, G∗, H∗ in

(K,λ, µ) complementary to F,G,H respectively. The ε-quadratic formations

(Ki, λi, µi;Fi, Gi) (1 6 i 6 4) defined by

(K1, λ1, µ1;F1, G1) = (K,−λ,−µ;G∗, G∗) ,

(K2, λ2, µ2;F2, G2) = (K ⊕K,λ⊕−λ, µ⊕−µ;F ⊕ F ∗, H ⊕G∗)
⊕(K ⊕K,−λ⊕ λ,−µ⊕ µ; ∆K , H

∗ ⊕G) ,

(K3, λ3, µ3;F3, G3) = (K ⊕K,λ⊕−λ, µ⊕−µ;F ⊕ F ∗, G⊕G∗) ,
(K4, λ4, µ4;F4, G4) = (K ⊕K,λ⊕−λ, µ⊕−µ;G⊕G∗, H ⊕G∗)

⊕(K ⊕K,−λ⊕ λ,−µ⊕ µ; ∆K , H
∗ ⊕G)
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are such that

(K,λ, µ;F,G) ⊕ (K,λ, µ;G,H)⊕ (K1, λ1, µ1;F1, G1)⊕ (K2, λ2, µ2;F2, G2)

= (K,λ, µ;F,H)⊕ (K3, λ3, µ3;F3, G3)⊕ (K4, λ4, µ4;F4, G4) .

Each of (Ki, λi, µi;Fi, Gi) (1 6 i 6 4) is isomorphic to a boundary, since there

exists a lagrangian Hi in (Ki, λi, µi) complementary to both Fi and Gi, so that

12.19 (ii) applies and (Ki, λi, µi;Fi, Gi) ∼ 0. Explicitly, take

H1 = G ⊂ K1 = K ,

H2 = ∆K⊕K ⊂ K2 = (K ⊕K)⊕ (K ⊕K) ,

H3 = ∆K ⊂ K3 = K ⊕K ,

H4 = ∆K⊕K ⊂ K4 = (K ⊕K)⊕ (K ⊕K) .

(iii) By (ii)

(K,λ, µ;F,G)⊕ (K,λ, µ;G,F ) ∼ (K,λ, µ;F, F ) = ∂(F, 0, 0) ∼ 0 ,

and by Proposition 12.5 (iii)

(K,λ, µ;G,F ) ∼ (K,−λ,−µ;F,G) .

2

Remark 12.22 The identity of 12.21 (ii)

(K,λ, µ;F,G)⊕ (K,λ, µ;G,H) ∼ (K,λ, µ;F,H)

is the L-theoretic analogue of the Whitehead Lemma 8.2. See Lemma 6.2 of Wall

[92] and the commentary on pp. 72-73 of [92] for the geometric motivation. 2

Definition 12.23 The (2n+1)-dimensional L-group L2n+1(A) of a ring with

involution A is the group of cobordism classes of (−1)n-quadratic formations

(K,λ, µ;F,G) over A, with addition and inverses given by

(K1, λ1, µ1;F1, G1) + (K2, λ2, µ2;F2, G2)

= (K1 ⊕K2, λ1 ⊕ λ2, µ1 ⊕ µ2;F1 ⊕ F2, G1 ⊕G2) ,

−(K,λ, µ;F,G) = (K,−λ,−µ;F,G) ∈ L2n+1(A) .

2

Since L2n+1(A) depends on the residue n(mod 2), only two L-groups have

actually been defined, L1(A) and L3(A).
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Example 12.24 Kervaire and Milnor [38] proved that the odd-dimensional L-

groups of Z are trivial

L2n+1(Z) = 0 .

See Example 12.44 below for an outline of the computation. 2

Remark 12.25 Chapter 22 of Ranicki [71] is an introduction to the computa-

tion of the odd-dimensional surgery obstruction groups of finite groups π, with

L2n+1(Z[π]) = (2-primary torsion) .

See Hambleton and Taylor [30] for a considerably more complete account. 2

Example 12.26 The odd-dimensional L-groups of Z[Z2] with the oriented in-

volution T = T are given by

L2n+1(Z[Z2]) =

{
0 if n ≡ 0(mod 2)

Z2 if n ≡ 1(mod 2) .

2

12.4 The odd-dimensional surgery obstruction

It was shown in Section 10.4 that every (2n+1)-dimensional degree 1 normal map

is bordant to an n-connected degree 1 normal map. As in the even-dimensional

case considered in Section 11.5 there is an obstruction to the existence of a

further bordism to an (n + 1)-connected degree 1 normal map (= homotopy

equivalence), which is defined as follows.

Definition 12.27 The surgery obstruction of an n-connected (2n+1)-dimen-

sional degree 1 normal map (f, b) : M2n+1 → X is the cobordism class of a kernel

(−1)n-quadratic formation over Z[π1(X)]

σ∗(f, b) = (K,λ, µ;F,G) ∈ L2n+1(Z[π1(X)]) . 2

The main result of this section is that σ∗(f, b) = 0 if (and for n > 2 only if)

(f, b) is bordant to a homotopy equivalence. It is clear that if (f, b) is a homotopy

equivalence then σ∗(f, b) = 0, for then (K,λ, µ;F,G) is a trivial formation.

Proposition 12.28 The surgery obstructions of bordant n-connected (2n + 1)-

dimensional degree 1 normal maps (f, b) : M2n+1 → X, (f ′, b′) : M ′2n+1 → X

are the same

σ∗(f, b) = σ∗(f
′, b′) ∈ L2n+1(Z[π1(X)]) .
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Proof By 12.15 the kernel formations (K,λ, µ;F,G), (K ′, λ′, µ′;F ′, G′) of (f, b),

(f ′, b′) are related by a stable isomorphism

(K,λ, µ;F,G)⊕ (K ′,−λ′,−µ′;F ′, G′)→ ∂(Kn+1(W ), λW , µW )

with (Kn+1(W ), λW , µW ) the kernel (−1)n+1-quadratic form of an (n + 1)-

connected normal bordism

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1}) .

By Proposition 12.21 (iii)

(K,λ, µ;F,G)⊕ (K,−λ,−µ;F,G) = 0 ∈ L2n+1(Z[π1(X)]) .

(This can also be proved geometrically, by considering the (n + 1)-connected

normal bordism (e, a) obtained from

(f, b)× 1 : M × (I; {0}, {1})→ X × (I; {0}, {1})

by n-surgeries on the interior killing Kn(M × I) = Kn(M), with a stable iso-

morphism

(K,λ, µ;F,G)⊕ (K,−λ,−µ;F,G)→ ∂(Kn+1(W ), λW , µW )

as above). The surgery obstructions are such that

σ∗(f, b) = (K,λ, µ;F,G) = − (K,−λ,−µ;F,G)

= (K ′, λ′, µ′;F ′, G′) = σ∗(f ′, b′) ∈ L2n+1(Z[π1(X)]) .

2

Theorem 12.29 A (2n+ 1)-dimensional degree 1 normal map of pairs

(f, b) : (M2n+1, ∂M)→ (X, ∂X)

with ∂f : ∂M → ∂X a homotopy equivalence has a rel ∂ surgery obstruction

σ∗(f, b) ∈ L2n+1(Z[π1(X)])

such that σ∗(f, b) = 0 if (and for n > 2 only if ) (f, b) is bordant rel ∂ to a

homotopy equivalence of pairs.

Proof The surgery obstruction of (f, b) is defined by

σ∗(f, b) = (K ′, λ′, µ′;F ′, G′) ∈ L2n+1(Z[π1(X)])

with (K ′, λ′, µ′;F ′, G′) a kernel (−1)n-quadratic formation for any n-connected

degree 1 normal map (f ′, b′) : (M ′, ∂M)→ (X, ∂X) bordant to (f, b) relative to

the boundary, with ∂f ′ = ∂f , exactly as in the closed case ∂M = ∂X = ∅ in
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12.27. The rel ∂ version of 12.28 shows that the surgery obstruction is a normal

bordism invariant, which is 0 for a homotopy equivalence. Conversely, assume

that n > 2 and σ∗(f, b) = 0 ∈ L2n+1(Z[π1(X)]), so that (f, b) has a kernel

(−1)n-quadratic formation (K,λ, µ;F,G) with a stable isomorphism

(K,λ, µ;F,G)⊕B → B′

for some boundary formations B = ∂(H,φ, θ), B′ = ∂(H ′, φ′, θ′), with H,H ′ f.g.

free Z[π1(X)]-modules of ranks k, k′ (say). As in the proof of Proposition 11.42

use the (−1)n+1-quadratic form (H,φ, θ) to perform k n-surgeries on (f, b) :

M → X killing 0 ∈ Kn(M), such that the trace

((e, a); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

is (n+ 1)-connected with kernel (−1)n+1-quadratic form

(Kn+1(W ), λW , µW ) = (H,φ, θ) .

The effect is an n-connected degree 1 normal map (f ′, b′) : M ′ → X with kernel

formation (K,λ, µ;F,G)⊕B stably isomorphic to the boundary B′. By Propo-

sition 12.13 Kn(M ′) can be killed by k′ n-surgeries on (f ′, b′), so that (f, b) is

bordant to a homotopy equivalence. 2

Corollary 12.30 Let π be a finitely presented group with an orientation char-

acter w : π → Z2, and let n > 2. Every element x ∈ L2n+1(Z[π]) is the rel ∂

surgery obstruction x = σ∗(f, b) of an n-connected (2n + 1)-dimensional degree

1 normal bordism (f, b) : M2n+1 → X with (π1(X), w(X)) = (π,w).

Proof By Proposition 11.75 there exists a closed 2n-dimensional manifold N

with (π1(N), w(N)) = (π,w). By Proposition 12.17 every (−1)n-quadratic for-

mation (K,λ, µ;F,G) representing x is realized as the kernel formation of an

n-connected (2n+ 1)-dimensional degree 1 normal bordism

(f, b) : (M2n+1;N2n, N ′2n)→ N × (I; {0}, {1})

with (f, b)| = 1 : N → N and (f, b)| : N ′ → N a homotopy equivalence. The rel

∂ surgery obstruction is

σ∗(f, b) = (K,λ, µ;F,G) = x ∈ L2n+1(Z[π]) .

2

Remark 12.31 An ε-quadratic formation over a ring with involution A is null-

cobordant if and only if it is stably isomorphic to the boundary of a (−ε)-
quadratic form (Corollary 9.12 of Ranicki [75]). A (−1)n-quadratic formation

(K,λ, µ;F,G) is thus such that
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(K,λ, µ;F,G) = 0 ∈ L2n+1(A)

if and only if (K,λ, µ;F,G) is stably isomorphic to the boundary ∂(H,φ, θ) of a

(−1)n+1-quadratic form (H,φ, θ). For a group ring A = Z[π] this can be proved

geometrically, using Theorem 12.29 and Corollary 12.30. 2

12.5 Surgery on formations

The odd-dimensional surgery obstruction theory developed in Section 12.4 is

somewhat indirect – it is hard to follow through the algebraic effect of geometric

surgeries. This will now be made easier, using algebraic surgery on formations.

If (f, b) : M → X, (f ′, b′) : M ′ → X are n-connected (2n+1)-dimensional de-

gree 1 normal maps such that (f ′, b′) is obtained from (f, b) by an n-surgery then

a kernel (−1)n-quadratic formation for (f ′, b′) can be obtained by an algebraic

surgery on a kernel (−1)n-quadratic formation for (f, b). The geometric surgeries

on (f, b) correspond to algebraic surgeries on a kernel formation, as in the even-

dimensional case considered in Section 11.3. However, odd-dimensional surgery

behaves somewhat differently from even-dimensional surgery. In both cases, the

aim of performing surgery is to make the kernel modules as small as possible.

Given an ε-quadratic form (K,λ, µ) over A it is possible to kill an element x ∈ K
if and only if µ(x) = 0, with unique effect : if x 6= 0 generates a direct summand

〈x〉 ⊂ K the effect of the surgery is a cobordant form (K ′, λ′, µ′) with

(K ′, λ′, µ′) = (〈x〉⊥/〈x〉, [λ], [µ]) ,

(K,λ, µ) ∼= (K ′, λ′, µ′)⊕Hε(A) ,

rankA(K ′) = rankA(K)− 2 < rankA(K) .

Given an ε-quadratic formation (K,λ, µ;F,G) it is possible to kill every element

in the kernel module x ∈ K/(F + G) by algebraic surgery, but there are many

choices in carrying out such a surgery, and the effect of any such surgery may

result in a formation (K ′, λ′, µ′;F ′, G′) with kernel module K ′/(F ′ +G′) bigger

than K/(F + G). In the context of geometric surgery consider the trace of k

n-surgeries on an n-connected (2n+ 1)-dimensional normal map (f, b) : M → X

killing x1, x2, . . . , xk ∈ Kn(M)

((F,B); (f, b), (f ′, b′)) : (W 2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

and let (K,λ, µ;F,G), (K ′, λ′, µ′;F ′, G′) be kernel (−1)n-quadratic formations

for (f, b), (f ′, b′). Proposition 10.25 (iii) gives a commutative braid of exact

sequences
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0

!!

��
Kn+1(M ′)

!!

x′ !

��
Z[π1(X)]k

!!

x

��
Kn(M)

!!

��
0

Kn(W )

==

!!

Kn+1(W )

==

!!

Kn+1(W )

==

!!

Kn(W )

==

!!
0

==

AA
Kn+1(M)

==

x!

AA
Z[π1(X)]k

==

x′
AA

Kn(M ′)

==

BB 0

and a set of Z[π1(X)]-module generators {x′1, x′2, . . . , x′k} ⊂ ker(Kn(M ′) →
Kn(W )) with

Kn+1(M) = F ∩G , Kn(M) = K/(F +G) ,

Kn+1(M ′) = F ′ ∩G′ , Kn(M ′) = K ′/(F ′ +G′) ,

Kn(W ) = Kn(M)/〈x1, x2, . . . , xk〉 = Kn(M ′)/〈x′1, x′2, . . . , x′k〉 .

The different effects of killing x1, x2, . . . , xk correspond to the different ways

of framing n-embeddings gi : Sn ↪→ M2n+1 representing xi, or equivalently to

the different extensions of gi to framed n-embeddings gi : Sn×Dn+1 ↪→M2n+1.

Every set of Z[π1(X)]-module generators {x1, x2, . . . , xk} ⊂ Kn(M) can be killed

by n-surgeries with (n+ 1)-connected trace (i.e. Kn(W ) = 0) but in general the

effect (f ′, b′) : M ′ → X will not be a homotopy equivalence, with Kn(M ′) 6= 0.

In order to keep track of algebraic surgeries on formations it is convenient to

work with the following refinement of the notion of a formation.

Definition 12.32 (i) A split ε-quadratic formation over A

(F,G) = (F, (

(
γ

δ

)
, θ)G)

is given by f.g. free A-modules F,G, morphisms γ : G → F , δ : G → F ∗ and a

(−ε)-quadratic form (G, θ) such that

(a) γ∗δ = θ − εθ∗ : G→ G∗,

(b) the sequence

0 // G

(
γ

δ

)
// F ⊕ F ∗

( δ∗ εγ∗ )
// G∗ // 0

is exact.
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Equivalently,

(

(
γ

δ

)
, θ) : (G, 0)→ Hε(F )

is a morphism of split ε-quadratic forms which is the inclusion of a lagrangian.

(ii) An isomorphism of split ε-quadratic formations over A

(α, β, χ) : (F,G)→ (F ′, G′)

is given by isomorphisms α : F → F ′, β : G → G′ and a (−ε)-quadratic form

(F ∗, χ) such that the diagram

G
β
∼=

//

(
γ

δ

)

��

G′

(
γ′

δ′

)

��
F ⊕ F ∗

(
α α(χ− εχ∗)
0 (α∗)−1

)
∼=

// F ′ ⊕ F ′∗

commutes. Thus

f =

(
α α(χ− εχ∗)
0 (α∗)−1

)
: Hε(F )→ Hε(F

′)

is an isomorphism of hyperbolic ε-quadratic forms with f(F ) = F ′, f(G) = G′.
(iii) A split ε-quadratic formation (F,G) is trivial if it is isomorphic to

(F, F ∗) = (F, (

(
0

1

)
, 0)F ∗) .

(iv) A stable isomorphism of split ε-quadratic formations over A

[α, β, χ] : (F,G)→ (F ′, G′)

is an isomorphism of the type

(α, β, χ) : (F,G)⊕ (H,H∗)→ (F ′, G′)⊕ (H ′, H ′∗)

with (H,H∗), (H ′, H ′∗) trivial split formations.

(v) The boundary of a split (−ε)-quadratic form (K,ψ) is the graph split

ε-quadratic formation

∂(K,ψ) = (K, (

(
1

ψ − εψ∗
)
, ψ)K) .

(vi) Split ε-quadratic formations (F,G), (F ′, G′) are cobordant if there exists

a stable isomorphism

[α, β, χ] : (F,G)⊕ ∂(K,ψ)→ (F ′, G′)⊕ ∂(K ′, ψ′)

for some split (−ε)-quadratic forms (K,ψ), (K ′, ψ′). 2
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Proposition 12.33 (i) A split ε-quadratic formation (F,G) is isomorphic to a

boundary if and only if there exists a split (−ε)-quadratic form (F ∗, χ) such that

γ + (χ− εχ∗)δ : G→ F is an isomorphism.

(ii) A split formation (F,G) is stably isomorphic to 0 if and only if δ : G→ F ∗

is an isomorphism.

(iii) Cobordism is an equivalence relation on split ε-quadratic formations over A.

(iv) The cobordism group of split (−1)n-quadratic formations over A is isomor-

phic to L2n+1(A).

(v) For any split (−1)n-quadratic formation (F,G) = (F, (

(
γ

δ

)
, θ)G) over A

−(F,G) = (F, (

(−γ
δ

)
,−θ)G) ,

(F,G) = (F ∗, (

(
δ

(−1)nγ

)
,−θ)G) ∈ L2n+1(A) .

Proof (i) If (α, β, χ) : (F,G)→ ∂(K,ψ) is an isomorphism of split formations

then

α−1β = γ + (χ− εχ∗)δ : G→ F

is an A-module isomorphism.

For the converse, consider first the special case when γ is an isomorphism.

There is defined an isomorphism of split formations

(γ, 1, χ) : ∂(G, θ)→ (F,G) .

More generally, if γ′ = γ+(χ−εχ∗)δ : G→ F is an isomorphism there is defined

an isomorphism of split formations

(1, 1, χ) : (F,G)→ (F ′, G′) = (F, (

(
γ′

δ

)
, θ + δ∗χδ)G)

and (F ′, G′) is isomorphic to a boundary by the special case.

(ii) If (α, β, χ) : (F,G)→ (K,K∗) is an isomorphism of split formations then

δ = α∗β : G→ F ∗

is an A-module isomorphism.

Conversely, if δ is an isomorphism there is defined an isomorphism of split

formations

(1, δ,−(δ∗)−1θδ−1) : (F,G)→ (F, F ∗) .

(iii) Clear.

(iv) A split ε-quadratic formation (F,G) determines an ε-quadratic formation

(Hε(F );F, im(

(
γ

δ

)
: G→ F ⊕ F ∗)) ,
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and an isomorphism of split formations determines an isomorphism of formations.

Every ε-quadratic formation (K,λ, µ;F,G) is isomorphic to one of this type, by

12.3, and a (stable) isomorphism of formations

f : (K,λ, µ;F,G)→ (K ′, λ′, µ′;F ′, G′)

lifts to a (stable) isomorphism of split formations

(α, β, γ) : (F,G)→ (F ′, G′) .

So the only essential difference between a formation and a split formation is the

choice of ‘Hessian’ form θ. Suppose given split ε-quadratic formations

Φ = (F, (

(
γ

δ

)
, θ)G) , Φ′ = (F, (

(
γ

δ

)
, θ′)G)

with different θ, θ′ such that

γ∗δ = θ − εθ∗ = θ′ − εθ′∗ : G→ G∗ .

Let

Φ̃ = (F ∗, (

(
γ̃

−εδ̃

)
, θ̃)G∗)

be the split ε-quadratic formation given by an extension (provided by 11.51) of

the inclusion of the lagrangian

(

(
γ

δ

)
, θ) : (G, 0)→ Hε(F ) = (F ⊕ F ∗,

(
0 1

0 0

)
)

to an isomorphism of hyperbolic split ε-quadratic forms

(

(
γ δ̃

δ γ̃

)
,

(
θ 0

γ̃∗δ θ̃

)
) :

Hε(G) = (G⊕G∗,
(

0 1

0 0

)
)→ Hε(F ) = (F ⊕ F ∗,

(
0 1

0 0

)
) .

The split ε-quadratic formation

Φ⊕ Φ̃ = (F ⊕ F ∗, (


(
γ 0

0 γ̃

)
(
δ 0

0 −εδ̃

)
 ,

(
θ 0

0 θ̃

)
)G⊕G∗)

is isomorphic to a boundary by (i), since(
γ 0

0 γ̃

)
+

(
0 −ε
1 0

)(
δ 0

0 −εδ̃

)
=

(
γ δ̃

δ γ̃

)
: G⊕G∗ → F ⊕ F ∗

is an isomorphism. Similarly for the split formation Φ′ ⊕ Φ̃. The split formation

Φ ⊕ Φ′ ⊕ Φ̃ is cobordant to both Φ and Φ′, which are thus cobordant to each
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other.

(v) These identities follow from 12.21 (ii)+(iii).

(Alternatively, note that there exist stable isomorphisms

(F, (

(
γ

δ

)
, θ)G)⊕ (F, (

(−γ
δ

)
,−θ)G)→ ∂(G⊕ F,

(
θ 0

δ 0

)
)

(F, (

(
γ

δ

)
, θ)G)⊕ (F ∗, (

(
δ

(−1)n+1γ

)
, θ)G)→ ∂(G, θ) .

The construction of such stable isomorphisms are exercises for the reader.) 2

Definition 12.34 The data (H,χ, j) for an algebraic surgery on a split ε-

quadratic formation (F,G) is a split (−ε)-quadratic form (H,χ) together with a

morphism j : F → H∗. The effect of the algebraic surgery is the split ε-quadratic

formation (F ′, G′) with

γ′ =

(
γ 0

0 1

)
: G′ = G⊕H → F ′ = F ⊕H ,

δ′ =

(
δ −εj∗
jγ χ− εχ∗

)
: G′ = G⊕H → F ′∗ = F ∗ ⊕H∗ ,

θ′ =

(
θ 0

jγ χ

)
: G′ = G⊕H → G′∗ = G∗ ⊕H∗ .

2

Proposition 12.35 (i) If (F1, G1), (F2, G2), (F3, G3) are split ε-quadratic for-

mations such that (Fi+1, Gi+1) is stably isomorphic to the effect of an algebraic

surgery on (Fi, Gi) (i = 1, 2) then (F3, G3) is stably isomorphic to the effect of

an algebraic surgery on (F1, G1).

(ii) Split ε-quadratic formations (F,G), (F ′, G′) are cobordant if and only if

(F ′, G′) is stably isomorphic to the effect of an algebraic surgery on (F,G).

(iii) A split (−1)n-quadratic formation (F,G) is such that (F,G) = 0 ∈ L2n+1(A)

if and only if there exist algebraic surgery data (H,χ, j) such that

δ′ =

(
δ (−1)n+1j∗

jγ χ+ (−1)n+1χ∗

)
: G′ = G⊕H → F ′∗ = F ∗ ⊕H∗

is an isomorphism, in which case (F,G) is stably isomorphic to the boundary

∂(G⊕H,
(
θ 0

jγ χ

)
).

Proof (i) Exercise for the reader!

(ii) Suppose first that (F,G), (F ′, G′) are cobordant, so that there exists stable

isomorphism

(F,G)⊕ ∂(H,χ)→ (F ′, G′)⊕ ∂(H ′, χ′)

for some (−ε)-quadratic forms (H,χ), (H ′, χ′). Now (F,G)⊕∂(H,χ) is the effect

of the algebraic surgery on (F,G) with data (H,χ, 0), and (F ′, G′) is stably
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isomorphic to the effect of the algebraic surgery on (F ′, G′) ⊕ ∂(H ′, χ′) with

data (H ′, χ′, j′ = (0 1) : F ′ ⊕H ′∗ → H ′∗). It now follows from (i) that (F ′, G′)
is stably isomorphic to the effect of an algebraic surgery on (F,G).

Conversely, suppose that (F ′, G′) is the effect of an algebraic surgery on (F,G)

with data (H,χ, j). By 12.33 (v) (F ′, G′) is cobordant to the split formation

(F ′∗, G′) = (F ′∗, (

(
δ′

−εγ′
)
, θ′)G′) .

Now (F ′∗, G′) is isomorphic to (F ∗, G) ⊕ (H∗, H), and (F ∗, G) is cobordant to

(F,G) (by 12.33 (v)), so that (F ′, G′) is cobordant to (F,G).

(iii) By (ii) a split (−1)n-quadratic formation (F,G) is null-cobordant if and only

if there exists data (H,χ, j) such that the effect of the algebraic surgery (F ′, G′)
is trivial. 2

All this can now be applied to surgery on highly-connected odd-dimensional

normal maps.

Proposition 12.36 Let (f, b) : M2n+1 → X be an n-connected (2n+ 1)-dimen-

sional degree 1 normal map.

(i) A presentation (12.11) of (f, b)

((e, a); (f, b), (f̂ , b̂)) : (W 2n+2;M2n+1, M̂2n+1)→ X × (I; {0}, {1})

determines a kernel split (−1)n-quadratic formation over Z[π1(X)]

(F, (

(
γ

δ

)
, θ)G) = (Kn+1(W, M̂),Kn+1(W ))

with

γ = inclusion∗ : G = Kn+1(W )→ F = Kn+1(W, M̂) ,

δ = inclusion∗ : G = Kn+1(W )→ F ∗ = Kn+1(W,M) ,

θ = µW : G = Kn+1(W )→ G∗ = Kn+1(W,∂W ) ,

γ∗δ = θ + (−1)n+1θ∗ = λW : G = Kn+1(W )→ G∗ = Kn+1(W,∂W ) ,

and exact sequences

0 // Kn+1(M̂) // G
γ // F // Kn(M̂) // 0 ,

0 // Kn+1(M) // G
δ // F ∗ // Kn(M) // 0 .

(ii) The surgery obstruction of (f, b) is the cobordism class

σ∗(f, b) = (F,G) ∈ L2n+1(Z[π1(X)])

of the kernel split formation (F,G) constructed in (i) from any presentation of

(f, b).
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(iii) The effect of ` simultaneous geometric n-surgeries on (f, b) killing x1, x2, . . . , x` ∈
Kn(M) is a bordant n-connected (2n+1)-dimensional normal map (f ′, b′) : M ′ →
X with kernel split formation (F ′, G′) obtained by algebraic surgery on (F,G)

with data (H,χ, j : F → H∗) such that

[j∗] = (x1 x2 . . . x`) : H = Z[π1(X)]` → Kn(M) = coker(δ : G→ F ∗) .

(iv) For n > 2 algebraic surgeries on (F,G) are realized by geometric surgeries

on (f, b).

(v) Let x1, x2, . . . , x` ∈ Kn(M) be as in (iii) (or (iv)). If there exist y1, y2, . . . , y` ∈
Kn+1(M) such that

λ(xi, yi) = 1 ∈ Z[π1(X)] (1 6 i 6 `)

with λ : Kn(M) × Kn+1(M) → Z[π1(X)] the homology intersection pairing

(10.22) then

Kn(M ′) = Kn(M)/〈x1, x2, . . . , x`〉 .

Proof (i) The split formation (F,G) is just the split version of the kernel for-

mation 12.12 (ii).

(ii) Immediate from (i) and 12.29.

(iii) Let (f ′, b′) : M ′2n+1 → X be the effect of ` n-surgeries on (f, b) killing

x1, x2, . . . , x` ∈ Kn(M). The trace degree 1 normal bordism

((g, c); (f, b), (f ′, b′)) : (N2n+2;M,M ′)→ X × (I; {0}, {1})

is n-connected, and such that

(f, b)| = (f ′, b′)| : M0 = cl.(M\
⋃
`

Sn ×Dn+1)→ X0 , X = X0 ∪D2n+1 .

Given a presentation (e, a) of (f, b) as in (i) define a presentation of (f ′, b′)

(e′, a′) = − (g, c) ∪ (e, a) :

(W ′;M ′, M̂) = (−N ;M ′,M) ∪ (W ;M,M̂)→ X × (I; {0}, {1}cMW 0
The corresponding kernel split (−1)n-quadratic formation (F ′, G′) for (f ′, b′) is

the effect of an algebraic surgery on the kernel (F,G) in (i) with data (H,χ, j :

F → H∗) such that
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H = Kn+1(N,M) = Z[π1(X)]` ,

j∗(H) = 〈x1, x2, . . . , x`〉 ⊆ coker(δ : G→ F ∗) = Kn(M) ,

µW ′ =

(
θ 0

jγ χ

)
: Kn+1(W ′) = G⊕H → Kn+1(W ′)∗ = G∗ ⊕H∗

with exact sequences of Z[π1(X)]-modules

0 // Kn+1(N) // Kn+1(W ′) = G⊕H
( δ (−1)n+1j∗ )

//

Kn+1(W ′, N) = Kn+1(W,M) = F ∗ // Kn(N) // 0 ,

0 // Kn+1(M ′) // Kn+1(W ′) = G⊕H

(
δ (−1)n+1j∗

jγ χ+ (−1)n+1χ∗

)
//

Kn+1(W ′,M ′) = F ∗ ⊕H∗ // Kn(M ′) // 0 ,

0 // Kn+1(M0) // Kn+1(W ) = G

(
δ

jγ

)
//

Kn+1(W ′,M ′) = F ∗ ⊕H∗ // Kn(M0) // 0

and a commutative braid of exact sequences

0

##

��
Kn+1(M ′)

##

  
Kn+1(N,M)

##

  
Kn(M)

##

��
0

Kn+1(M0)

;;

##

Kn+1(N)

;;

##

Kn(M0)

;;

##

Kn(N)

;;

##
0

;;

>>
Kn+1(M)

;;

>>
Kn+1(N,M ′)

;;

>>
Kn(M ′)

;;

@@ 0

The normal map (e, a) : N → X × I is (n + 1)-connected if and only if the

Z[π1(X)]-module morphism

( δ (−1)n+1j∗ ) : G⊕H → F ∗

is onto, in which case Kn+1(N) is a stably f.g. free Z[π1(X)]-module and the

kernel (−1)n+1-quadratic form is given by

µN =

(
θ 0

jγ χ

) ∣∣∣∣ :

Kn+1(N) = ker(( δ (−1)n+1j∗ ) : G⊕H → F ∗)→ Kn+1(N)∗ .

(iv) Suppose given a presentation (e, a) of (f, b) as in (i) and data (H,χ, j)

for algebraic surgery on the kernel split (−1)n-quadratic formation (F,G) with
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H = Z[π1(X)]` and effect (F ′, G′). Let x1, x2, . . . , x` ∈ Kn(M) be the images of

the basis elements (0, . . . , 0, 1, 0, . . . , 0) ∈ H under the composite

H
j∗ // F ∗ = Kn+1(W,M)

∂ // Kn(M) .

Use the b-framing section sf rb : In+1(f)→ I f rn+1(f) (10.14) to identify each

xi ∈ Kn(M) = sf rb (In+1(f)) ⊆ Ifrn+1(f)

with a regular homotopy class of framed n-immersions in (f, b). As in the proof

of Proposition 10.25 xi contains framed n-embeddings. For n > 2 the framed

n-embeddings can be varied within the regular homotopy class by arbitrary ele-

ments of Q(−1)n+1(Z[π1(X)]), as in the proof of Proposition 11.42. It is therefore

possible to kill x1, x2, . . . , x` ∈ Kn(M) by n-surgeries on (f, b) such that (F ′, G′)
is the kernel split (−1)n-quadratic formation for (f ′, b′) obtained as in (iii).

(v) The Z[π1(X)]-module morphism

Kn+1(M)→ Kn+1(N,M ′) = H∗ = Z[π1(X)]` ;

y 7→ (λ(x1, y), λ(x2, y), . . . , λ(x`, y))

is onto, so that the braid in (iii) identifies Kn(M ′) with the cokernel of the

Z[π1(X)]-module morphism

Kn+1(N,M) = H = Z[π1(X)]` → Kn(M) = Kn(M0) ;

(a1, a2, . . . , a`) 7→ a1x1 + a2x2 + . . .+ a`x` .

2

Remark 12.37 For any normal bordism between n-connected (2n+ 1)-dimen-

sional normal maps (f, b), (f ′, b′)

((g, c); (f, b), (f ′, b′)) : (N2n+2;M2n+1,M ′2n+1)→ X × (I; {0}, {1})

it is possible to kill the kernel Z[π1(X)]-modules Ki(N) (i 6 n) by surgery below

the middle dimension. Thus (g, c) : N → X × I can be made (n+ 1)-connected,

with Kn+1(N,M) a f.g. free Z[π1(X)]-module of rank ` > 0 (say). The cobordism

(N ;M,M ′) is the trace of ` n-surgeries on (f, b) with geometric effect (f ′, b′),
and with algebraic effect given by 12.36. 2

Algebraic surgery on formations can also be used for purely algebraic com-

putations :

Proposition 12.38 Let A be a principal ideal domain with involution, with quo-

tient field K.

(i) Every split ε-quadratic formation (F,G) over A is cobordant to a formation

(F ′, G′) with δ′ : G′ → F ′∗ injective.

(ii) L2n+1(K) = 0.
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Proof (i) The A-module coker(δ : G → F ∗) is finitely generated, so that it

can be expressed as a direct sum of a f.g. free A-module S and a f.g. torsion

A-module T

coker(δ) = S ⊕ T .

(Here, torsion means that aT = 0 for some a 6= 0 ∈ A.) The sesquilinear pairing

λ : coker(δ)× ker(δ)→ A ; (x, y) 7→ x(γ(y))

is such that for any x ∈ S there exists y ∈ ker(δ) such that λ(x, y) = 1 ∈ A.

The abstract version of 12.36 (iv) shows that for any algebraic surgery on (F,G)

with data (H,χ, j) such that

j∗ : H = A` → coker(δ) ; (a1, a2, . . . , a`) 7→ a1x1 + a2x2 + . . .+ a`x`

the effect of the algebraic surgery (F ′, G′) has δ′ : G′ → F ′∗ injective with

coker(δ′) = T .

(ii) Take A = K, ε = (−1)n in (i). The only torsion A-module is 0, so δ′ is an

isomorphism, and (F ′, G′) is a trivial split (−1)n-quadratic formation. 2

12.6 Linking forms

Odd-dimensional surgery obstructions were originally formulated by Kervaire

and Milnor [38] and Wall [90] in terms of linking forms, but the method only

applies to finite fundamental groups π. However, linking forms remain useful

tools in surgery theory. This section is a brief introduction to linking forms and

their use in the computation L2∗+1(Z) = 0. See Chapter 3 of Ranicki [70] for a

considerably more complete account.

Let A be a ring with involution, and let S ⊂ A be a subset such that

(i) each s ∈ S is a central non-zero divisor, with s ∈ S,

(ii) if s, t ∈ S then st ∈ S,

(iii) 1 ∈ S.

Definition 12.39 (i) The localization of A is the ring of fractions

S−1A = A× S/{(a, s) ∼ (b, t) | at = bs ∈ A}

with elements denoted
a

s
. The natural map

A→ S−1A ; a 7→ a

1
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is an injective morphism of rings with involution.

(ii) An (A,S)-module T is a f.g. A-module such that sT = 0 for some s ∈ S,

and which admits a f.g. free A-module resolution of the type

0 // F1
d // F0

// T // 0 .

The dual of T = coker(d) is the (A,S)-module

T̂ = HomA(T, S−1A/A) = coker(d∗ : (F0)∗ → (F1)∗) .

(iii) A nonsingular ε-symmetric linking form (T, λ) over (A,S) is an (A,S)-

module T together with a sesquilinear pairing

λ : T × T → S−1A/A

such that for all x, y, z ∈ T , a, b ∈ A

(a) λ(x, y + z) = λ(x, y) + λ(x, z) ∈ S−1A/A,

(b) λ(ax, by) = bλ(x, y)a ∈ S−1A/A,

(c) λ(y, x) = ελ(x, y) ∈ S−1A/A,

(d) the adjoint A-module morphism

λ : T → T̂ ; x 7→ (y 7→ λ(x, y))

is an A-module isomorphism.

(iv) A nonsingular split ε-quadratic linking form (T, λ, ν) over (A,S) is an

ε-quadratic linking form (T, λ) together with a function

ν : T → Qε(S
−1A/A) = (S−1A/A)/{b− εb | b ∈ S−1A/A}

such that

(a) ν(ax) = aν(x)a ∈ Qε(S−1A/A) (x ∈ T, a ∈ A) ,

(b) ν(x+ y)− ν(x)− ν(y) = λ(x, y) ∈ Qε(S−1A/A) (x, y ∈ T ) ,

(c) λ(x, x) = ν(x) + εν(x) ∈ S−1A/A (x ∈ T ).

2

Example 12.40 Let A be an integral domain, and let S = A\{0} ⊂ A.

(i) The localization S−1A = K is the quotient field of A.

(ii) If A is a principal ideal domain an (A,S)-module T is a f.g. A-module such

that sT = 0 for some s ∈ S. For any f.g. A-module H the torsion submodule

TH ⊆ H is an (A,S)-module, and H/TH is a f.g. free A-module. 2

There is a close connection between formations and linking forms :
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Proposition 12.41 The isomorphism classes of nonsingular split ε-quadratic

linking forms (T, λ, ν) over (A,S) are in one-one correspondence with the stable

isomorphism classes of split (−ε)-quadratic formations (F, (

(
γ

δ

)
, θ)G) over A

such that δ : S−1G→ S−1F ∗ is an S−1A-module isomorphism.

Proof Given such a split formation (F,G) define a linking form (T, λ, ν) by

T = coker(δ : G→ F ∗) ,

λ : T × T → S−1A/A ; (x, y) 7→ y(γ(z))

s
,

ν : T → Qε(S
−1A/A) ; x 7→ θ(z)(z)

ss
,

(x, y ∈ F ∗, z ∈ G, s ∈ S, sx = δ(z)) .

For further details of the one-one correspondence see Proposition 3.4.3 of [70].

2

Definition 12.42 (i) A lagrangian of a split ε-quadratic linking form (K,λ, ν)

is an (A,S)-submodule L ⊆ K such that

λ(L× L) = {0} ⊂ S−1A/A , ν(L) = {0} ⊂ Qε(S−1A/A)

and such that the sequence

0 // L
i // T

îλ // L̂ // 0

is exact, with i : L→ T the inclusion.

(ii) Let (K,ψ) be a split ε-quadratic form over A which is S−1A-nonsingular,

meaning that ψ + εψ∗ : S−1K → S−1K∗ is an S−1A-module isomorphism. The

boundary of (K,ψ) is the split ε-quadratic linking form over (A,S)

∂(K,ψ) = (T, λ, µ)

with
T = coker(ψ + εψ∗ : K → K∗) ,

λ : T × T → S−1A/A ; ([x], [y]) 7→ y(z)

s
,

ν : T → Qε(S
−1A/A) ; [x] 7→ µ(z)

ss
,

(x, y ∈ K∗ , z ∈ K , s ∈ S , sx = λ(z)) .

2

The localization exact sequence in algebraic L-theory is a useful computa-

tional tool :



LINKING FORMS 335

Theorem 12.43 The L-groups of A and S−1A are related by an exact sequence

. . . // Lm(A) // Lm(S−1A)
∂ // Lm(A,S) // Lm−1(A) // . . . .

The 2n-dimensional S-torsion L-group L2n(A,S) is the Witt group of split (−1)n-

quadratic linking forms over (A,S), and

∂ : L2n(S−1A)→ L2n(A,S) ; S−1(K,ψ) 7→ ∂(K,ψ) .

The (2n + 1)-dimensional S-torsion L-group L2n+1(A,S) is the Witt group of

split (−1)n-quadratic linking formations over (A,S).

Proof See Chapter 3 of [70] (which includes references to the many authors

who contributed to the development of the sequence). 2

Example 12.44 Let

S = Z\{0} ⊂ A = Z

so that S−1A = Q, and an (A,S)-module is just a finite abelian group.

(i) Given an abelian group A write the torsion subgroup and the torsion-free

quotient as

TA = {x ∈ A | sx = 0 for some s 6= 0 ∈ Z} , FA = A/TA .

The Universal Coefficient Theorem (3.17) gives for any space M natural isomor-

phisms

THn(M)→ HomZ(THn−1(M),Q/Z) ; x 7→ (y 7→ z(y)

s
)

(sx = dz , z ∈ Cn−1(M)) .

If M is an oriented m-dimensional manifold then cap product with fundamental

class [M ] ∈ Hm(M) defines an isomorphism of exact sequences

0 // THm−n(M)

∼=[M ] ∩ −
��

// Hm−n(M)

∼=[M ] ∩ −
��

// FHm−n(M)

∼=[M ] ∩ −
��

// 0

0 // THn(M) // Hn(M) // FHn(M) // 0

The torsion homology groups TH∗(M) are finite abelian groups with a bilinear

homology linking pairing

λ : THn(M)× THm−n−1(M)→ Q/Z ; (x, y) 7→ z(y)

s

(z ∈ Cm−n−1(M) , sx = d([M ] ∩ z) ∈ Cn(M))

such that the adjoint morphisms
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λ : THn(M)→ HomZ(THm−n−1(M),Q/Z) ; x 7→ (y 7→ λ(x, y))

are isomorphisms, and

λ(y, x) = (−1)(n+1)(m−n)λ(x, y) ∈ Q/Z .

In particular, if m = 2n + 1 there is defined a nonsingular (−1)n+1-symmetric

linking form (THn(M), λ).

(ii) Let (f, b) : M → X be an n-connected (2n+ 1)-dimensional degree 1 normal

map with π1(X) = {1}. The torsion subgroup TKn(M) ⊆ Kn(M) is finite,

and the quotient FKn(M) = Kn(M)/TKn(M) = Zk is a f.g. free Z-module.

Lift a basis for FKn(M) to elements {x1, x2, . . . , xk} ⊂ Kn(M). Killing these

elements by n-surgeries on (f, b) results in a normal bordant n-connected map

(also denoted by (f, b)) such that

Kn(M) = TKn(M) , Kn+1(M) = 0 .

A kernel split (−1)n-quadratic formation (F, (

(
γ

δ

)
, θ)G) for (f, b) determines

a split (−1)n+1-quadratic linking pairing (Kn(M), λ, ν) over (Z, S) as in 12.41,

with

Kn(M) = coker(δ : G→ F ∗)

a finite abelian group. The proof of L2n+1(Z) = 0 in Kervaire and Milnor [38]

analyzes the effects that n-surgeries on (f, b) have on the kernel linking form

(Kn(M), λ, ν). It is shown that (f, b) is normal bordant to a homotopy equiva-

lence by essentially first proving algebraically that the linking form is isomorphic

to the boundary ∂(Z`, ψ) of a Q-nonsingular split (−1)n+1-quadratic form (Z`, ψ)

over Z, and then killing Kn(M) by the corresponding ` n-surgeries on (f, b). (In

[38] only the rel ∂ case with X = D2n+1 was considered. However, the algebra

is the same for any X with π1(X) = {1} – see Chapter IV.3 of Browder [14]).

(iii) The computation L2n+1(Z) = 0 corresponds to the surjectivity of the map

∂ : L2n+2(Q)→ L2n+2(Z, S) in the L-theory localization exact sequence (12.43)

. . . // Lm(Z) // Lm(Q)
∂ // Lm(Z, S) // Lm−1(Z) // . . . .

The decomposition of finite abelian groups into p-primary components extends

to linking forms, and
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Lm(Z, S) =


Z8 ⊕

⊕
p 6=2 prime

L0(Fp) if m ≡ 0(mod 4)

0 if m ≡ 1, 2(mod 4)

Z2 if m ≡ 3(mod 4)

Lm(Z) =


Z if m ≡ 0(mod 4)

Z2 if m ≡ 2(mod 4)

0 if m ≡ 1, 3(mod 4)

Lm(Q) =

{
Z⊕ ⊕

p 6=2 prime

L0(Fp) if m ≡ 0(mod 4)

0 if m ≡ 1, 2, 3(mod 4)

L0(Fp) =

{
Z2 ⊕ Z2 if p ≡ 1(mod 4)

Z4 if p ≡ 3(mod 4)

with Fp the finite field with p elements and

L0(Q)→ Z ; (V, λ) 7→ σ(V, λ)

the signature map. See Chapter IV.3 of Milnor and Husemoller [60] for a more

detailed account of L0(Q). 2



13

THE STRUCTURE SET

We are now in a position to prove the results on the structure set S (X)

(1.14) which were stated in Chapter 1.

13.1 The structure set

Manifold Existence Theorem 13.1 (Browder, Novikov, Sullivan, Wall)

Let X be an m-dimensional geometric Poincaré complex with m > 5.

The structure set S (X) is non-empty (i.e. X is homotopy equivalent to an m-

dimensional manifold) if and only if the Spivak normal fibration νX : X → BG

has a vector bundle reduction ν̃X : X → BO for which the corresponding normal

map (f, b) : M → X has surgery obstruction

σ∗(f, b) = 0 ∈ Lm(Z[π1(X)]) .

Proof Combine the criterion of Proposition 9.38 with the surgery obstructions

of Chapters 11,12. 2

A choice of homotopy equivalence M ' X determines an identification

S (X) = S (M) .

We are now also in a position to prove the surgery exact sequence (1.18) of

pointed sets

. . .→ Lm+1(Z[π1(M)])→ S (M) → [M,G/O]
A
→ Lm(Z[π1(M)])

stated in Chapter 1.

An element of the normal structure set (9.40)

x = (η, h) ∈ T (M) = [M,G/O]

is classified by a stable vector bundle η : M → BO with a fibre homotopy

trivialisation h : Jη ' {∗} : M → BG, corresponding to a normal map (f, b) :
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N →M with b : νN → νM ⊕ η. The function A in the surgery exact sequence is

the surgery obstruction

A(x) = σ∗(f, b) ∈ Lm(Z[π1(M)]) .

The study of normal maps and surgery obstruction theory in Chapters 10, 11

and 12 establishes the exactness of the sequence, made precise as follows.

Manifold Uniqueness Theorem 13.2 (Browder, Novikov, Sullivan, Wall)

Let M be an m-dimensional manifold with m > 5.

(i) An m-dimensional degree 1 normal map (f, b) : N →M is such that

σ∗(f, b) = 0 ∈ Lm(Z[π1(M)])

if and only if (f, b) is bordant to a homotopy equivalence (f ′, b′) : N ′ → M , i.e.

if and only if there exists a manifold structure (N ′, f ′) ∈ S (M) with image

[N ′, f ′] = (f, b) ∈ T (M) = [M,G/O] .

(ii) The group Lm+1(Z[π1(M)]) acts on the manifold structure set S (M) by

Lm+1(Z[π1(M)])×S (M)→ S (M) ; (x, (N1, f1)) 7→ x(N1, f1) = (N2, f2)

if there exists a degree 1 normal bordism

(F,B) : (W ;N1, N2)→M × (I; {0}, {1})

such that
(F,B)|Ni = (fi, bi) : Ni →M (i = 1, 2) ,

σ∗(F,B) = x ∈ Lm+1(Z[π1(M)]) .

(iii) Manifold structures (N1, f1), (N2, f2) on M are such that

[N1, f1] = [N2, f2] ∈ T (M) = [M,G/O]

if and only if there exists an element x ∈ Lm+1(Z[π1(M)]) such that

x(N1, f1) = (N2, f2) ∈ Lm+1(Z[π1(M)]) ,

i.e. if and only if there exists a degree 1 normal bordism

(F,B) : (W ;N1, N2)→M × (I; {0}, {1})

such that
(F,B)|Ni = (fi, bi) : Ni →M (i = 1, 2) ,

σ∗(F,B) = x ∈ Lm+1(Z[π1(M)]) .

Proof Combine the criterion of Proposition 9.48 with the rel ∂ surgery ob-

structions of Chapters 11, 12. 2



340 THE STRUCTURE SET

Example 13.3 Let M be an m-dimensional manifold (with m > 5) which is

simply-connected, so that π1(M) = {1}. The surgery exact sequence and the

computation of L∗(Z)

m (mod 4) 0 1 2 3

Lm(Z) Z 0 Z2 0

give the structure set S (M) according to the residue m (mod 4), as follows.

(i) m = 4k. The exact sequence of pointed sets is

0→ S (M)→ [M,G/O]
A
→ L4k(Z)

with
A(η, h) = σ∗((f, b) : N →M)

=
1

8
(σ(N)− σ(M))

=
1

8
(〈L (N), [N ]〉 − 〈L (M), [M ]〉)

=
1

8
〈L (M) ∪ (L (−η)− 1), [M ]〉

=
1

8

k∑
j=1

〈L k−j(M) ∪L j(−η), [M ]〉 ∈ L4k(Z) = Z

by the Hirzebruch signature theorem (6.41), where L j ∈ H4j(M ;Q) is the 4j-

dimensional component of the L -genus, [M ] = 1 ∈ H4k(M ;Q) = Q is the

fundamental class and L 0 = 1 ∈ H0(M ;Q) = Q (assuming M is connected).

Note the non-additivity of A :

A((η1, h1)⊕ (η2, h2)) =
1

8
〈L (M) ∪ (L (−η1 ⊕−η2)− 1), [M ]〉

=
1

8
〈L (M) ∪ (L (−η1) ∪L (−η2)− 1), [M ]〉

=
1

8

k∑
i+j=1

〈L k−i−j(M) ∪L i(−η1) ∪L j(−η2), [M ]〉

6= A(η1, h1) +A(η2, h2) ∈ L4k(Z) = Z (in general).

For an actual example, consider M4k = CP2k and use 6.42. Products of spheres

also give examples (13.26).

(ii) m = 4k + 2. The exact sequence of pointed sets is

0→ S (M)→ [M,G/O]
A
→ L4k+2(Z)

with A : [M,G/O]→ L4k+2(Z) = Z2 the Arf invariant map.

(iii) m = 4k + 1. The exact sequence of pointed sets is
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[M × I, ∂;G/O]
A
→ L4k+2(Z)→ S (M)→ [M,G/O]→ 0

with A : [M × I, ∂;G/O]→ L4k+2(Z) = Z2 the rel ∂ version of (ii).

(iv) m = 4k + 3. The exact sequence of pointed sets is

[M × I, ∂;G/O]
A
→ L4k+4(Z)→ S (M)→ [M,G/O]→ 0

with A : [M × I, ∂;G/O]→ L4k+4(Z) = Z the rel ∂ version of (i).

See Morgan and Sullivan [62] and Madsen and Milgram [45] for the expression

of A : [M,G/O]→ Lm(Z) in the cases m = 4k, 4k + 2 in terms of characteristic

classes. 2

Example 13.4 An element (Σm, f) of the structure set S (Sm) is an equivalence

class of pairs (Σm, f) with Σm an m-dimensional manifold and f : Σm → Sm a

homotopy equivalence. The surgery obstruction functions

A : πm(G/O) = [Sm, G/O] // Lm(Z)

are morphisms of abelian groups, with relative groups S∗ fitting into a long

exact sequence

. . . // πm+1(G/O)
A // Lm+1(Z) //

Sm
// πm(G/O)

A // Lm(Z) // . . . .

The structure sets of spheres were the first to be computed, with

S (Sm) = Sm for m > 5 .

See section 13.3 below for a more detailed discussion. 2

Example 13.5 The m-dimensional torus

Tm = S1 × S1 × . . .× S1

has fundamental group π1(Tm) = Zm the free abelian group of rank m. The

normal maps (f, b) : Mm → Tm are classified by

T (Tm) = [Tm, G/O] =

m∑
k=0

(
m

k

)
πm−k(G/O) .

The surgery obstruction groups of the group ring Z[Zm] are given by

Ln(Z[Zm]) =

m∑
k=0

(
m

k

)
Ln−k(Z)

(Shaneson [80], Wall [92, 13A.8], Novikov [64], Ranicki [68]), so that the structure

set of Tm for m > 5 is given by
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S (Tm) =

m∑
k=0

(
m

k

)
Sm−k ,

with S∗ as in 13.4. The surgery classification of manifolds homotopy equivalent

to Tm (the ‘fake tori’ of Wall [92, 15A], Hsiang and Shaneson [35]) in the PL cat-

egory was an essential ingredient of the structure theory of topological manifolds

obtained by Kirby and Siebenmann [39]. (The actual result required is that for

m > 5 every homotopy equivalence of PL manifolds of the type h : Mm → Tm

has a finite cover h : M
m → T

m
which is homotopic to a PL homeomorphism).

2

13.2 The simple structure set

There is also a simple surgery theory for deciding if a simple geometric Poincaré

complex X is simple homotopy equivalent to a manifold, and if a simple homo-

topy equivalence f : Nm →Mm of manifolds is homotopic to a diffeomorphism.

As already noted in Chapter 8.1 the involution on the group ring

Z[π]→ Z[π] ; a =
∑
g∈π

ngg 7→ a =
∑
g∈π

ngg
−1

induces an involution on the Whitehead group

∗ : Wh(π)→Wh(π) ; τ(α) 7→ τ(α∗)

with α∗ = (aji) if α = (aij).

Definition 13.6 (i) The torsion of an m-dimensional geometric Poincaré com-

plex X is defined by

τ(X) = τ([X] ∩ − : C(X̃)m−∗ → C(X̃)) ∈Wh(π1(X)) ,

such that

τ(X)∗ = (−1)mτ(X) ∈Wh(π1(X)) .

(ii) A geometric Poincaré complex X is simple if τ(X) = 0. 2

Example 13.7 An m-dimensional manifold M is a simple m-dimensional ge-

ometric Poincaré complex, and hence so is any finite CW complex X simple

homotopy equivalent to M . 2

Definition 13.8 Let X be a simple m-dimensional geometric Poincaré complex.

(i) A simple manifold structure (M,f) on X is an m-dimensional manifold

M together with a simple homotopy equivalence f : M → X.
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(ii) The simple manifold structure set S s(X) is the set of equivalence classes

of m-dimensional manifold structures (M,f), subject to the equivalence relation :

(M,f) ∼ (M ′, f ′) if there exists a bordism

(F ; f, f ′) : (W ;M,M ′)→ X × (I; {0}, {1})
with F : W → X × I a simple homotopy equivalence, so that (W ;M,M ′)

is an s-cobordism.

For m > 5 this is the equivalence relation

(M,f) ∼ (M ′, f ′) if there exist a diffeomorphism h : M →M ′ and a

homotopy f ' f ′h : M → X

by the s-Cobordism Theorem (1.11). 2

Definition 13.9 The simple surgery obstruction groups Ls∗(Z[π]) are de-

fined by analogy with L∗(Z[π]), using quadratic forms and formations on based

f.g. free Z[π]-modules and simple isomorphisms. 2

Theorem 13.10 (Wall [92])

A degree 1 normal map (f, b) : M → X from an m-dimensional manifold M

to a simple m-dimensional geometric Poincaré complex X has a simple surgery

obstruction

σs∗(f, b) ∈ Lsm(Z[π1(X)])

such that σs∗(f, b) = 0 if (and for m > 5 only if ) (f, b) is bordant to a simple

homotopy equivalence. 2

In fact, the obstruction groups Ls∗(Z[π]) for surgery up to simple homotopy

equivalence were the original L-groups of Wall [92].

Proposition 13.11 (Shaneson [80], Novikov [64], Ranicki [68])

The simple surgery obstruction groups Ls∗(Z[π]) are related to the surgery ob-

struction groups L∗(Z[π]) by the Rothenberg exact sequence

. . .→ Lsm(Z[π])→ Lm(Z[π])→ Ĥm(Z2;Wh(π))→ Lsm−1(Z[π])→ . . .

with

Ĥm(Z2;Wh(π)) =
{x ∈Wh(π) |x∗ = (−1)mx}
{y + (−1)my∗ | y ∈Wh(π)} .

2

The Tate Z2-cohomology groups Ĥ∗(Z2;Wh(π)) are of exponent 2, so the

groups Ls∗(Z[π]), L∗(Z[π]) differ in 2-torsion only.
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Theorem 13.12 Let m > 5.

(i) A simple m-dimensional geometric Poincaré complex X is simple homotopy

equivalent to a manifold if and only if there exists a normal map (f, b) : Mm → X

with simple surgery obstruction

σs∗(f, b) = 0 ∈ Lsm(Z[π1(X)]) .

(ii) The simple structure set S s(M) of an m-dimensional manifold Mm fits into

an exact sequence of pointed sets

. . .→ Lsm+1(Z[π1(M)])→ S s(M) → [M,G/O]
A
→ Lsm(Z[π1(M)]) .

A simple homotopy equivalence of m-dimensional manifolds f : N → M is

homotopic to a diffeomorphism if and only if (N, f) = (M, 1) ∈ S s(M). 2

Remark 13.13 The simple version of the surgery exact sequence is particularly

important for manifolds with finite fundamental group. See Chapter 14E of Wall

[92] for the application of the simple L-groups of cyclic groups to the high-

dimensional surgery classification in the PL category of generalised lens spaces

(= manifolds with cyclic fundamental group and universal cover a sphere). 2

13.3 Exotic spheres

This section outlines the surgery classification of manifolds homotopy equivalent

to spheres. The high-dimensional homotopy spheres are simply-connected, so

only the simply-connected surgery obstruction groups L∗(Z) are required.

Definition 13.14 A homotopy m-sphere Σm is an m-dimensional manifold

which is homotopy equivalent to Sm. 2

Poincaré Conjecture 13.15 (1905)

Every homotopy 3-sphere Σ3 is homeomorphic to S3. 2

The Poincaré Conjecture is still unresolved, and is the main difficulty in the

way of a complete classification of all 3-dimensional manifolds.

Milnor Exotic Sphere Theorem 13.16 ([49], 1956)

There exist exotic differentiable structures on S7, i.e. there exist homotopy 7-

spheres Σ7 which are homeomorphic but not diffeomorphic to S7.
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Proof The first 7 examples were constructed as the sphere bundles of certain

4-plane bundles over S4, so we start by recalling the classification of oriented 4-

plane bundles over S4. The isomorphism class of ω : S4 → BSO(4) is determined

by the Euler number and first Pontrjagin class

χ(ω) , p1(ω) ∈ H4(S4) = Z

subject to the congruence

p1(ω) ≡ 2χ(ω) (mod 4) ,

with the function

π4(BSO(4))→ Z⊕ Z ; ω 7→ (
1

4
(2χ(ω) + p1(ω)),

1

4
(2χ(ω)− p1(ω)))

defining an isomorphism. Let

(D4, S3)→ (D(ω), S(ω))→ S4

be the (D4, S3)-bundle over S4 associated to ω. The homology groups of the

sphere bundle S(ω) are given by

Hi(S(ω)) =


Z if i = 0, 7

coker(χ(ω) : Z→ Z) if i = 3

ker(χ : Z→ Z) if i = 4

0 otherwise .

The Euler number of ω : S4 → BSO(4) is the Hopf invariant (5.76) of J(ω) ∈
π7(S4)

χ(ω) = HJ(ω) ∈ Z .

If the Hopf invariant is χ(ω) = 1 ∈ Z then S(ω) is a homotopy 7-sphere which is

the boundary of an oriented 8-dimensional manifold D(ω). For any odd integer

k let ωk : S4 → BSO(4) be the oriented 4-plane bundle with

p1(ωk) = 2k , χ(ωk) = 1 ∈ Z ,

and write

(D(ωk)8, S(ωk)7) = (Wk,Σk) .

There exists a Morse function Σk → R with two critical points, so that Σk\{pt.}
is diffeomorphic to R7 and Σk is homeomorphic to S7 by a theorem of Reeb. The

tangent bundle of Wk is classified by

τWk
= τS4 ⊕ ωk : Wk ' S4 → BSO(8) ,

with Pontrjagin class

p1(Wk) = p1(ωk) = 2k ∈ H4(Wk) = Z .
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If there exists a diffeomorphism f : Σk → S7 consider the closed oriented 8-

dimensional manifold

M8 = Wk ∪f D8

with intersection form and signature

(H4(M), λ) = (Z, 1) , σ(M) = σ(H4(M), λ) = 1 .

By the Hirzebruch signature theorem (6.41)

σ(M) = 〈L 2(M), [M ]〉 = 1 ∈ Z

with

L 2(M) =
1

45
(7p2(M)− p1(M)2) = 1 ∈ H8(M) = Z ,

p1(M) = p1(ωk) = 2k

so that

p2(M) =
1

7
(45 + 4k2) = 7 +

4

7
(k2 − 1) ∈ H4(M) = Z .

The Pontrjagin class p2(M) = p2(ωk) ∈ H8(M) = Z of a vector bundle is

integral, so the existence of a diffeomorphism f : Σ7
k → S7 implies that k2 ≡

1 ( mod 7). Thus the homotopy 7-spheres Σk with k2 6≡ 1 ( mod 7) have an exotic

differentiable structure : they are homeomorphic but not diffeomorphic to S7.

See Milnor and Stasheff [61, pp. 242–248] for a detailed account of this and other

applications of 4-plane bundles over S4. 2

See Milnor [59] for a first-hand account of the discovery of the exotic differ-

entiable structures.

Definition 13.17 An exotic sphere is a homotopy m-sphere Σm which is not

diffeomorphic to Sm. 2

Theorem 13.18 (Generalised Poincaré Conjecture) (Smale [82], 1961)

For m > 5 every homotopy m-sphere Σm is homeomorphic to Sm.

Proof Form > 6 this can be deduced from the h-Cobordism Theorem (1.9,8.34),

although in fact it was the original proof of the Generalised Poincaré Conjecture

which led to the h-Cobordism Theorem. Given a homotopy m-sphere Σm define

an h-cobordism (Wm;Sm−1, Sm−1) by punching out two disjoint m-disks

W = cl.
(
Σm\(Dm ∪Dm)

)
.

By the h-Cobordism Theorem there is a diffeomorphism

(g; 1, h) : (Wm;Sm−1, Sm−1) ∼= Sm−1 × (I; {0}, {1})
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for some self-diffeomorphism h : Sm−1 → Sm−1, and hence a diffeomorphism

Σm ∼= Dm ∪h Dm .

Thus Σm has a handle decomposition with one 0-handle and one m-handle

Σm = h0 ∪ hm .

Milnor [49] proved that every homotopy sphere Σm of this type is homeomorphic

to Sm, using a homotopy h ' 1 : Sm−1 → Sm−1 which is a homeomorphism at

each level (i.e. a topological isotopy), and which determines a homeomorphism

Σm = Dm ∪h Dm → Dm ∪1 D
m = Sm .

The case m = 5 requires a special argument. (See Chapter VIII of Kosinski

[42] for another way of deducing the Generalised Poincaré Conjecture from the

h-Cobordism Theorem, which applies for m > 5). 2

The 4-dimensional Poincaré conjecture holds by the 1982 result of Freedman

[25]. The original 3-dimensional Poincaré conjecture holds by the 2002 work of

Perelman.

The original exotic spheres depended on the existence of a map S7 → S4

of Hopf invariant 1, but the subsequent development of the surgery method

provided a systematic classification of exotic spheres Σm for all dimensions m >
5. (There are no exotic spheres in dimensions 5,6, however). Every homotopy

m-sphere Σm is of the form

Σm = Dm ∪W ∪Dm

for an h-cobordism (W ;Sm−1, Sm−1) which is the union of traces of a sequence

of surgeries on Sm−1. In order to classify the m-dimensional homotopy spheres

it is therefore enough to classify the possible sequences of surgeries on Sm−1 for

which the union of traces is an h-cobordism.

Definition 13.19 Let Θm be the group of h-cobordism classes of m-dimensional

homotopy spheres, with addition by connected sum (2.9). 2

Lemma 13.20 The function

S (Sm)→ Θm ; (Σm, f) 7→ [Σm]

is a bijection, for any m > 1.
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Proof For any oriented homotopy m-sphere Σm there is a unique homotopy

class of orientation-preserving homotopy equivalences f : Σm → Sm, allowing

the definition of an inverse bijection

Θm → S (Sm) ; [Σm] 7→ (Σm, f) .

2

Note that by the h-Cobordism Theorem, for m > 5 an m-dimensional ho-

motopy sphere Σm is h-cobordant to Sm if and only if Σm is diffeomorphic to

Sm.

For m > 2 an m-dimensional homotopy sphere Σm is simply-connected

π1(Σm) = π1(Sm) = {1} ,
so that the associated surgery theory involves only the simply-connected surgery

obstruction groups L∗(Z). The surgery classification of homotopy spheres thus

avoids the complications caused in the general theory by the fundamental group,

and the groups of homotopy spheres S (Sm) = Θm are computed for m > 5 by

the surgery exact sequence

. . .→ πm+1(G/O)
A
→ Lm+1(Z)→ S (Sm)→ πm(G/O)

A
→ Lm(Z) .

Note that S (Sm) = Θm is an abelian group, although the structure set S (M)

of a manifold M is not in general a group.

Example 13.21 (Milnor [49], Kervaire and Milnor [38])

(i) Every 7-dimensional homotopy sphere is the boundary Σ7 = ∂W of an ori-

ented 8-dimensional manifold W , and so can be obtained from S7 by oriented

surgery. The morphism of abelian groups

λ : Θ7 → Z7 ; Σ7 7→ λ(Σ7) = 45σ(W ) + p1(W )2

is a surjection. For any odd integer k = 2` + 1 the exotic sphere Σk of 13.16 is

obtained from S7 by a single 3-surgery removing

gωk : S3 ×D4 → S3 ×D4 ↪→ S7

(terminology of 5.68, with ωk : S3 → SO(4) as in 13.16), but this surgery is

not framed. The trace of the surgery is an oriented 8-dimensional cobordism

(Vk;S7,Σ7
k). The oriented 8-dimensional manifold with boundary

(Wk, ∂Wk) = (D8 ∪ Vk,Σ7
k)

has signature 1 and p1(Wk) = 2k ∈ H4(Wk) = Z, so that

λ(Σk) = 45 + 4k2 = 2`(`+ 1) ∈ Z7 .

In fact, Θ7 is cyclic of order 28.

(ii) Every 7-dimensional homotopy sphere is the boundary Σ7 = ∂W ′ of a framed
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8-dimensional manifold W ′. The signature of W ′ is divisible by 8, and the func-

tion

λ′ : Θ7 → Z28 ; Σ7 7→ 1

8
σ(W ′)

is an isomorphism such that

λ(Σ7) = 3λ′(Σ7) ∈ Z7 .

It is possible to obtain Σ7
k from S7 by 4`(`+1) framed 3-surgeries, and Σ7

k = ∂W ′k
is the boundary of a framed 8-dimensional manifold W ′k with

σ(W ′k) = 4`(`+ 1) ∈ 8Z ⊂ Z ,

λ′(Σ7
k) =

1

8
σ(W ′k) =

1

2
`(`+ 1) ∈ Z28 .

More precisely, let (W 8;S7,Σ7) be the 8-dimensional framed cobordism con-

structed by E8-plumbing of 8 copies of τS8 as in 11.62, and set

(W ′k;S7,Σ7
k) = #`(`+1)/2(W ;S7,Σ7) .

In particular, Σ7
3 has λ′(Σ) = 1, so that Σ7

3 ∈ Θ7 = Z28 is a generator. 2

In general, a homotopy sphere Σm is not the boundary of a framed (m+ 1)-

manifold.

Definition 13.22 The subgroup

bPm+1 = ker(S (Sm)→ πm(G/O))

= im(Lm+1(Z)→ Θm) ⊆ Θm = S (Sm)

consists of the homotopy m-spheres Σm which arise in one of three equivalent

ways :

(i) as the boundary ∂W = Σm of a framed (m + 1)-dimensional manifold

Wm+1,

(ii) as the result of a sequence of framed surgeries on Sm,

(iii) as the domain of a boundary component of a degree 1 normal map

(f, b) : (Wm+1;Sm,Σm)→ Sm × (I; {0}, {1})

with f | : Sm → Sm×{0} the identity and f | : Σm → Sm×{1} a homotopy

equivalence.

2
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The bP -terminology dates from the time when the map Lm+1(Z)→ S (Sm)

in the surgery exact sequence was written b : Pm+1 → Θm.

Here are some sample results :

Proposition 13.23 (Kervaire and Milnor [38])

(i) For m > 5 two homotopy m-spheres Σm, Σ′m are h-cobordant if and only if

there exists an orientation-preserving diffeomorphism Σm → Σ′m.

(ii) The tangent bundle τΣm of a homotopy m-sphere Σm is stably trivial, with

τΣm ⊕ ε trivial. Sending Σm to its framed cobordism class (modulo the indeter-

minacy from the choice of framing) defines an isomorphism

Θm/bPm+1 → coker(J : πm(O)→ πm(G)) = im(πm(G)→ πm(G/O))

with

J : πm(O)→ πm(G) = πSm = Ωf r
m

the J-homomorphism (5.80).

(iii) The groups Θm are finite. The surgery exact sequence

. . .→ πm+1(G/O)
A
→ Lm+1(Z)→ Θm → πm(G/O)

A
→ Lm(Z)→ . . .

breaks up into exact sequences of abelian groups

0→ Θ2n → π2n(G/O)
A
→ L2n(Z)→ bP2n → 0 ,

0→ bP2n+2 → Θ2n+1 → π2n+1(G/O)→ 0

with bP2n+1 = 0 and bP2n, bP2n+2 finite cyclic groups.

(iv) The order of bP4k is

tk = ak22k−2(22k−1 − 1)num(Bk/4k) .

A generator of bP4k is represented by the homotopy (4k− 1)-sphere Σ4k−1 = M8

obtained from S4k−1 by 8 framed (2k− 1)-surgeries S2k−1×D2k ↪→ S4k−1, real-

izing the even symmetric form (Z8, E8) generating L4k(Z) = Z. The trace of the

surgeries is a framed 4k-dimensional manifold with boundary which is obtained

by plumbing together 8 copies of the tangent bundle τS2k : S2k → BSO(2k) of

the 2k-sphere S2k and removing the interior of a 4k-disk D4k.

(v) The order of bP4k+2 is 6 2. A generator of bP4k+2 is represented by the ho-

motopy (4k+1)-sphere Σ4k+1 obtained from S4k+1 by 2 framed surgeries on em-

beddings S2k ×D2k+1 ↪→ S4k+1, realizing the Arf (−1)-quadratic form (Z2, λ, µ)

generating L4k+2(Z) = Z2. The trace of the surgeries is a framed (4k + 2)-

dimensional manifold with boundary which is obtained by plumbing together 2

copies of the tangent bundle τS2k+1 : S2k+1 → BSO(2k + 1) of the (2k + 1)-

sphere S2k+1 and removing the interior of a (4k + 2)-disk D4k+2.
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Idea of proof (i) Immediate from the h-Cobordism Theorem (1.9).

(ii) The proof uses a hard result of Adams [3] on the image of the J-homo-

morphism.

(iii)+(iv)+(v) The surgery method for computing bPm+1 for m > 4 proceeds

as follows. Let Σm be an m-dimensional exotic sphere which bounds a framed

(m+1)-dimensional manifold Wm+1, so that Σm = ∂W represents an element of

bPm+1. The differentiable structure on Σm is standard if (perhaps after a change

of framing) it is possible to modify W by a sequence of framed surgeries until

π∗(W ) = 0; by Poincaré duality it suffices to have πr(W ) = 0 for 2r 6 m + 1.

Suppose inductively that πr(W ) = 0 for r = 1, 2, . . . , n − 1. If m > 4 and

n < m/2 it is possible to represent find a finite collection of framed embeddings

Sn × Dm+1−n ↪→ W representing a set of generators of πn(W ), such that the

effect of the corresponding surgeries is a cobordant framed manifold W ′ with

∂W ′ = Σm and πr(W
′) = 0 for r = 1, 2, . . . , n. If m = 4k − 1 (resp. 4k + 1)

the signature (resp. Arf invariant) of Wm+1 is the obstruction to also having

π2k(W ) = 0 (resp. π2k+1(W ) = 0). If m is even there is no obstruction to also

having πm/2(W ) = 0. 2

Remark 13.24 The orders of the low-dimensional groups of exotic spheres Θm,

bPm+1 and Θm/bPm+1 are given in the table

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Θm 1 1 1 1 1 1 28 2 8 6 992 1 3 2 16256

bPm+1 1 1 1 1 1 1 28 1 2 1 992 1 1 1 8128

Θm/bPm+1 1 1 1 1 1 1 1 2 4 6 1 1 3 2 2

2

Remark 13.25 (i) An m-dimensional manifold M is almost framed if

M0 = cl.(M\Dm)

is framed, i.e. if there is given a trivialization of νM |M0 : M0 → BO. The ob-

struction to framing M is the isomorphism class of a stable vector bundle over

Sm

η ∈ [M,M0;BO, {∗}] = πm(BO)

which is equipped with a canonical fibre homotopy trivialization h : ηG ' {∗} :

Sm → BG. The cobordism group Am of almost framed m-dimensional manifolds

is such that there is defined an isomorphism

Am → πm(G/O) ; M 7→ (η, h) .

The degree 1 Pontrjagin-Thom map

f : M →M/M0 = Sm
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is covered by a bundle map b : νM → η. The surgery obstruction of the normal

map (f, b) : M → Sm defines the morphism

A : Am → Lm(Z) ; M 7→ σ∗(f, b)

which fits into the exact sequence

. . .→ Θm → Am
A
→ Lm(Z)→ Θm−1 → . . . .

(ii) Let BPL be the classifying space for PL bundles. The fibre PL/O of the

forgetful map BO → BPL classifies stable vector bundles η with a PL bundle

trivialization h : ηPL ∼= ε∞. The homotopy spheres measure the discrepancy

between differentiable and PL topology, with

πm(PL/O) = Θm

the relative homotopy groups in the homotopy exact sequence

. . .→ πm(O)→ πm(PL)→ Θm → πm(BO)→ πm(BPL)→ . . .

and πm(PL) = Θfr
m the h-cobordism group of framed m-dimensional exotic

spheres. The exact sequence breaks up into short exact sequences

0→ πm(O)→ πm(PL)→ Θm → 0 .

The stable normal bundle νΣm : Σm → BO of a homotopy sphere Σm is trivial,

and is equipped with a canonical PL trivialization

h : νPLΣ ' ∗ : Σm → BPL .

The morphisms

Θm → πm(PL/O) ; Σm 7→ (νΣm , h)

are isomorphisms. If η : Sm → BO(k) (k large) is a stable vector bundle with

a PL trivialization h : ηPL ' ∗ : Sm → BPL(k) then by smoothing theory

(M.Hirsch and B.Mazur, Smoothings of piecewise linear manifolds, Annals of

Mathematics Studies 80, Princeton (1974)) E(η) has a compatible differentiable

structure of the form Σm × Rk, giving the inverse isomorphisms

πm(PL/O)→ Θm ; (η, h) 7→ Σm .

(iii) The simply-connected surgery obstruction groups are the relative homotopy

groups

Lm(Z) = πm(G/PL) (m 6= 4)

in the homotopy exact sequence

. . .→ πm(PL)→ πm(G)→ Lm(Z)→ πm(BPL)→ πm(BG)→ . . .

with a commutative braid of exact sequences
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πm+1(G/PL)

%%

""
πm(PL/O)

%%

""
πm(BO)

%%

""
πm(BG)

πm(PL)

99

%%

πm(G/O)

99

%%

πm(BPL)

99

%%
πm(O)

99

<<
πm(G)

99

<<
πm(G/PL)

99

<<
πm−1(PL/O)

The braid can be expressed as

Lm+1(Z)

$$

""
Θm

$$

0

""
πm(BO)

$$

##
Ωf r
m−1

Θf r
m

::

%%

Am

::

%%

Θf r
m−1

::

%%
πm(O)

99

J

<<
Ωf r
m

99

σ∗
<<
Lm(Z)

99

<<Θm−1

where

Am = πm(G/O)

= cobordism group of almost framed m-dimensional manifolds ,

Ωf r
m = πm(G) = πSm

= cobordism group of framed m-dimensional manifolds ,

Θf r
m = πm(PL)

= h-cobordism group of framed m-dimensional homotopy spheres ,

Θm = πm(PL/O)

= h-cobordism group of m-dimensional homotopy spheres .

In dimensions 7,8 the braid is given by
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πS8 = Z2

(0,1)

##

0

""
L8(Z) = Z

(60,3)

##

""
Θ7 = Z28

##

""
π7(BO) = 0

A8 = Z⊕ Z2

(28,0)
;;

(240,0)

##

Θf r
7 = Z⊕ Z4

(2,7)
;;

(17,60)

##

A7 = 0

;;

##
Θ8 = Z2

(0,1)
;;

0

<<
π8(BO) = Z

(7,2)
;;

<<
πS7 = Z240

;;

<<
L7(Z) = 0

See Kosinski [42] and Levine [44] (which is Part II of the original Kervaire and

Milnor [38]) for a more detailed exposition, as well as Lance [43] for a survey of

differentiable structures on manifolds. 2

Example 13.26 For any m,n > 1 with m+n > 5 the structure set S (Sm×Sn)

of Sm × Sn fits into the surgery exact sequence of pointed sets

. . .→ Lm+n(Z)→ S (Sm × Sn)→ [Sm × Sn, G/O]
A
→ Lm+n(Z)

with the addition in [Sm × Sn, G/O] corresponding to the Whitney sum of fibre

homotopy trivialized vector bundles over Sm × Sn. As already noted in Exam-

ple 13.3 A is not a homomorphism of abelian groups, and S (Sm × Sn) may

not have the structure of an abelian group. See the papers of A.R. A compo-

sition formula for manifold structures, http://arXiv.org/abs/math.AT/0608705,

Pure and Applied Mathematics Quarterly 5 (Hirzebruch 80th birthday issue),

701–727 (2009) and Diarmuid Crowley The smooth structure set of Sp × Sq

http://arXiv.org/abs/0904.1370 (2009) for explicit computations.

In particular, suppose m = 4k, so that πm(G/O) is a finitely generated

abelian group of rank 1. Assume also that k > 2, and let (W 4k,Σ4k−1) be the

framed (2k − 1)-connected 4k-dimensional manifold with homotopy (4k − 1)-

sphere boundary obtained by the E8-plumbing of 8 copies of τS2k : S2k →
BSO(2k). The exotic (4k−1)-sphere Σ4k−1 is a generator of the cyclic subgroup

bP4k ⊆ Θ4k−1, with order

tk = ak22k−2(22k−1 − 1)num(Bk/4k)

where ak = g.c.d.(2, k + 1). Let

Q4k = W 4k ∪Σ4k−1 D4k

be the framed (2k − 1)-connected 4k-dimensional PL manifold with signature

σ(Q) = 8 obtained from (W 4k,Σ4k−1) by coning the boundary. The tk-fold
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connected sum #tkQ
4k has a differentiable structure. The topological K-group

of isomorphism classes of stable vector bundles over S4k

K̃O(S4k) = π4k(BSO) = π4k(BSO(n+ 1))

is such that there is defined an isomorphism

π4k(BSO(n+ 1))→ Z ; η 7→ pk(η)/ak(2k − 1)! ,

by the Bott integrality theorem. The group of isomorphism classes of spherical

fibrations over S4k

π4k(BSG) = π4k(BSG(n)) = πS4k−1 (n > 4k + 1)

is finite, so there is only a finite number of distinct fibre homotopy classes of

(n− 1)-spherical fibrations over S4k. The subgroup

im(π4k(G/O)→ π4k(BSO(n+ 1)))

= ker(J : π4k(BSO(n+ 1))→ π4k(BSG(n+ 1))) ⊆ π4k(BSO(n+ 1))

of fibre homotopy trivial bundles is the infinite cyclic subgroup of index

jk = denominator (Bk/4k)

with the generator η : S4k → BSO(n+ 1) such that

pk(η) = akjk(2k − 1)! ∈ H4k(S4k) = Z .

For any fibre homotopy trivialisation

h : Jη ' Jεn+1 : S4k → BSG(n+ 1)

the corresponding homotopy equivalence

S(h) : S(η)→ S(εn+1) = S4k × Sn

is such that the inverse image of S4k × {∗} ↪→ S4k × Sn is a submanifold of the

type

N4k = #tkQ
4k ↪→ S(η) ,

and S(h) restricts to a degree 1 normal map

(f, b) = S(h)| : N4k → S4k

with b : νN → −η. Moreover,

τN = f∗(η) : N → BSO(4k) ,

pk(N) = f∗pk(η) = akjk(2k − 1)! ∈ H4k(N) = Z ,

σ(N) = skpk(N) = skakjk(2k − 1)! = 8tk ∈ Z ,
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with

sk =
22k(22k−1 − 1)

(2k)!
Bk

the coefficient of pk in Lk. The homotopy equivalence S(h) : S(η) → S4k × Sn
is not homotopic to a diffeomorphism (or indeed a homeomorphism) since the

surgery obstruction of (f, b) is

σ∗(f, b) =
1

8
(σ(N)− σ(S4k))

= tk 6= 0 ∈ L4k(Z) = Z .

The stable normal bundle of S(η) is classified by

νS(η) : S(η)→ S4k
η
→ BO .

and S(h) is a homotopy equivalence of (n+4k)-dimensional manifolds which does

not preserve Pontrjagin classes. This was the original surgery construction of a

homotopy equivalence of simply-connected manifolds which is not homotopic to

a diffeomorphism (Novikov [63]). 2

13.4 Surgery obstruction theory

This final section describes just a few of the developments in surgery theory since

the main framework was set up by Wall [92]. The surveys listed in the Preface

naturally give a broader picture!

The definition of the algebraic L-groups Lm(A) separately for even and odd

m was unified by the chain complex theory of Ranicki [69], with Lm(A) expressed

as the cobordism group of chain complexes with m-dimensional Poincaré dual-

ity, as follows. Given a f.g. free A-module chain complex C define the signed

transposition involution on HomA(C∗, C) by

T : HomA(Cp, Cq)→ HomA(Cq, Cp) ; φ 7→ (−1)pqφ∗ ,

with Cp = C∗p = HomA(Cp, A). Anm-dimensional quadratic Poincaré com-

plex (C,ψ) is an m-dimensional f.g. free A-module chain complex

C : Cm
d
→ Cm−1 → . . .→ C1

d
→ C0

together with a Z2-hyperhomology class ψ ∈ Hm(Z2; HomA(C∗, C)), as repre-

sented by A-module morphisms

ψs : Cm−r−s → Cr (s > 0)

such that
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dψs+(−1)rψsd
∗+(−1)m−s−1(ψs+1 +(−1)s+1Tψs+1) = 0 : Cm−r−s−1 → Cr ,

with the A-module chain map

(1 + T )ψ0 : Cm−∗ → C

a chain equivalence. See [69] for the corresponding definition of an (m + 1)-

dimensional quadratic Poincaré pair (f : C → D, (δψ, ψ)), with a chain

equivalence

(1 + T )(δψ, ψ)0 : C (f)m+1−∗ → D .

A quadratic Poincaré cobordism of m-dimensional quadratic Poincaré com-

plexes (C,ψ), (C ′ ψ′) is an (m + 1)-dimensional quadratic Poincaré pair of the

type

((f f ′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) .
Cobordism is an equivalence relation on m-dimensional quadratic Poincaré com-

plexes over A. The set of cobordism classes is an abelian group, with addition

and inverses by

(C,ψ) + (C ′, ψ′) = (C ⊕ C ′, ψ ⊕ ψ′) , − (C,ψ) = (C,−ψ) .

If m = 2n (resp. 2n+1) every m-dimensional quadratic Poincaré complex (C,ψ)

over A is cobordant (by algebraic surgery below the middle dimension) to an

n-connected complex, with

Cr = 0 for r 6= n (resp. n, n+ 1) .

The cobordism group of n-connected m-dimensional quadratic Poincaré com-

plexes over A is isomorphic to the L-group Lm(A) of stable isomorphism classes

of nonsingular (−1)n-quadratic forms (resp. formations) over A defined in Chap-

ter 11 (resp. 12), as well as to the cobordism group of all m-dimensional quadratic

Poincaré complexes over A, so that

Lm(A) = Lm+4(A) .

The surgery obstruction of an m-dimensional degree 1 normal map (f, b) : M →
X is the cobordism class of an m-dimensional quadratic Poincaré complex (C,ψ)

σ∗(f, b) = (C,ψ) ∈ Lm(Z[π1(X)])

with C = C (f !) the algebraic mapping cone of the Umkehr chain map f ! :

C(X̃)→ C(M̃). The homology and cohomology of C are given by

H∗(C) = K∗(M) , H∗(C) = K∗(M) ,

and the quadratic structure ψ is determined by a stable π1(X)-equivariant ge-

ometric Umkehr map F : Σ∞X̃+ → Σ∞M̃+ inducing f !. The ‘instant surgery

obstruction’ of [69] is a (−1)n-quadratic form (resp. formation) if m = 2n (resp.
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m = 2n+1) representing the surgery obstruction σ∗(f, b) ∈ Lm(Z[π1(X)]), which

is constructed from (C,ψ) by algebraic surgeries below the middle dimensions,

rather than by geometric surgeries below the middle dimension as in Chapter 11

(resp. 12).

The expression of L∗(A) as the cobordism groups of quadratic Poincaré com-

plexes gives various useful properties of the algebraic L-groups, such as relative

L-groups : a morphism of rings with involution f : A→ B induces morphisms

f∗ : Lm(A)→ Lm(B) ; (C,ψ) 7→ B ⊗A (C,ψ)

and the group Lm(f) of cobordism classes of pairs

((m− 1)-dimensional quadratic Poincaré complex (C,ψ) over A ,

m-dimensional quadratic Poincaré pair over B (g : B ⊗A C → D, (δψ, 1⊗ ψ)))

fits into an exact sequence

. . . // Lm(A)
f∗ // Lm(B) // Lm(f) // Lm−1(A) // . . . .

The localization exact sequence of Section 12.6 is the special case of the inclusion

f : A→ B = S−1A, with L∗(f) = L∗(A,S).

The chain complex method is also useful for obtaining surgery product and

composition formulae, and for the algebraic surgery classification of topological

manifolds.

An extensive literature is devoted to the computation of L∗(Z[π]), Ls∗(Z[π])

for various groups π, using algebra for finite π and geometry for infinite π. See

Wall [93], Hambleton, Milgram, Taylor and Williams [29], Hambleton and Tay-

lor [30] and Milgram [48] for general results for finite π. See Ferry, Ranicki and

Rosenberg [24] for an account of the geometric methods used for infinite π, in-

cluding the connections with the Novikov conjecture on the homotopy invariance

of the higher signatures and the closely related Borel conjecture on the existence

and uniqueness of a topological manifold structure in the homotopy type of an

aspherical Poincaré complex Bπ = K(π, 1). Ranicki [72] is an introduction to

the Novikov conjecture from the surgery point of view.

The set [M,G/O] of equivalence classes of fibre homotopy trivialised vector

bundles over a manifold M is an abelian group, with addition by Whitney sum.

The computation of [M,G/O] can be carried out in many cases using standard

algebraic topology (modulo the homotopy groups of spheres) – see Chapter 9.2

for an exposition of some of the homotopy theoretic properties of G/O. The

function A : [M,G/O] → Lm(Z[π1(M)]) sending a normal map to the surgery
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obstruction is not in general a homomorphism of abelian groups (cf. Example

13.3). The surgery exact sequence

. . .→ Lm+1(Z[π1(M)])→ S (M) → [M,G/O]
A
→ Lm(Z[π1(M)])

is not an exact sequence of abelian groups (cf. Example 13.26), so computations

of [M,G/O] and L∗(Z[π1(M)]) may be quite difficult to match up.

See Ranicki [71] for the surgery exact sequence and the ‘total surgery ob-

struction’ in the topological category. For any space X there is defined a long

exact sequence of abelian groups

. . .→ Lm+1(Z[π1(X)])→ Sm+1(X) → Hm(X;L•)
A
→ Lm(Z[π1(X)])→ Sm(X)→ . . .

with L• a 1-connective spectrum of quadratic complexes over Z such that

L0 ' G/TOP , π∗(L•) = π∗(G/TOP ) = L∗(Z)

and A the algebraic L-theory version of the assembly map of Quinn [67]. The

various classifying spaces fit into a commutative braid of fibrations

G

((

&&
G/TOP

((

&&
K(Z2, 4)

G/PL

66

((

BTOP

66

((
TOP/PL ' K(Z2, 3)

66

99BPL

66

99BG

with BTOP the classifying space for stable topological bundles (Kirby and

Siebenmann [39], Ranicki et al. [73]). The topological structure set STOP (X) of

a space X is defined in the same way as S(X) (1.14), but using topological man-

ifolds. The structure set of an m-dimensional topological manifold M is given

for m > 5 by

STOP (M) = Sm+1(M) .

The topological surgery exact sequence is an exact sequence of abelian groups

. . .→ Lm+1(Z[π1(M)])→ STOP (M) → [M,G/TOP ]
A
→ Lm(Z[π1(M)])

with respect to the addition on [M,G/TOP ] determined by the direct sum in

L0, and

A : [M,G/TOP ] ∼= Hm(M ;L•)→ Lm(Z[π1(M)])

is the assembly map. The image of A : Hm(K;L•) → Lm(Z[π1(K)]) for an

Eilenberg-MacLane space K = K(π, 1) is the subgroup of Lm(Z[π]) consisting
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of the surgery obstructions of normal maps of closed m-dimensional manifolds

(cf. Remark 11.79). The total surgery obstruction s(X) ∈ Sm(X) of an m-

dimensional Poincaré complex X is such that s(X) = 0 if (and for m > 5 only

if) X is homotopy equivalent to an m-dimensional topological manifold.
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